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Abstract

As defined by the World Health Organization, an endocrine disruptor is an exogenous substance or 

mixture that alters function(s) of the endocrine system and consequently causes adverse health 

effects in an intact organism, its progeny, or (sub)populations. Traditional experimental testing 

regimens to identify toxicants that induce endocrine disruption can be expensive and time-

consuming. Computational modeling has emerged as a promising and cost-effective alternative 

method for screening and prioritizing potentially endocrine active compounds. The efficient 

identification of suitable chemical descriptors and machine learning algorithms, including deep 

learning, is a considerable challenge for computational toxicology studies. Here, we sought to 

apply classic machine learning algorithms and deep learning approaches to a panel of over 7,500 

compounds tested against 18 Toxicity Forecaster (ToxCast) assays related to nuclear estrogen 

receptor (ERα and ERβ) activity. Three binary fingerprints (Extended Connectivity FingerPrints, 

Functional Connectivity FingerPrints, and Molecular ACCess System) were used as chemical 

descriptors in this study. Each descriptor was combined with four machine learning, and two deep 

learning (normal and multitask neural networks) approaches to construct models for all 18 ER 

assays. The resulting model performance was evaluated using the area under the receiving 

operating curve (AUC) values obtained from a five-fold cross-validation procedure. The results 

showed that individual models have AUC values that range from 0.56 to 0.86. External validation 

was conducted using two additional sets of compounds (n=592 and n=966) with established 

interactions with nuclear ER demonstrated through experimentation. An agonist, antagonist, or 

binding score was determined for each compound by averaging its predicted probabilities in 
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relevant assay models as an external validation, yielding AUC values ranging from 0.63 to 0.91. 

The results suggest that multitask neural networks offer advantages when modeling 

mechanistically-related endpoints. Consensus predictions based on the average values of 

individual models remain the best modeling strategy for computational toxicity evaluations.

Estrogen receptors (ERs) play essential roles in cell differentiation1, reproductive 

function2–4, and morphogenesis4. ERs exist in two major subclasses: those that act via a 

classical genomic mechanism of transcriptional regulation (nuclear ERα and ERβ) and those 

that act via nongenomic mechanisms (estrogen-related receptors and membrane-bound G-

protein coupled ERs)5. Nuclear ERα has a large binding pocket, which allows for 

nonspecific ER binding by compounds that are estrogen-like6. In the classical genomic 

mechanism, nuclear ERα or ERβ binds to an estrogenic compound. This ligand binding 

triggers a conformational change and activates the receptor1,4,7. Two activated nuclear ERs 

then can dimerize, bind to the estrogen response element (ERE) promoter region on the 

cell’s DNA, and recruit cofactors required for transcription1,7. The resulting increased 

production of mRNA can trigger cell proliferation downstream7. This cell proliferation has 

been linked to adverse effects such as uterine and breast cancers4,8. Therefore, screening 

new compounds (e.g., drugs as well as commercial and personal care products) for undesired 

nuclear ER interactions early in development may be valuable.

Traditional experimental testing to identify toxicants relies on costly and time-consuming in 
vivo animal testing, which is impractical to efficiently assess the toxicity potential of the 

tens of thousands of registered compounds that require screening9. Computational modeling 

and in vitro high-throughput screening (HTS) assays are promising alternative methods for 

toxicity evaluation. However, traditional computational methods such as quantitative 

structure-activity relationship (QSAR) models often have limitations when they were 

developed by using small datasets. QSAR models trained with datasets of insufficient size 

are limited by narrow coverage of chemical space10, activity cliffs11, and overfitting12, 

which in turn reduce their utility for predicting more complex chemical modes of action.

Over the past 20 years, deep learning emerged as an integral field of machine learning, 

especially with regards to the processing of big data13. Deep learning has advanced many 

fields, including voice and image recognition, language processing, and bioinformatics14. 

Most current deep learning studies employ biologically-inspired deep neural networks 

(DNNs)15. Both classic QSAR models and DNNs usually undergo training to predict a 

single activity (e.g., a single toxicity endpoint). However, many toxicologically-relevant 

modes of action require complex biological pathway perturbations to elicit an adverse 

biological effect, and consequently, the evaluation of the overall potential of a compound to 

exert an adverse outcome requires the prediction of multiple biological endpoints in a 

comprehensive manner. Multitask learning allows for the development of models that can 

simultaneously predict multiple activities and is a potential solution to this challenge. The 

application of a multitask learning approach can improve the ability of a model developed 

for related endpoints to generalize to new compounds due to information sharing during 

model development, thereby increasing prediction accuracy on new compounds. Successful 

modeling efforts using both normal and multitask deep learning demonstrate the potential 
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for this technique to improve drug discovery16–19 and toxicology20,21. However, currently, 

no universal criteria for the selection of machine versus deep learning methods exist22–26.

The development of in vitro testing protocols using robots27 rather than humans allows for 

the rapid generation of data through HTS programs, advancing computational modeling into 

a big data era28–33. One of the first significant HTS programs in toxicology was the 

Environmental Protection Agency (EPA) Toxicity Forecaster (ToxCast) initiative, which 

used an extensive battery of HTS assays to screen over 1,000 compounds34,35. The success 

of ToxCast led to the development of the Toxicity in the 21st Century (Tox21) collaboration 

of the EPA, Food and Drug Administration (FDA), National Center for Advancing 

Translational Sciences (NCATS), and National Toxicology Program (NTP), which has a goal 

of testing approximately 10,000 compounds in HTS assays36–38. The direct result of these 

HTS efforts is the generation of large datasets that researchers can use in computational 

toxicity modeling studies.

The availability of big data in public repositories brings urgent needs for researchers to 

create innovative computational models that can overcome the limitations associated with 

models based on small datasets. The application of non-animal models for toxicity 

evaluation using computational toxicology is becoming feasible with newly developed 

algorithms and modeling strategies39–44. Recently, Browne et al.42 and Judson et al.43 

described models trained using a subset of 18 ToxCast and Tox21 in vitro assays that are 

mechanistically relevant to the ER pathway. However, despite the success of these models, 

they require experimental concentration-response data, which makes them inapplicable to 

new, untested compounds for which only structural information is available. Our goal was to 

address these limitations by evaluating machine learning and deep learning approaches for 

their ability to predict compound activity using models based upon mechanistically related 

suites of assays. In this study, we assessed the applicability of traditional machine learning 

algorithms and deep learning approaches, including multitask learning with DNNs, to model 

these 18 mechanistic in vitro assays addressing ER pathway perturbations. The consensus 

predictions from averaging the predicted probabilities in relevant assays showed advantages 

compared to individual models, including multitask learning models. The agonist, 

antagonist, or binding score was determined for new compounds based on consensus 

predictions and compared to their known experimental in vitro and in vivo toxicities. The 

results from this study suggest that a lack of universal criteria for chemical descriptor and 

algorithm selection for computational toxicology modeling continues to exist, and consensus 

predictions will still be the best strategy for computational chemical toxicity evaluation 

purposes.

Materials and Methods

ER HTS Assay Dataset

The toxicity dataset used for modeling is the output of 18 high-throughput in vitro assays 

from the ToxCast and Tox21 programs (Table 1)42,43. In total, the ToxCast and Tox21 

programs tested 8,589 compounds against these 18 assays. However, the chemical 

fingerprints calculated in this study are two-dimensional, which exclude the differences 

between stereoisomers and cannot deal with inorganic compounds. Therefore, the chemical 
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structures needed further curation before modeling. The CASE Ultra v1.8.0.0 DataKurator 

tool was used to accomplish this chemical structure standardization. All salts and mixtures 

were separated into their constituent parts, and the largest organic fraction was kept. 

Compounds with duplicate structures but different activities in the same assays were 

evaluated, and the compound with the most active responses across all assays was retained. 

Compounds with missing/inconclusive results in all 18 assays were removed from the 

dataset.

The final dataset used for modeling in this study consisted of 7,576 unique compounds, each 

of which showed conclusive active or inactive test results in at least one of the 18 nuclear 

ER-related in vitro assays (Supplementary Table SI). Inconclusive results were treated as 

missing data for modeling purposes. Each chemical was assigned an activity vector 

consisting of 18 active, inactive, or missing/inconclusive results for all assays.

Chemical Descriptors

Three types of two-dimensional binary chemical fingerprints, Molecular ACCess System 

(MACCS), Extended Connectivity FingerPrint (ECFP), and Functional Connectivity 

FingerPrint (FCFP) descriptors, were generated for all compounds in Python v3.6.2 using 

the cheminformatics package RDKit v2017.09.1 (http://rdkit.org/). MACCS descriptors are a 

set of 167 fingerprints based on chemical substructures widely used in cheminformatics 

modeling45. ECFP and FCFP descriptors are substructure fingerprints calculated using a 

modified version of the Morgan algorithm (i.e., by evaluating the environment surrounding 

particular atoms in a molecule using a specified bond radius)46. FCFP descriptors can 

represent functional group information about a molecule rather than a specific substructure, 

whereas ECFP descriptors can represent specific chemical information about a molecule. 

For example, FCFP descriptors detect the presence of an aryl halide rather than the specific 

presence of chlorine bonded to a benzene ring that ECFP descriptors detect. In this study, 

1,024 ECFP and FCFP descriptors were calculated for all compounds using a bond radius of 

3.

QSAR Model Development

Four machine learning (ML) algorithms were used to develop QSAR models for each 

ToxCast assay endpoint: Bernoulli Naïve Bayes (BNB), k-Nearest Neighbors (kNN), 

Random Forest (RF), and Support Vector Machines (SVM). In this study, all four ML 

algorithms were implemented in Python v3.6.2 using scikit-learn v0.19.0 (http://scikit-

learn.org/)47. Briefly, BNB models apply Bayes’ theorem to datasets with binary features by 

“naively” assuming that features are independent of one another48. kNN models learn and 

predict a compound based on the activities of its k nearest neighbors calculated by a 

subspace similarity search49. RF models are ensemble models that construct a series of 

decision trees using a random selection of features and training set compounds50. RF models 

ultimately produce an average of the output from each decision tree to prevent overfitting. 

SVM models represent training compounds in the descriptor space and attempt to locate the 

optimal hyperplane that separates active and inactive compounds51. The ML algorithms 

were tuned to identify the optimal input parameters for model performance, as described 

previously23. Briefly, hyperparameters, or any other parameters set before model training, 
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were optimized using an exhaustive grid-search algorithm23. Each machine learning 

algorithm was fit to the ER HTS training data using each possible set of hyperparameters to 

identify the best performing model. The model with the best combination of 

hyperparameters was retained and then used for the prediction of the test set.

Both normal and multitask DNNs were implemented in Python v3.6.2 using keras v2.1.2 

(http://keras.org) and TensorFlow v1.4.0 (https://www.tensorflow.org/). DNNs consist of an 

input layer that contains information about the features of the data, such as chemical 

fingerprints, used to train the model, and an output layer, which is a prediction for the 

activity of interest15. A series of “dense” layers connect the input and output layers, such 

that every node in each layer shares a weighted connection with every node in the previous 

and next layers. These weighted connections undergo optimization in the model training 

process. All DNNs in this study were implemented with three hidden layers of width equal 

to the number of fingerprints in the input layer (i.e., 167 for MACCS descriptors and 1,024 

for ECFP and FCFP descriptors). Before model training, the weights between the neurons of 

each layer were randomly initiated using the He normal method52. These weights were 

optimized during training to achieve the minimum binary cross-entropy. To this end, the 

following standard deep learning methods were implemented: stochastic gradient descent 

(SGD) optimization53 (learning rate = 0.01, Nesterov momentum54 = 0.9), Rectified Linear 

Unit (ReLU) hidden layer activation55, and automatic learning rate reduction56 (90% 

reduction upon 50 consecutive epochs with no loss improvement, minimum = 0.0001). 

Dropout57 (rate = 0.5) and L2
58 (β = 0.001) regularizations and early stopping59 (upon 200 

epochs with no loss improvement) were implemented to avoid overfitting. The model output 

layer used a sigmoid activation function60 so that the predicted result was interpretable as a 

probability.

Model performance was evaluated using the area under the receiver operating curve (ROC) 

metric (AUC). Each model developed in this study computes a probability that a tested 

compound will be active in a given bioassay. Tested compounds are classified as active when 

they exceed a determined probability threshold. The ROC curve for model performance is a 

plot of the true positive rate (TPR, Equation 1) against the false positive rate (FPR, Equation 

2) using various probability thresholds for the classification of active compounds61. The area 

under this plotted curve (AUC) is interpretable as a measure of the likelihood of a model to 

distinguish active compounds from inactive compounds correctly. An AUC of 0.5 represents 

a random model performance as the baseline. The AUC is a suitable metric for this study 

due to the highly imbalanced nature of the assay data used to train the models. In modeling 

studies using imbalanced datasets (e.g., HTS assay data), the default probability threshold of 

0.5 is not always appropriate62. Using the AUC as an evaluation method takes this 

consideration into account by evaluating model performance at several different probability 

thresholds.

TPR = True positives
True positives+False negatives [1]
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FPR = False positives
False positives+True negatives [2]

External Validation

The developed models can be used to predict new compounds to prove their predictivity. To 

this end, external validation was performed using two datasets: the Collaborative Estrogen 

Receptor Activity Prediction Project (CERAPP) in vitro agonist, antagonist, and binding 

datasets63 and the Estrogenic Activity Database (EADB) in vivo rodent uterotrophic 

dataset64. Before model validation, the CASE Ultra v1.8.0.0 DataKurator tool was used to 

prepare the structures of new compounds as previously described. Only the new compounds 

not existing in the training dataset were kept. The final curated CERAPP in vitro agonist, 

antagonist, and binding validation sets contained 368, 264, and 569 compounds, respectively 

(Supplementary Table SII). The final curated EADB in vivo rodent uterotrophic agonist 

validation set contained 966 compounds (Supplementary Table SIII).

Three new parameters were created to evaluate a chemical’s potential to act as a nuclear ER 

agonist, antagonist, or binder based on its predicted activity in relevant assays: agonist score 

(SAg, Equation 3), antagonist score (SAnt, Equation 4), and binding score (SB, Equation 5). 

In these equations, P(Ai) is the probability for a predicted compound to be active in Assay i. 
The 18 total assays contain 16 agonism assays (A1-A16), 13 antagonism assays (A1-A11, 

A17, and A18), and 11 binding assays (A1 – A11). These three parameters integrate relevant 

models of ER agonism, antagonism, and binding to evaluate new compounds for their 

toxicity potential at nuclear ERs. The performance of models during external validation was 

evaluated using ROC curve plots and AUC calculations, as previously described for the 

cross-validation procedure.

SAg =
∑i = 1

16 P Ai
16

[3]

SAnt =
∑i = 1

11 P Ai + ∑i = 17
18 P Ai

13
[4]

SB =
∑i = 1

11 P Ai
11

[5]

Results

Dataset

Figure 1 shows a summary of the 7,576 unique compounds tested against at least one of the 

18 ToxCast and Tox21 nuclear ER-related in vitro assays. HTS assay data usually contain 

missing and inconclusive data points, and the results are biased (i.e., more inactive than 
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active)28,29. In total, these compounds consist of over 53,000 total conclusively active or 

inactive assay hit calls, indicating that missing/inconclusive results exist in the dataset. The 

results show a diverse number of conclusive activities per compound, ranging from 2 to 18 

hit calls in these assays (Figure 1A). Only 476 compounds showed conclusive results for all 

18 assays, representing 6.3% of the full dataset. The low active response ratio across all 

assays (i.e., active ratio ranges from 1:16 to 1:3) compared to inactive responses reflects the 

nature of HTS results for chemical toxicity testing28,29. Furthermore, no individual assay has 

conclusive results for all 7,576 compounds. Instead, the size of each assay dataset ranges 

from 883 to 7,263 compounds, depending on the assay nature (Table 1, Figure 1B). For 

example, NVS_NR_bER (A1, 1,004 compounds), NVS_NR_hER (A2, 1,076 compounds), 

and NVS_NR_mERa (A3, 883 compounds) show the lowest number of tested compounds, 

and they are NovaScreen assays. TOX21_ERa_BLA_Agonist_ratio (A14), 

TOX21_ERa_LUC_BG1_Agonist (A15), TOX21_ERa_BLA_Antagonist_ratio (A17), and 

TOX21_ERa_LUC_BG1_Antagonist (A18) are Tox21 assays that each consist of 7,263 

compounds with conclusive results, representing the richest individual assay datasets. 

Therefore, these 18 assay datasets represent a large range of data size and chemical diversity, 

which are suitable for modeling studies to evaluate the machine learning algorithms.

The data used in this study also show a bias toward inactive responses. Out of the full 

dataset, only six of these compounds showed active results across all 18 assays: Bisphenol 

AF (CAS 1478-61-1), 2-ethylhexyl 4-hydroxybenzoate (CAS 5153-25-3), 4-tert-octylphenol 

(CAS 140-66-9), diethylstilbestrol (CAS 56-53-1), 4-cumylphenol (CAS 599-64-4), and 

hexestrol (CAS 84-16-2). These six compounds show uterotrophic activity in at least one 

guideline-like study65. By comparison, 4,698 compounds show only inactive results in one 

or more of these 18 assays, representing a majority (62.0%) of all compounds. The 

individual assay datasets reveal a similar trend, with small ratios of active versus inactive 

results. For example, ATG_ERE_CIS_up (A13), which is an mRNA induction assay, has the 

highest active ratio of approximately 1:3. Compared to this assay, 

TOX21_ERa_BLA_Agonist_ratio (A14), which is a beta-lactamase induction assay, has the 

lowest active ratio of approximately 1:16. Some previous studies showed that downsampling 

to remove some inactive compounds from training datasets was beneficial to the resulted 

QSAR models66,67. However, in this study, the full dataset was retained to preserve an ample 

chemical space for the prediction of new compounds.

QSAR Model Development

Four machine learning (BNB, kNN, RF, and SVM) and two DNN algorithms were paired 

with ECFP, FCFP, and MACCS descriptors individually to develop 18 models for each ER 

assay (Figure 2). Simpler algorithms, such as logistic regression, were not used in this study 

since previous studies have shown the advantages of advanced machine learning 

algorithms23,68. Therefore, in total, 273 models (216 ML models, 54 normal DNN models, 

and 3 multitask DNN models) were developed for all of the ER assay data. In 2007, the 

Organization for Economic Co-Operation and Development (OECD) published a guidance 

document on the validation of QSAR models developed for risk assessment purposes69. The 

guidelines set forth by this document require that models undergo statistical evaluation for 

goodness-of-fit, robustness, and predictivity, including model cross-validation69. Cross-
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validation procedures that leave compounds out during each iteration provide reliable model 

evaluations70. In this study, all models were evaluated using a five-fold cross-validation 

procedure, with 20% of the dataset left out for prediction purposes during each iteration. 

Each assay dataset was randomly split into five equal subsets maintaining the original 

proportion of active and inactive responses. In this procedure, four subsets (80% of the total 

compounds) were combined as a training set, and the remaining 20% was used as a test set. 

This procedure was repeated five times, such that each compound was used in a test set one 

time. The six resulting models for each assay-descriptor combination were averaged to give 

a consensus prediction, as described in previous publications66,71–73.

Table 2 shows the five-fold cross-validation results for each model. The AUC values for all 

the resulted models ranged between 0.562–0.870. The highest AUC value ranged between 

0.645–0.870 for each assay, indicating that at least one descriptor-algorithm combination 

yielded a satisfactory model for each endpoint. OT_ER_ERaERb_0480 (A6) had the best 

performing models, with AUC values ranging between 0.609–0.870. Compared to this assay, 

TOX21_ERa_LUC_BG1_Agonist (A15) and ACEA_T47D_80hr_Positive (A16) 

consistently had lower performing models with AUC values ranging between 0.562–0.660 

and 0.562–0.645, respectively. In previous studies, QSAR model performance was high 

when modeling simple endpoints (e.g., physical-chemical properties) but became lower for 

complex biological activities (e.g., cellular responses)29. A15 and A16 are nuclear ER 

agonism assays that represent protein production induced by ER-mediated transcriptional 

activation74 and the resulting cell proliferation75,76 (Table 1). Among the biological 

processes represented by these 18 assays, transcriptional activation and cell proliferation 

represent the farthest downstream processes in the classical genomic ER signaling 

pathway43, which may be the reason that they are the most difficult to model.

Notably, no algorithm can outperform the others across all of the 18 assay endpoints and 

three descriptor sets (Table 2). However, compared to normal DNNs, multitask DNNs had 

better predictivity for 16 out of 18, 18 out of 18, and 13 out of 18 assay endpoints using 

MACCS, FCFP, and ECFP descriptors, respectively (Table 2), indicating the advantage of 

using multitask learning to model these mechanistically-related endpoints. The three 

consensus models showed better or similar results compared to all other algorithms. For 

example, when using MACCS descriptors, the five-fold cross-validation results of the 

consensus model achieve AUC values as high as 0.870, representing the best performance 

for 10 out of 18 assay endpoints (55.5%) compared to individual models. When using the 

FCFP descriptors, the consensus model achieves AUC values as high as 0.829, representing 

the best performance for 8 out of 18 assay endpoints (44.4%) compared to individual 

models. When using the ECFP descriptors, the consensus model achieves AUC values as 

high as 0.833, representing the best performance for 5 out of 18 assay endpoints (27.8%) 

compared to individual models. No individual model shows better performance than the 

consensus model across all 18 assay endpoints.

External Validations

External validation is necessary to prove the predictivity of the resulted QSAR models. An 

external validation procedure was conducted using two new datasets: the in vitro CERAPP 
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dataset consisting of 368 new agonists, 264 new antagonists, and 569 new binders, and the in 
vivo EADB uterotrophic dataset consisting of 966 new agonists. Before performing external 

validation, compounds that were also included in the model training set were removed from 

both datasets, resulting in 569 and 966 unique compounds that were not tested in the 

ToxCast and Tox21 ER HTS assays and are new to the developed models. Since each assay 

is only relevant to a specific target of a binding mechanism, using the parameters SAg, SAnt, 

and SB, which were defined to integrate all relevant models, can estimate the estrogenic 

activities of new compounds more reliably compared to using a single QSAR model for the 

external compounds (Equations 3–5). For example, the SB parameter represents the 

likelihood of a compound to be an in vitro ER binder (Equation 5). This parameter includes 

11 assays (A1 to A11) that represent receptor binding77–80, receptor dimerization81–83, and 

DNA binding83 (Table 1). The SAg parameter (Equation 3) represents the likelihood of a 

compound to be an in vitro ER agonist and includes five additional assays (A12 to A16) that 

represent RNA transcription84, protein production74, and cell proliferation75,76. The SAnt 

parameter (Equation 4) includes all assays used to calculate SB and two extra assays (A17 

and A18) that represent transcriptional suppression74.

Table 3 shows the results of these external validations. The AUC values of the prediction 

results using the SAg parameter for the new agonists in the CERAPP and EADB datasets 

ranged from 0.732–0.906 and 0.640–0.802, respectively. The highest performing models for 

the CERAPP dataset were RF models regardless of the descriptors used. The combination of 

normal DNNs with FCFP descriptors showed the best performance for the EADB dataset. 

The AUC values of the prediction results using the SAnt parameter for the new antagonists in 

the CERAPP dataset ranged from 0.711–0.869. The highest performing model for this 

dataset used multitask DNNs with FCFP descriptors and achieved an AUC value of 0.869. 

The AUC values of the prediction of new binders in the CERAPP dataset using the SB 

parameter ranged from 0.622–0.754. The highest performing model for the CERAPP dataset 

is the combination of normal DNNs with MACCS descriptors. Although the consensus 

model does not show the best performance in the external predictions, its prediction 

accuracy is similar to the best performing model in the four datasets (Table 3).

Discussion

Computational methods offer potential advantages for rapid early screening of compounds 

for possible estrogenic and antiestrogenic effects. In 2015, the US EPA published a 

computational model that incorporated concentration-response data from 18 quantitative 

HTS (qHTS) assays from the ToxCast and Tox21 programs42,43. The success of this model 

to predict in vivo uterotrophic activity led to the acceptance of its results as an alternative to 

rodent uterotrophic testing85. However, this model requires experimental concentration-

response data for evaluating compounds and cannot be applied to new compounds that did 

not yet undergo testing in these assays. Further, not all of the included assays are readily 

available to be applied. This issue was solved in the current study by developing machine 

learning and deep learning models to predict the ER activity of new compounds directly 

from chemical structure. Multitask deep learning outperformed normal deep learning for the 

prediction of in vitro activity in almost all cases across the 18 ToxCast and Tox21 assays. 

None of the six algorithms used for modeling could consistently outperform all others across 
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the 18 assays, regardless of the descriptors used. Consensus modeling is, therefore, still the 

most suitable and robust modeling approach. These advantages are evident in this study, 

with consensus models yielding the highest AUC for 11 of the 18 total assays across all 

descriptor-algorithm combinations (61%, Table 2). The combination of all descriptor-

algorithm sets to generate one consensus prediction instead of selecting an algorithm that is 

specific to a descriptor set is still the best strategy for future model development.

The SAg, SAnt, and SB parameters used for the prediction of the in vitro agonist, antagonist, 

and binding activities of external validation datasets are also based on the concept of 

consensus modeling (Equations 3–5). Each of these parameters incorporates predictions 

using assays that represent between three and six different biological processes relevant to 

the activity of interest. For example, the SAg parameter includes 16 assays related to nuclear 

ER agonism, which represent six biological processes: receptor binding, receptor 

dimerization, DNA binding, RNA transcription, protein production, and cell proliferation 

(Table 1). Furthermore, these assays represent four general types of technology: radioligand, 

fluorescence, bioluminescence, and electrical impedance42,43 (Table 1). By incorporating 

assays that represent a variety of technologies, the results are more reliable because 

technology-specific artifacts will affect fewer probabilities.

The predictivity of new compounds, especially toxic compounds, can be explained by 

revealing their nearest neighbor compounds. For example, 6α-hydroxyestradiol (CAS 

1229-24-9) was classified as a binder and strong agonist in the CERAPP dataset63. This 

compound is an estrogenic product from the liver metabolism of the prominent endogenous 

estrogen estradiol (E2)86. 6α-hydroxyestradiol showed both the highest SB score (SB = 

0.882) and the highest SAg score (SAg = 0.879) among all new compounds using the 

consensus models. 6α-hydroxyestradiol was predicted to be active in all binding-related 

assays (A1 to A11) and all agonism-specific assays (A12 to A16). Its nearest neighbor in the 

training set was alfatradiol (CAS 57-91-0), a stereoisomer of E2 that behaves as a nuclear 

ER agonist in both in vitro63 and in vivo65 assays. Alfatradiol also showed active responses 

in all binding and agonist assays used to train the models in this study. Among the EADB in 
vivo uterotrophic agonists, mestilbol (CAS 18839-90-2) showed the highest SAg score (SAg 

= 0.870). Mestilbol is a synthetic monomethyl ether derivative of diethylstilbestrol (CAS 

56-53-1), which is its nearest neighbor in the training set. Diethylstilbestrol (DES) is a well-

known synthetic nonsteroidal estrogen that was previously prescribed to pregnant women to 

prevent miscarriages87. DES is a known strong agonist of the ER that showed uterotrophic 

activity in several independent guideline-like studies65. Another external compound, 

pipendoxifene (CAS 198480-55-6), was classified as an ER antagonist in the CERAPP 

dataset52 and was predicted correctly. Pipendoxifene is an investigational drug currently 

undergoing clinical trials as a selective ER modulator (SERM)88. Pipendoxifene is under 

development to treat ER-positive breast cancers as well as osteoporosis89. Pipendoxifene 

showed mixed (either active or inactive) results in binding assay model predictions but was 

predicted as an antagonist in the specific assays (A17 and A18). Among these assays, this 

compound’s two nearest neighbors were raloxifene hydrochloride (CAS 82640-04-8) and 

bazedoxifene acetate (CAS 198481-33-3), which are FDA-approved SERMs for the 

treatment of osteoporosis89,90. Clinical trials of these compounds indicated ER antagonist 

activity in breast and uterine tissue89,90.
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The predictive accuracy of this study can be improved by implementing applicability 

domains. The QSAR models were based on chemical structures and therefore are most 

reliable when predicting new compounds that are chemically and structurally similar to 

compounds in the training dataset. A common method to implement a QSAR model 

applicability domain is only to predict compounds that are within a certain similarity 

threshold with their nearest neighbor in the training set91,92. Figure 3 shows the effect of 

only predicting compounds within a Jaccard similarity of 0.8, 0.4, or 0.3 using models with 

MACCS, FCFP, or ECFP descriptors, respectively, on the five-fold cross-validation and 

external validation results. For external validation, new compounds were predicted if the 

SAg, SAnt, and SB parameters can be calculated with at least half of their constituent assay 

models (Equations 3–5). Using these thresholds allows for 42% to 83% coverage of the 

external predictions. Implementing these applicability domains enhanced the cross-

validation performance of all the algorithms, including consensus predictions, for the 18 ER 

assays (Figure 3A, 3C, and 3E). The average AUC value for each algorithm improved from 

0.600–0.759 to 0.617–0.800 using the applicability domains (i.e., Jaccard similarity 0.8 for 

MACCS, 0.3 for ECFP, and 0.4 for FCFP descriptors). The use of the applicability domains 

also enhanced most external predictions (Figure 3B, 3D, and 3F). For CERAPP compounds, 

the AUC values improve from 0.622–0.906 to 0.696–0.923 using the applicability domain. 

However, for the EADB compounds, implementing the applicability domain does not 

improve the results significantly (Figure 3B, 3D, and 3F). Although the SAg, SAnt, and SB 

parameters as currently calculated show good predictivity (Table 3), utilizing applicability 

domains and reducing the weight of binding assays in the calculations is expected to 

enhance the results further. Defining the applicability domain is also one of the principles for 

validation of QSAR use for regulatory purposes, and thus is a prudent consideration if the 

ultimate purpose of the QSAR model is to make a regulatory decision93.

In this study, 7,576 compounds that were tested in ToxCast and Tox21 assays related to 

nuclear ER agonism, antagonism, and binding were used for exhaustive modeling using 

classic machine learning, normal deep learning, and multitask deep learning approaches. To 

this end, 273 individual QSAR models were developed for 18 assay datasets related to 

nuclear ER activity. QSAR models developed using multitask deep learning outperformed 

models developed with normal deep learning (i.e., trained for a single endpoint) in almost all 

endpoints. However, no individual algorithm can consistently outperform all others across 

the 18 endpoints. The consensus models generated by averaging the predictions of the 

individual models had similar or higher predictivity than the individual models. Three 

parameters were defined to incorporate predictions from models that represent 

mechanistically-relevant assays to predict a compound’s likelihood of behaving like a 

nuclear ER agonist, antagonist, or binder. External validation based on these parameters 

showed reliable predictivity for new compounds that did not undergo experimental testing in 

the 18 assays. The results of this study demonstrate the advantages of multitask deep 

learning for the QSAR modeling of mechanistically-related assay endpoints. Furthermore, 

consensus modeling remains the most reliable strategy for QSAR modeling in the current 

big data era, as no algorithm or chemical descriptor set is universally better than others are.
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Figure 1. 
Distributions of (A) compounds in the ToxCast and Tox21 dataset (n=7,576) by the number 

of conclusive active or inactive results per compound and (B) individual assay datasets 

(n=18) by the number of active and inactive compounds.
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Figure 2. 
Consensus QSAR modeling workflow used in this study.
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Figure 3. 
Predictivity of individual and consensus QSAR models using MACCS descriptors for (A) 

cross-validation and (B) external validation with a chemical similarity threshold of 0.8, 

using FCFP descriptors for (C) cross-validation and (D) external validation with a chemical 

similarity threshold of 0.4, and using ECFP descriptors for (E) cross-validation and (F) 

external validation with a chemical similarity threshold of 0.3. All AUC values are reported 

as the mean value ± standard deviation.

Ciallella et al. Page 19

Lab Invest. Author manuscript; available in PMC 2021 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ciallella et al. Page 20

Ta
b

le
 1

.

E
st

ro
ge

n 
R

ec
ep

to
r 

To
xi

ci
ty

 F
or

ec
as

te
r 

(T
ox

C
as

t)
 A

go
ni

sm
, A

nt
ag

on
is

m
, a

nd
 B

in
di

ng
 A

ss
ay

s

A
ss

ay
 I

D
A

ss
ay

 E
nd

po
in

t 
N

am
e

A
ss

ay
 S

ou
rc

e
O

rg
an

is
m

G
en

e 
N

am
e

T
im

ep
oi

nt
 

(m
in

)
B

io
lo

gi
ca

l P
ro

ce
ss

 T
ar

ge
t

A
ss

ay
 D

es
ig

n 
T

yp
e

C
el

l L
in

e

A
1

N
V

S_
N

R
_b

E
R

N
ov

aS
cr

ee
n

B
ov

in
e

E
R
α

10
80

R
ec

ep
to

r 
bi

nd
in

g
R

ad
io

lig
an

d 
bi

nd
in

g
N

A

A
2

N
V

S_
N

R
_h

E
R

N
ov

aS
cr

ee
n

H
um

an
E

R
α

10
80

R
ec

ep
to

r 
bi

nd
in

g
R

ad
io

lig
an

d 
bi

nd
in

g
N

A

A
3

N
V

S_
N

R
_m

E
R

a
N

ov
aS

cr
ee

n
M

ou
se

E
R
α

10
80

R
ec

ep
to

r 
bi

nd
in

g
R

ad
io

lig
an

d 
bi

nd
in

g
N

A

A
4

O
T

_E
R

_E
R

aE
R

a_
04

80
O

dy
ss

ey
 T

he
ra

H
um

an
E

R
α

48
0

Pr
ot

ei
n 

st
ab

ili
za

tio
n

Pr
ot

ei
n 

fr
ag

m
en

t 
co

m
pl

em
en

ta
tio

n 
as

sa
y

H
E

K
29

3T

A
5

O
T

_E
R

_E
R

aE
R

a_
14

40
O

dy
ss

ey
 T

he
ra

H
um

an
E

R
α

14
40

Pr
ot

ei
n 

st
ab

ili
za

tio
n

Pr
ot

ei
n 

fr
ag

m
en

t 
co

m
pl

em
en

ta
tio

n 
as

sa
y

H
E

K
29

3T

A
6

O
T

_E
R

_E
R

aE
R

b_
04

80
O

dy
ss

ey
 T

he
ra

H
um

an
E

R
α

, E
R
β

48
0

Pr
ot

ei
n 

st
ab

ili
za

tio
n

Pr
ot

ei
n 

fr
ag

m
en

t 
co

m
pl

em
en

ta
tio

n 
as

sa
y

H
E

K
29

3T

A
7

O
T

_E
R

_E
R

aE
R

b_
14

40
O

dy
ss

ey
 T

he
ra

H
um

an
E

R
α

, E
R
β

14
40

Pr
ot

ei
n 

st
ab

ili
za

tio
n

Pr
ot

ei
n 

fr
ag

m
en

t 
co

m
pl

em
en

ta
tio

n 
as

sa
y

H
E

K
29

3T

A
8

O
T

_E
R

_E
R

bE
R

b_
04

80
O

dy
ss

ey
 T

he
ra

H
um

an
E

R
β

48
0

Pr
ot

ei
n 

st
ab

ili
za

tio
n

Pr
ot

ei
n 

fr
ag

m
en

t 
co

m
pl

em
en

ta
tio

n 
as

sa
y

H
E

K
29

3T

A
9

O
T

_E
R

_E
R

bE
R

b_
14

40
O

dy
ss

ey
 T

he
ra

H
um

an
E

R
β

14
40

Pr
ot

ei
n 

st
ab

ili
za

tio
n

Pr
ot

ei
n 

fr
ag

m
en

t 
co

m
pl

em
en

ta
tio

n 
as

sa
y

H
E

K
29

3T

A
10

O
T

_E
R

a_
E

R
E

G
FP

_0
12

0
O

dy
ss

ey
 T

he
ra

H
um

an
E

R
α

12
0

R
eg

ul
at

io
n 

of
 g

en
e 

ex
pr

es
si

on
Fl

uo
re

sc
en

t p
ro

te
in

 in
du

ct
io

n
H

eL
a

A
11

O
T

_E
R

a_
E

R
E

G
FP

_0
48

0
O

dy
ss

ey
 T

he
ra

H
um

an
E

R
α

48
0

R
eg

ul
at

io
n 

of
 g

en
e 

ex
pr

es
si

on
Fl

uo
re

sc
en

t p
ro

te
in

 in
du

ct
io

n
H

eL
a

A
12

A
T

G
_E

R
a_

T
R

A
N

S_
up

A
tta

ge
ne

, I
nc

.
H

um
an

E
R
α

14
40

R
eg

ul
at

io
n 

of
 tr

an
sc

ri
pt

io
n 

fa
ct

or
 a

ct
iv

ity
m

R
N

A
 in

du
ct

io
n

H
ep

G
2

A
13

A
T

G
_E

R
E

_C
IS

_u
p

A
tta

ge
ne

, I
nc

.
H

um
an

E
R
α

14
40

R
eg

ul
at

io
n 

of
 tr

an
sc

ri
pt

io
n 

fa
ct

or
 a

ct
iv

ity
m

R
N

A
 in

du
ct

io
n

H
ep

G
2

A
14

T
O

X
21

_E
R

a_
B

L
A

_A
go

ni
st

_r
at

io
To

x2
1

H
um

an
E

R
α

14
40

R
eg

ul
at

io
n 

of
 tr

an
sc

ri
pt

io
n 

fa
ct

or
 a

ct
iv

ity
B

et
a 

la
ct

am
as

e 
in

du
ct

io
n

H
E

K
29

3T

A
15

T
O

X
21

_E
R

a_
L

U
C

_B
G

1_
A

go
ni

st
To

x2
1

H
um

an
E

R
α

13
20

R
eg

ul
at

io
n 

of
 tr

an
sc

ri
pt

io
n 

fa
ct

or
 a

ct
iv

ity
L

uc
if

er
as

e 
in

du
ct

io
n

B
G

1

A
16

A
C

E
A

_T
47

D
_8

0h
r_

Po
si

tiv
e

A
C

E
A

 B
io

sc
ie

nc
es

, 
In

c.
H

um
an

E
R
α

19
20

C
el

l p
ro

lif
er

at
io

n
R

ea
l-

tim
e 

ce
ll-

gr
ow

th
 k

in
et

ic
s

T
47

D

A
17

T
O

X
21

_E
R

a_
B

L
A

_A
nt

ag
on

is
t_

ra
tio

To
x2

1
H

um
an

E
R
α

14
40

R
eg

ul
at

io
n 

of
 tr

an
sc

ri
pt

io
n 

fa
ct

or
 a

ct
iv

ity
B

et
a 

la
ct

am
as

e 
in

du
ct

io
n

H
E

K
29

3T

A
18

T
O

X
21

_E
R

a_
L

U
C

_B
G

1_
A

nt
ag

on
is

t
To

x2
1

H
um

an
E

R
α

13
20

R
eg

ul
at

io
n 

of
 tr

an
sc

ri
pt

io
n 

fa
ct

or
 a

ct
iv

ity
L

uc
if

er
as

e 
in

du
ct

io
n

B
G

1

Lab Invest. Author manuscript; available in PMC 2021 March 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ciallella et al. Page 21

Ta
b

le
 2

.

Pe
rf

or
m

an
ce

 o
f 

In
di

vi
du

al
 M

od
el

s 
fo

r 
18

 T
ox

C
as

t a
nd

 T
ox

21
 E

R
 A

ss
ay

s 
U

si
ng

 a
 F

iv
e-

Fo
ld

 C
ro

ss
-V

al
id

at
io

n

A
lg

or
it

hm
s

D
es

cr
ip

to
rs

A
U

C

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

B
N

B

M
A

C
C

S
0.

73
2

0.
70

2
0.

66
4

0.
80

3
0.

76
4

0.
78

8
0.

70
5

0.
77

0
0.

72
3

0.
68

8
0.

67
2

0.
71

6
0.

67
0

0.
69

8
0.

61
8

0.
59

7
0.

68
5

0.
71

6

FC
FP

6
0.

72
3

0.
72

5
0.

72
7

0.
81

9
0.

76
4

0.
82

9
0.

74
9

0.
82

0
0.

74
9

0.
74

0
0.

72
0

0.
74

2
0.

68
7

0.
72

4
0.

64
5

0.
64

5
0.

72
5

0.
74

6

E
C

FP
6

0.
72

2
0.

70
4

0.
72

3
0.

82
8

0.
76

3
0.

82
4

0.
70

5
0.

80
0

0.
72

5
0.

68
8

0.
69

2
0.

73
5

0.
68

2
0.

73
0

0.
64

3
0.

63
2

0.
72

2
0.

73
6

kN
N

M
A

C
C

S
0.

62
5

0.
64

9
0.

63
9

0.
68

1
0.

67
6

0.
72

9
0.

63
4

0.
69

3
0.

65
1

0.
70

7
0.

68
2

0.
68

6
0.

65
9

0.
71

2
0.

61
6

0.
60

1
0.

65
4

0.
63

6

FC
FP

6
0.

59
7

0.
59

7
0.

59
6

0.
63

9
0.

64
3

0.
65

0
0.

61
4

0.
64

1
0.

62
7

0.
60

3
0.

61
6

0.
62

2
0.

62
2

0.
65

0
0.

59
2

0.
58

8
0.

61
5

0.
60

5

E
C

FP
6

0.
59

3
0.

60
0

0.
61

0
0.

62
6

0.
64

2
0.

60
9

0.
57

6
0.

59
9

0.
59

7
0.

59
0

0.
57

3
0.

61
8

0.
58

7
0.

64
4

0.
56

2
0.

57
8

0.
60

1
0.

59
9

R
F

M
A

C
C

S
0.

74
0

0.
68

7
0.

68
9

0.
84

3
0.

81
4

0.
84

8
0.

73
3

0.
82

7
0.

73
6

0.
74

3
0.

71
4

0.
75

0
0.

70
4

0.
76

2
0.

65
8

0.
62

0
0.

79
9

0.
81

8

FC
FP

6
0.

73
0

0.
72

3
0.

70
7

0.
79

6
0.

73
5

0.
83

7
0.

70
8

0.
81

2
0.

74
3

0.
75

1
0.

69
6

0.
74

8
0.

68
3

0.
73

3
0.

64
2

0.
63

5
0.

74
8

0.
74

7

E
C

FP
6

0.
74

2
0.

68
5

0.
72

6
0.

80
5

0.
78

3
0.

84
3

0.
71

6
0.

80
9

0.
71

5
0.

67
7

0.
72

9
0.

74
0

0.
68

9
0.

74
0

0.
64

6
0.

61
7

0.
74

5
0.

72
6

SV
M

M
A

C
C

S
0.

73
7

0.
71

7
0.

67
9

0.
84

5
0.

79
5

0.
86

4
0.

71
2

0.
81

9
0.

71
5

0.
75

9
0.

73
7

0.
77

0
0.

71
2

0.
78

2
0.

65
2

0.
62

2
0.

81
9

0.
82

7

FC
FP

6
0.

71
3

0.
67

7
0.

70
1

0.
82

2
0.

73
6

0.
82

7
0.

73
5

0.
81

8
0.

73
3

0.
76

8
0.

70
9

0.
74

2
0.

69
8

0.
74

4
0.

63
9

0.
62

6
0.

79
4

0.
78

9

E
C

FP
6

0.
70

6
0.

69
7

0.
71

3
0.

82
7

0.
74

8
0.

81
0

0.
66

7
0.

79
2

0.
68

3
0.

68
4

0.
66

4
0.

75
6

0.
69

7
0.

78
5

0.
64

1
0.

61
3

0.
80

2
0.

79
8

N
or

m
al

 D
N

N

M
A

C
C

S
0.

69
5

0.
69

0
0.

67
9

0.
82

7
0.

77
1

0.
85

5
0.

65
9

0.
75

1
0.

72
3

0.
73

7
0.

69
9

0.
72

4
0.

67
4

0.
77

7
0.

63
7

0.
59

6
0.

79
8

0.
79

0

FC
FP

6
0.

68
7

0.
65

6
0.

67
3

0.
78

0
0.

68
9

0.
73

8
0.

65
8

0.
77

0
0.

72
5

0.
66

2
0.

66
1

0.
67

5
0.

63
1

0.
64

8
0.

60
9

0.
56

2
0.

64
9

0.
64

1

E
C

FP
6

0.
70

8
0.

68
2

0.
67

2
0.

81
1

0.
75

2
0.

66
1

0.
60

5
0.

70
1

0.
66

7
0.

58
8

0.
64

3
0.

69
6

0.
62

4
0.

59
0

0.
57

4
0.

59
2

0.
67

8
0.

67
4

M
ul

tit
as

k 
D

N
N

M
A

C
C

S
0.

70
7

0.
70

5
0.

70
0

0.
85

3
0.

75
2

0.
84

9
0.

74
3

0.
82

2
0.

73
3

0.
77

5
0.

74
6

0.
76

1
0.

69
9

0.
78

1
0.

64
7

0.
63

5
0.

81
5

0.
81

8

FC
FP

6
0.

70
9

0.
68

5
0.

67
7

0.
81

0
0.

73
2

0.
81

8
0.

75
5

0.
79

0
0.

75
1

0.
72

6
0.

72
0

0.
70

9
0.

64
7

0.
72

4
0.

62
5

0.
61

8
0.

74
8

0.
72

2

E
C

FP
6

0.
69

1
0.

67
7

0.
66

4
0.

81
0

0.
70

5
0.

79
1

0.
69

4
0.

77
6

0.
68

6
0.

67
9

0.
67

4
0.

72
3

0.
65

0
0.

73
5

0.
61

4
0.

62
6

0.
77

5
0.

73
9

C
on

se
ns

us

M
A

C
C

S
0.

74
9

0.
72

9
0.

70
3

0.
85

2
0.

79
6

0.
87

0
0.

71
8

0.
81

9
0.

73
9

0.
74

9
0.

72
8

0.
76

4
0.

71
8

0.
78

5
0.

66
0

0.
63

4
0.

82
4

0.
83

0

FC
FP

6
0.

74
1

0.
70

3
0.

73
1

0.
80

9
0.

74
2

0.
82

9
0.

74
2

0.
82

7
0.

75
0

0.
78

2
0.

72
6

0.
75

2
0.

70
0

0.
74

5
0.

64
4

0.
63

8
0.

77
9

0.
78

4

E
C

FP
6

0.
72

5
0.

70
7

0.
72

8
0.

83
3

0.
77

0
0.

79
8

0.
70

0
0.

79
8

0.
71

3
0.

68
6

0.
71

0
0.

75
4

0.
69

7
0.

74
3

0.
63

9
0.

64
2

0.
78

1
0.

78
4

Lab Invest. Author manuscript; available in PMC 2021 March 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ciallella et al. Page 22

Ta
b

le
 3

.

E
xt

er
na

l V
al

id
at

io
n 

of
 E

R
 A

go
ni

st
s,

 A
nt

ag
on

is
ts

, a
nd

 B
in

de
rs

A
lg

or
it

hm
s

D
es

cr
ip

to
rs

A
U

C

C
E

R
A

P
P

 in
 v

itr
o

A
go

ni
st

s
C

E
R

A
P

P
 in

 v
itr

o 
A

nt
ag

on
is

ts
C

E
R

A
P

P
 in

 v
itr

o 
B

in
de

rs
E

A
D

B
 in

 v
iv

o 
U

te
ro

tr
op

hi
c

B
N

B
M

A
C

C
S

0.
85

9
0.

73
1

0.
68

4
0.

64
0

FC
FP

6
0.

79
9

0.
81

5
0.

71
5

0.
75

7

E
C

FP
6

0.
78

0
0.

83
1

0.
70

2
0.

68
6

kN
N

M
A

C
C

S
0.

79
6

0.
76

8
0.

68
8

0.
72

9

FC
FP

6
0.

73
2

0.
71

1
0.

62
2

0.
75

1

E
C

FP
6

0.
73

6
0.

78
6

0.
62

6
0.

68
4

R
F

M
A

C
C

S
0.

90
1

0.
75

9
0.

71
3

0.
75

6

FC
FP

6
0.

88
4

0.
74

7
0.

70
3

0.
72

6

E
C

FP
6

0.
90

6
0.

70
6

0.
70

7
0.

74
7

SV
M

M
A

C
C

S
0.

88
7

0.
82

0
0.

73
9

0.
77

0

FC
FP

6
0.

82
9

0.
83

0
0.

66
7

0.
76

5

E
C

FP
6

0.
82

9
0.

84
9

0.
67

0
0.

79
0

N
or

m
al

 D
N

N
M

A
C

C
S

0.
87

9
0.

86
0

0.
75

4
0.

76
7

FC
FP

6
0.

79
4

0.
78

0
0.

69
1

0.
80

2

E
C

FP
6

0.
80

1
0.

73
3

0.
68

1
0.

72
4

M
ul

tit
as

k 
D

N
N

M
A

C
C

S
0.

86
6

0.
74

9
0.

69
8

0.
72

0

FC
FP

6
0.

82
2

0.
86

9
0.

67
2

0.
78

7

E
C

FP
6

0.
82

1
0.

75
1

0.
73

6
0.

75
7

C
on

se
ns

us
M

A
C

C
S

0.
88

9
0.

82
8

0.
72

6
0.

76
6

FC
FP

6
0.

82
6

0.
81

7
0.

70
4

0.
78

4

E
C

FP
6

0.
82

3
0.

83
1

0.
72

6
0.

73
8

Lab Invest. Author manuscript; available in PMC 2021 March 24.


	Abstract
	Materials and Methods
	ER HTS Assay Dataset
	Chemical Descriptors
	QSAR Model Development
	External Validation

	Results
	Dataset
	QSAR Model Development
	External Validations

	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1.
	Table 2.
	Table 3.

