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Abstract

The gut microbiome has emerged as an important factor affecting human health and disease. The recent development
of –omics approaches, including phylogenetic marker-based microbiome profiling, shotgun metagenomics,
metatranscriptomics, metaproteomics, and metabolomics, has enabled efficient characterization of microbial
communities. These techniques can provide strain-level taxonomic resolution of the taxa present in microbiomes,
assess the potential functions encoded by the microbial community and quantify the metabolic activities occurring
within a complex microbiome. The application of these meta-omics approaches to clinical samples has identified
microbial species, metabolic pathways, and metabolites that are associated with the development and treatment of
human diseases. These findings have further facilitated microbiome-targeted drug discovery and efforts to improve
human health management. Recent in vitro and in vivo investigations have uncovered the presence of extensive drug-
microbiome interactions. These interactions have also been shown to be important contributors to the disparate patient
responses to treatment that are often observed during disease therapy. Therefore, developing techniques or frameworks
that enable rapid screening, detailed evaluation, and accurate prediction of drug/host-microbiome interactions is critically
important in the modern era of microbiome research and precision medicine. Here we review the current status of meta-
omics techniques, including integrative multi-omics approaches, for characterizing the microbiome’s functionality in the
context of health and disease. We also summarize and discuss new frameworks for applying meta-omics approaches and
microbiome assays to study drug-microbiome interactions. Lastly, we discuss and exemplify strategies for implementing
microbiome-based precision medicines using these meta-omics approaches and high throughput microbiome assays.

Keywords: Drug-microbiome interactions, Host-microbiome interactions, Meta-omics, Microbiome, Microbiome assay,
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Introduction
The human gut harbors trillions of microbial cells and
thousands of different species from diverse phylogenetic
backgrounds, including bacteria, archaea, and various
microbial eukaryotes [1]. Altogether, this community of
microorganisms, termed the gut microbiota, has a similar
cell number to that of human cells [2] and 450-fold more
genes than the human genome [3]. These gut microbiota
genomes, namely the metagenome, encode functions and
metabolic pathways that participate in various host bio-
logical processes, including metabolism, nutrition, and

immunity [4–6]. Given the high complexity of the human
gut microbiota and the challenges in culturing a high
proportion of gut microbial species [7], most micro-
biome studies employ “meta-omics” approaches, in-
cluding 16S rRNA gene sequencing, metagenomics,
metatranscriptomics, metaproteomics, and metabolo-
mics, which directly examine the phylogenetic markers,
genes, transcripts, proteins, or metabolites from the
samples [8].
In the past two decades, meta-omics based research

has revealed significant associations between the gut
microbiome and human diseases, including obesity, dia-
betes, inflammatory bowel disease (IBD), cardiovascular
disease, and various cancers [4, 5]. Several studies have
also demonstrated causative roles for the gut microbiome
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in inducing or alleviating the development of disease fol-
lowing variants of Koch’s postulates [9–11]. Given that
the composition of the human microbiota is highly
dynamic and can be altered with drugs or dietary inter-
ventions [12], the microbiome has been proposed as a
druggable target in humans [13]. Accumulating evidence
also supports the idea that many drugs, such as metformin
[14, 15], may alleviate disease, at least in part, through
modulating the gut microbiome. Recent large-scale
screening of > 1000 drugs on the growth of selected gut
bacterial species also highlighted the wide impacts of vari-
ous drugs on individual microbes [16]. In addition, the ex-
istence of bidirectional drug-microbiome interactions for
many clinically prescribed drugs has been demonstrated
to impact drug efficacy and/or toxicity [17, 18]. As medi-
cine is currently pursuing more precise disease treatment
and health management, it is vital that the microbiome is
fully integrated into future therapeutic strategies [19].
Nevertheless, our understanding on the mechanisms

underlying host-microbiome and drug-microbiome in-
teractions is still very limited. Several databases linking
specific microbial species/strains or microbial metabolic
pathways to specific diseases have been published [20–22];
however, these databases remain incomplete and most
clinically prescribed drugs have not been assessed for their
impact on the composition and function of human micro-
biomes. In addition, the composition of the human micro-
biome differs between individuals and is affected by
various factors such as diet, lifestyle, and host genetics
[23–26]. Thus, each patient’s microbiome will respond
differently to therapeutic treatments, and we currently
cannot accurately predict these responses in advance.
Fortunately, recent microbiome studies have expanded
beyond simply profiling microbiota compositions and are
increasingly characterizing microbial functions by using
functional meta-omics approaches such as metatranscrip-
tomics and metaproteomics [27–29]. The development
and optimization of various in vitro microbiome culturing
models, such as HuMiX [30], SHIME [31], and RapidAIM
[32], opens the door to rapidly screen drugs against indi-
vidual microbiomes. Herein we summarize the current
development of various functional meta-omics ap-
proaches, highlighting efforts to integrate findings
across meta-omic platforms and discuss their applications
in host-microbiome, drug-microbiome, and microbe-
microbe interaction studies at the interface of precision
medicine.

Functional meta-omics approaches for studying
the microbiome
The human gut consists of host and microbial cells, as
well as secreted proteins, metabolites, and microvesicles,
all of which may interact with each other to impact human
health. Different meta-omic approaches each examine

different aspects of this intestinal ecosystem at different
levels with their own advantages (detailed in this section)
and disadvantages (or challenges discussed in Table 1) (Fig.
1). Technical details on these meta-omics techniques and
their associated bioinformatic data processing tools have
been reviewed elsewhere [43–47]. Here we focus on the
key information that can be obtained from each –omic ap-
proach, with a particular focus on those that characterize
functional and metabolic activities; namely metatranscrip-
tomics, metaproteomics, and metabolomics.
The composition and functional capacity of human

microbiomes have been well characterized using next-
generation sequencing techniques, such as amplicon
sequencing (e.g., 16S rRNA gene) and shotgun metage-
nomics. In particular, shotgun metagenomics is now
widely applied in microbiome studies, providing valuable
functional information down to the strain level and for
all types of microorganisms (including archaea, fungi,
and viruses) [48–52]. More recently, metagenomic se-
quencing of hundreds to tens of thousands of samples

Table 1 Challenges for metatranscriptomics, metaproteomics,
and metabolomics in microbiome studies

Metatranscriptomics, metaproteomics, and metabolomics each have
their own shortcomings. Metatranscriptomic experiments rely on
obtaining sufficient high-quality RNA from the sample source; something
which can be quite challenging due to the ubiquitous presence of RNases
in host-derived samples. In addition, metatranscriptomic sequencing can
often become saturated with reads from less-informative, but highly
expressed transcripts (i.e., ribosomal proteins, translation factors, major
outer membrane proteins) from the most abundant microbes present,
obscuring the detection of functionally important, but less abundant
transcripts/proteins. Therefore, the quality of RNA as well as the depth of
measurement is important aspects that need to be evaluated or
considered in metatranscriptomics.

Compared to metagenomics and metatranscriptomics, metaproteomics
has a lower depth of measurement and can only capture 10–20% of
expressed proteins in human gut microbiomes [27, 33, 34]. MS spectra
can also be saturated with the highly abundant proteins from dominant
species, and this issue is unlikely to be resolved by increasing the speed
or time of MS scanning. However, applying off-line protein/peptide
separation (such as using sodium dodecyl sulfate polyacrylamide gel
electrophoresis) or targeted enrichment strategies (such as using
activity-based probes [35]) may to some extent address this limitation. In
addition, as metaproteomics is still in its infancy for the study of
microbiomes, there is still a lack of universal guidelines and protocols for
properly performing metaproteomic experiments and interpreting
metaproteomic results. Therefore, careful considerations should be made
for sample preparation, MS measurement, bioinformatic workflows, and
data reporting (readers are directed to this perspective article for more
details [36]).

The major challenge for metabolomics in microbiome studies is the
difficulty to distinguish host- and microbiome-origin metabolites and
directly link metabolites to specific taxa [37]. One feasible approach to
address this issue is to identify co-variations between metabolites and
microbial species, which is indicative for species-specific metabolite
production, through integrative analysis of microbiota compositions
with metabolite profiles [38–41]. Other approaches, such as protein
stable-isotope probing (protein-SIP) [42], can also link the metabolism of
a specific substrate to phylogenetic information by monitoring the
isotopes in microbial protein sequences with mass spectrometers and
may eventually aid in microbiome metabolic reconstructions.
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was carried out in large scale projects studying the role
of the microbiome in human disease, including studies
on early-onset type 1 diabetes (T1D) [53, 54], IBD [55],
pre-diabetes [56], and colorectal cancer [57, 58]. In par-
ticular, these studies employed longitudinal and/or
multi-omic experimental designs, which enabled better
characterization of the dynamic changes and functional
activities of the microbiome during disease progression.
Despite their costs and technical challenges, longitudinal
and multi-omic experimental designs are becoming in-
dispensable for unravelling host-microbiome interactions
during disease and for assessing causality in clinical
microbiome investigations. A beneficial spin-off from
these massive metagenomic sequencing projects has

been their deposition into easily accessible databases.
This has allowed researchers to leverage these datasets
to create reference databases for future studies. Exam-
ples include a database with > 150,000 microbial refer-
ence genomes [59] and a human gut microbial gene
catalog database consisting of > 9,800,000 genes [3].
These are valuable resources for functional studies of
the human microbiome using metatranscriptomic and
metaproteomic approaches.
The presence of a gene does not necessarily mean the

gene is expressed. Thus the direct measurement of
transcripts or proteins using metatranscriptomics or
metaproteomics, respectively, is becoming an important
complementary approach for metagenomics.

Fig. 1 Meta-omics approaches for the study of host-associated microbiomes. Each meta-omics approach reveals different layers of information in
the intestinal eco-systems
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Metatranscriptomics employs similar analytical ap-
proaches (e.g., nucleic acid sequencing) as metage-
nomics. Accordingly, the software tools employed for
metagenomics are often adapted for metatranscrip-
tomic data processing [29]. Using the same tools for
both metatranscriptomics and metagenomics provides a
straightforward route for their integration in micro-
biome studies [29, 33, 60]. Their combination not only
improves microbial genome assembly and gene predic-
tion [33], but can also enable the identification of genes
which are induced/repressed under specific conditions.
In addition, identifying genomes with active transcrip-
tion can distinguish metabolically active microbes from
inert or dead microbes [33]. In contrast with metage-
nomics and metatranscriptomics, metaproteomics mea-
sures expressed proteins, the basic functional unit for
most cellular biological processes, using high-resolution
mass spectrometry (MS). Metaproteomics should in
principle provide superior insight into gut microbial
functionality as compared with metatranscriptomics,
since not all transcripts are subsequently translated into
proteins. In the past, metaproteomics was rarely
employed in gut microbiome studies, at least in part,
due to the lack of efficient bioinformatic tools and low
protein measurement depth [61]. Fortunately, the re-
cent development of metaproteomic data processing
tools, such as MetaLab [62], MetaProteomeAnalyzer
[63], and Galaxy-P [64], has greatly advanced our ability
to analyze metaproteomic data (readers are directed to
extensive reviews for more information [61, 65]). This
has enabled deep characterization of microbiome pro-
tein compositions, with some reports quantifying > 50,
000 unique microbial protein groups in a single study
[38, 66]. It is noteworthy that metaproteomics identifies
and quantifies proteins from all organisms present
within the microbiome, regardless of their phylogenetic
origin, and can quantify host proteins as well [27, 33,
67]. This feature is of particular importance when
studying host-associated microbiomes in vivo and can
uncover important players (e.g., extracellular vesicles
[27]) mediating host-microbiome interactions.
In addition to the microbiome’s functional activity, a

further goal of microbiome research is to measure meta-
bolic outcomes. Metabolomics directly measures the
metabolites present in the intestine using analytical tech-
niques such as nuclear magnetic resonance (NMR) spec-
troscopy or mass spectrometry (MS). Given the higher
sensitivity of MS compared to NMR [68], the field of
metabolomics has increasingly shifted to MS-based ap-
proaches. Readers are directed to previous reviews for
more details on methodologies for fecal metabolomics
[69–71]. Fecal water is among the most commonly used
sample types for fecal metabolomic studies, although
there are increasing numbers of studies examining

intracellular microbial metabolites as well [38, 72]. The
fecal metabolome is often regarded as an endpoint read-
out of biological processes originating from the gut
microbiome [73]. Identified metabolites in fecal metabo-
lomics can include those derived from the microbiota
(e.g., lipopolysaccharide and butyrate) or the host (e.g.,
anti-microbial peptides). These metabolites can often act
as signalling markers that allow for communication be-
tween the host and microbiome. In fact, many metabo-
lites in the intestine are produced by co-metabolisms of
the host and their microbiome, and intestinal metabolic
imbalances have been commonly implicated in disease
development [37, 74, 75]. Profiling metabolomes in fecal
samples or targeted analysis of drug metabolites during
drug treatment can provide valuable information on bi-
directional drug-microbiome interactions that may
contribute to drug pharmacodynamics, pharmacokinet-
ics, or toxicity.

Integrative multi-omics for studying the host-
microbiome interactions
Integrating the data from multi-omic approaches pro-
vides additional insight into microbiome functions. For
example, integrating metagenomics and metatranscrip-
tomics enables the calculation of transcript/gene ratios,
which is indicative of gene transcriptional activation or
repression. Metaproteomics is also frequently integrated
with metagenomics for either facilitating protein identifi-
cation from MS spectra using a matched metagenome
database search strategy or for calculating microbiome
protein expression [34, 76, 77]. Metabolomics is in-
creasingly integrated with metagenomics for identifying
co-variation patterns between metabolites and micro-
biota composition/function and for characterizing
phylogenetic specific contributions to metabolite pro-
duction [39, 40, 78–81]. An excellent example of an in-
tegrative multi-omics study was carried out by Heintz-
Buschart et al. [33], who characterized microbiome
functions in patients with type 1 diabetes (T1D) using
metagenomics, metatranscriptomics, and metaproteo-
mics. Their study identified various differentially abun-
dant microbial transcripts encoded by microbes whose
abundance was unresponsive to T1D. In addition, the
metaproteomic profiling identified several fecal human
proteins that correlated with microbial functional profiles.
These findings highlight the usefulness of integrating
functional meta-omics approaches for host-microbiome
interaction studies.
Unfortunately, integrating multi-omic datasets is not a

trivial task due to the increased complexity and diversity
of the collected data (e.g., data structure, measurement
depth, potential errors, etc.). This integration is increas-
ingly reliant on efficient bioinformatic tools, advanced
statistical methods, such as multivariate statistics and
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machine-learning approaches (readers are directed to
the following representative reviews for more details
[45–47, 82–84]). Correlation analysis, such as Pearson’s
or Spearman’s rank correlation, and correlation-based
network analysis are the most straightforward and com-
monly used approaches for multi-omics data integration.
Multivariate statistical methods, such as partial least
squares regression, orthogonal partial least squares and
nonmetric multidimensional scaling [39–41], have also
been applied to identify key features that contribute to
the association of two or more –omics data sets. The
similarity/correlation between multi-omic datasets can
be evaluated using statistical approaches such as Procrus-
tes analysis and multiple co-inertia analysis [40, 78, 80]. A
further goal of multi-omics data integration is to generate
and validate microbiome metabolic networks/models. Al-
though this is still challenging, promising steps forward
have been made, including the generation of > 700
genome-scale metabolic reconstructions [85], the develop-
ment of tools for microbiome metabolic modeling/predic-
tion [86, 87], and the establishment of inter-species
metabolic network databases [88]. Recently, several micro-
biome studies have also taken advantage of machine learn-
ing methods, such as random forest algorithms, to either
differentiate between health and disease states or identify
features that predict clinical outcomes [89–92]. The appli-
cation of advanced machine-learning approaches will
likely revolutionize our ability to integrate and interpret
multi-omics data [93, 94]. These future integrations may
include the generation of microbiome-scale metabolic
reconstructions, which would further push the frontiers of
translational microbiome research.
In summary, although multi-omics data integration is

still challenging, the integration of multiple meta-omics
datasets provides a promising approach to comprehen-
sively characterize the composition, functional, and
metabolic activity of microbiomes. This is of particular
importance for microbiome research to be translated
into clinical applications. The chronic human diseases,
such as T1D, diabetes, or IBD, that are often associated
with microbiome alterations, are unlikely to be caused
by a single bacterium or a single protein/metabolite.
Therefore, we anticipate that meta-omics approaches,
along with their decreased costs and increased through-
put, will become a first-choice analytical method for
microbiome-based clinical or pharmaceutical practice.

Meta-omics in the study of drug-microbiome
interactions
The responses of microbiome to external treatments,
such as diet and drugs, are usually dependent on the ini-
tial microbiome composition, which is highly variable
between individuals. A holistic understanding of the in-
teractions between drugs and microbiomes using meta-

omics approaches would be helpful in predicting the
outcomes of drug treatment or guiding the usage of
drugs. Many clinically prescribed drugs can be metabo-
lized by the gut microbiome and/or modulate gut micro-
biome composition; these drug-microbiome interactions
can thus affect drug efficacy and/or toxicity [17, 95, 96].
Examples of these include antibiotics (which would be
expected to modulate the gut microbiome) [97], as well
as host-targeting drugs, such as metformin and nonste-
roidal anti-inflammatory drugs [14, 96]. A recent study
by Maier et al. screened > 1000 marketed drugs against
40 human gut microbial strains and found that 24% of
the non-antibiotic drugs could inhibit specific gut bac-
terial species [16]. Zimmermann et al. also reported that
around two-thirds of their selected 271 oral drugs were
metabolized by at least one of their 76 cultured human
gut bacterial strains [98]. These findings provide further
evidence for the widespread existence of drug-microbiome
interactions in marketed drugs and the importance of
evaluating their effects on entire microbiomes. Unfortu-
nately, the detailed interactions between human gut micro-
biomes and these drugs are still largely unknown, and
fewer than 100 drugs have been recorded in drug-
microbiome interaction databases [99]. In addition, the few
interactions that are recorded often provide little insight as
to whether the drug-microbiome interactions may lead to
positive, negligible or even negative outcomes for the host.
Therefore, the development of high-throughput platforms
to rapidly characterize drug-microbiome interactions is ur-
gently needed. Most previous drug-microbiome interaction
studies have been performed using animal models, which
are time consuming, expensive and not always representa-
tive of what will occur in humans. Ex vivo culturing of en-
tire human microbiomes when combined with meta-omics
analysis provides a promising way to develop microbiome
assays for rapidly screening drug-microbiome interactions
against individual microbiomes.
The technology for high-throughput microbiome as-

says is often adapted from current cell culture-based,
host-targeting drug screening platforms. However, there
are several challenges inherent to microbiome assays
and include (1) the representability of the cultured
microbiome, (2) the throughput of microbiome cultur-
ing, and (3) the throughput of data generation and pro-
cessing. Over the past few years, new developments have
improved our ability to culture entire human gut micro-
biota. Lagier et al. reported the culture of > 1000 species
from human gut microbiome samples and identified a
set of 70 best culture conditions for growing gut micro-
biota [7]. Fenn et al. utilized a co-culture technique to
culture human gut microbiota and identified an essential
nutrient (menaquinone), which may help better maintain
microbiomes in vitro [100]. Li et al. recently proposed
an orthogonal experimental design to rapidly determine
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key factors in culture media that impact microbiome
composition/function and thereby optimize in vitro
culture media for specific microbiomes [101]. In
addition to static batch culturing systems, microfluidic
devices for continuous culturing, such as HuMiX and
SHIME [30, 31], have also been developed. Continuous
flow devices enable better simulation of in vivo intestinal
conditions for the growth of microbiome; however, they
are more expensive and cannot be easily adapted for
high throughput culturing of many different micro-
biomes/conditions in a short timeframe. As such, most
high throughput screening microbiome assays use batch
culturing approaches. Rapid generation of microbiome
data using a single –omics approach is now also feasible
as technologies and bioinformatic tools for meta-omics
analysis are available and being continuously optimized
(see above). Multiple –omics approaches can be simul-
taneously applied to drug-microbiome screening; how-
ever, the throughput will be reduced, and costs will be
greatly increased. As such, a two-stage approach consist-
ing of an initial rapid screening with a single –omics ap-
proach and a second stage consisting of multi-omics
characterization for the selected hits is currently more
practical to enable high throughput screening and
characterization (Fig. 2). Good examples of first step
screening tools are 16S rRNA gene sequencing, due to
its lower cost, or single-shot metaproteomics given that
it provides information on microbiome biomass, com-
position, and function.
We have recently reported a proof-of-concept high

throughput ex vivo microbiome assay, termed rapid
assay of individual’s microbiome (RapidAIM) that is
based on culturing an individual’s entire microbiome
followed by metaproteomic measurement [32]. We
showed that RapidAIM maintained microbiome structure
and functional profiles for up to 48 hours and recapitu-
lated known in vivo drug effects on microbiomes. We
evaluated the responses of individual microbiomes against
43 compounds and found that 27 compounds had signifi-
cant effects on microbiome composition and function.
Chankhamjon et al. adopted a similar microbiome batch
culture platform for the rapid screening and detailed
characterization of microbiome-derived drug metabolism
[102]. Briefly, a healthy microbiome was co-cultured with
a library of drugs and the drug metabolites were analysed
using HPLC-MS. Among the > 500 oral drugs tested, they
discovered that 13% could be metabolized by the micro-
biome [102]. These studies demonstrate the feasibility of
applying high throughput microbiome assays for assessing
bi-directional interactions between microbiome and
clinically used drugs. The extensive screening of
drug-microbiome interactions may also represent an
economic way to discover currently approved drugs
which have impacts on the microbiome and

potentially repurpose these drugs for microbiome-
targeted disease therapy.

Meta-omics at the interface of microbiome and
precision medicine
Precision medicine is an emerging concept for health
management given that responses to therapeutic interven-
tions usually vary between individuals. In the past, these
variations were assumed to be simply caused by subtle dif-
ferences between patient genetic backgrounds or due to
epigenetic factors controlling host gene expression. For
example, genomics-based precision medicine has often
been applied in cancer therapy [103–106]. However, it
should be noted that many cancer therapeutics could also
alter the gut microbiome [16, 107, 108]. More recently,
variations in patient responses to cancer immuno- and
chemo-therapies were linked to inter-individual differ-
ences in gut microbiomes [74, 109–114]. These findings
suggest an opportunity to further optimize disease therap-
ies through microbiome-informed patient stratification,
through personalized treatment decisions and/or through
direct manipulation of patient microbiomes (Fig. 3). They
also highlight the importance of including microbiomes
into the framework of precision medicine [19].

Patient stratification based on microbiome profiling
One important goal of precision medicine is to identify bio-
markers for stratifying patients into subgroups that are
likely to be responsive (or unresponsive) to a given treat-
ment [115]. As mentioned above, heterogeneous responses
of patients to treatment may be due in part to differences
in their gut microbiomes. Therefore, a prior understanding
of an individual’s microbiome may help predict treatment
outcomes and/or suggest optimal therapeutic strategies
(Fig. 3a). Gu et al. demonstrated that the gut microbiome
of new-onset type 2 diabetes (T2D) patients could be classi-
fied into two clusters, namely cluster P (dominated by Pre-
votella) and B (dominated by Bacteroides), and found that
cluster P patients had greater metabolic improvement after
3-month acarbose treatment as compared to cluster B pa-
tients [116]. In a prospective wellness study, Price et al.
[117] illustrated the use of dense and dynamic personal
data clouds, including host genetic traits, clinical analytes,
metabolites, proteomes, and microbiomes, to identify can-
didate markers for predicting the transition from health to
disease. In the disease-prone subgroup, life style interven-
tions stemming from these personalized-data biomarkers
successfully improved their health status [117]. In cancer
therapy, immune checkpoint inhibitors targeting the pro-
grammed death 1 (PD-1) protein are important therapeu-
tics but are only effective in a subset of patients. Recent
studies have shown that patient’s failure to respond to anti-
PD-1 therapy could be attributed to the absence or under-
representation of certain immune-regulating bacterial
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species in gut, namely Akkermansia muciniphila, Faecali-
bacterium, and Bifidobacterium longum [109–111]. These
findings suggest that quantifying these commensals in pa-
tient fecal samples may help predict therapeutic outcomes
and stratify patients into potential responders or non-
responders to PD-1 blockade.

Ex vivo microbiome assays for guiding treatment
decisions
The gut microbiota is a highly diverse microbial com-
munity with high inter-individual variability, making
in vivo drug-microbiome interactions complex and an

individual’s response to drug treatment difficult to pre-
dict. In addition, as mentioned above, there is no know-
ledge on drug-microbiome interactions for the majority
of clinically prescribed drugs. A prior understanding or
prediction of drug-microbiome interactions in a patient
through microbiome assays would be invaluable for opti-
mizing the therapeutic outcomes in diseases that are
known to be associated with gut microbial alterations.
This would allow for patients to be prescribed the most
effective drug for treating their disease (Fig. 3b). For
example, digoxin is a commonly used cardiac drug and
can be converted into its inactive form, dihydrodigoxin, by

Fig. 2 Framework of an ex vivo assay for screening drug-microbiome interactions. The individual’s microbiome is cultured and treated with drugs
in anaerobic conditions simulating the in vivo environment. The cultured samples can then be analysed by 16S rRNA gene sequencing or single-shot
metaproteomics to rapidly identify hit compounds taking advantage of well-established bioinformatic platforms. Detailed bidirectional drug-microbiome
interactions for hit compounds can then be further evaluated with integrative multi-omics approaches
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specific strains of the intestinal bacterium Eggerthella
lenta, and this has been suggested to contribute to di-
goxin’s varied bioavailability among individuals [118, 119].
However, the extent of digoxin inactivation is also
dependent on the presence of other gut microbes [118],
indicating that a single biomarker using the presence
of E. lenta species may not be sufficient for patient
stratification. Instead, culture of digoxin with an
ex vivo microbiome followed by metabolite measure-
ment can more accurately predict the extent of
digoxin inactivation and thereby guide the decision
on whether adjuvant intervention, such as arginine
supplements or antibiotics, is needed [118, 120]. In

addition, for diseases with multiple drug candidates,
such as IBD [121], culturing a set of candidate drugs
with an individual’s ex vivo microbiome may help se-
lect the most likely effective drug candidate for treat-
ing each patient’s disease.

Targeted manipulation of microbiome for precision
disease treatment
Although the gut microbiome has long been considered
as a potential target for disease treatment [13] and an
effective microbiome-targeted dietary intervention ap-
proach has been demonstrated [9], commercially avail-
able targeted therapeutics for precise modulation of

Fig. 3 Introducing microbiomes into clinical practice for precision medicine. The profiles of individual patient microbiomes are analyzed
with meta-omics, which allow for patients to be classified into sub-groups, i.e., responders vs. non-responders to treatments (a). The
in vivo response of an individual’s microbiome to drugs can also be predicted with ex vivo microbiome assays, allowing the selection of
the best drugs or adjuvant treatments for different patients (b). Finally, health and disease management could be carried out by precisely
manipulating of the microbiome through supplementing commensal bacteria, engineered bacteria, microbiome-targeted drugs or
bacteriophages (c)
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microbiomes are still lacking. However, our understand-
ing of the mechanisms underlying host-microbiome in-
teractions is growing rapidly, and new potential targets
(e.g., specific microbial species or metabolic pathways)
in the microbiome are being identified. It may soon be
feasible to precisely manipulate the microbiome through
either supplementation of beneficial species (such as A.
muciniphila) [111], engineered probiotics/commensals
[122], prebiotics [9], bacteriophages [123], or highly
selective drugs [124] (Fig. 3c). For example, Zhu et al.
recently reported that tungstate can specifically inhibit
molybdenum-cofactor-dependent gut microbial respira-
tory pathways under inflammatory conditions, which
ameliorates intestinal colitis and restores gut microbial
homeostasis in a mouse model of colitis [124]. More re-
cently, Ho et al. reported that a genetically modified E.
coli strain, which has selective affinity to cancer cells and
secrets myrosinase for converting vegetable derived glu-
cosinolate into anti-cancer compounds, effectively pre-
vented the development of cancer in mice receiving a
cruciferous vegetable diet [125]. Dietary intervention is
another safe and promising approach for manipulating
the microbiome. Zhao et al. utilized a specialized diet
to promote the growth of a group of short-chain fatty
acid-producing bacteria in the gut of T2D patients,
which was proposed to have contributed to improved
glucose homeostasis in these patients [9]. Along with
the development of sophisticated tools for manipulat-
ing microbial genetics [122, 126], it is becoming feas-
ible for targeted modulation of specific microbial
metabolic pathways or species in microbiome, which
further lays the foundation for future microbiome-
targeted therapies.

Conclusions
The ultimate goal of human microbiome research is to
facilitate health and disease management. Gut micro-
biome alterations have been associated with an in-
creasing list of diseases, and selectively modifying the
gut microbiota has been shown to alleviate the devel-
opment of disease, including diabetes and colitis.
These achievements highlight the importance of intro-
ducing the microbiome into the precision medicine
framework, through either microbiome-guided patient
stratification or interventions that specifically target mi-
crobial species/pathways. However, it is still a challenge to
rapidly identify specific, actionable targets within micro-
biomes. Fortunately, the addition of metatranscriptomics,
metaproteomics, and metabolomics to metagenomics is
enhancing our functional understanding of the micro-
biome. Although more powerful and convenient bioinfor-
matic tools are still needed, integrative functional meta-
omics is becoming one of the most important approaches
for dissecting microbial metabolic pathways in

microbiomes. In addition, the development of
microbiome-targeted drugs is also challenging. Therefore,
efforts are underway to develop new ex vivo assays target-
ing panels of individual bacteria, simple microbial com-
munities, or entire microbiomes. These are likely to
rapidly increase our understanding of how microbiomes
interact with drugs, food components, and natural com-
pounds. Ex vivo microbiome assays will likely be useful in
precision medicine by allowing individual microbiomes to
be screened against panels of drugs/compounds to select
the most efficient treatment.

Abbreviation
IBD: Inflammatory bowel disease; MS: Mass spectrometry; NMR: Nuclear
magnetic resonance; T1D: Type 1 diabetes; T2D: Type 2 diabetes; PD-
1: Programmed death 1
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