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Abstract: In recent years, chronic diseases including obesity, diabetes, cancer, cardiovascular, and
neurodegenerative disorders have been the leading causes of incapacity and death globally. Increasing
evidence suggests that improvements of lifestyle habits and diet is the most commonly adopted
strategy for the prevention of chronic disorders. Moreover, many dietary compounds have revealed
health-promoting benefits beyond their nutritional effects. It is worth noting that diet plays an
important role in shaping the intestinal microbiota. Coarse cereals constitute important sources
of nutrients for the gut microbiota and contribute to a healthy gut microbiome. Furthermore, the
gut microbiota converts coarse cereals into functional substances and mediates the interaction
between the host and these components. In this study, we summarize the recent findings concerning
functional components of cereal grains and their potential chemopreventive activity via modulating
the gut microbiota.

Keywords: bioactive components; inflammation; hyperlipidemia; obesity; diabetes; short-chain
fatty acids

1. Introduction

Coarse cereals are cereal grains except for rice and wheat, including oats (Avena
sativa), buckwheat (Fagopyrum esculentum), barley (Hordeum vulgare), sorghum (Sorghum
vulgare), quinoa (Chenopodium quinoa), and some millet species [1]. Due to their rich
protein content and balanced amino acid profile, the nutritional value of coarse cereals
has attracted wider attention than that of major cereals [2]. In addition to their nutritional
value, the main bioactive substances (dietary fiber, starch, flavonoid, polyphenol, saponin,
polysaccharide, protein, and peptides) of coarse cereals have been demonstrated to exert
various biological functions. For instance, a previous study reported that coarse-cereal
fiber had a positive effect on cardiometabolic and obesity-related diseases [3]. Idehen
et al. found that barley phytochemicals (phytosterol, flavonoids, phenolic acids, etc.) can
exert antioxidant, cholesterol-lowering, and anti-cancer functions to prevent cardiovascular
diseases [4]. It has been reported that phytosterols play a crucial role in inhibiting the
progression of cancers [5].

Dietary structure is a significant impact factor in intestinal microecology, which demon-
strates a trend towards dynamic change along with changes in eating habits and trophic
factor intake [6]. The roles that human colonic bacteria or the gut microbiota play in health
and disease have received considerable attention over the last decade, supported by recent
reports suggesting that the gut microbiota have the potential to treat many diseases that
plague modern society, including obesity, diabetes, and colorectal cancer [7]. As previously
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described, the main microorganisms in the human intestine are closely related to the nutri-
tional components and their proportions in the dietary structure [8]. A diet rich in fiber
stimulates an increase in the number of Bifidobacteria in the human intestine [9]. Moreover,
a high consumption of protein and fat is responsible for Bacteroides, and high saturated
fatty acids (FAs) can promote an abundance of Bilophila wadsworthia [10].

Although the non-digestible components in coarse grains are considered poor for gut
microbial fermentation, the bioactive compounds of coarse grains have the potential to
modulate the gut microbiota and thereby impact on consumer health [11]. David et al.
suggested that increasing the proportion of coarse grains in the dietary structure is an
effective way to promote a diversity of probiotics in the intestinal flora and alleviate
a variety of chronic diseases [12]. A bifidogenic effect has been observed after intake
of whole-grain cereals, and some Bifidobacterium strains have been reported as markers
of a healthy gut microbiota [11,13]. In addition, oat, barley husks, and rye bran were
reported to increase the growth of Bifidobacteria or Lactobacillus, which exert anti-tumor
potential and enhance the formation of short-chain fatty acids (SCFAs) such as acetate
and butyrate [14,15]. Butyrate is an important metabolite of gut microbial fermentation
of carbohydrates due to its contribution to host colonic epithelial cell energy, its anti-
inflammatory properties, and its anti-cancer effects [16]. Whole grains have been shown to
decrease protein fermentation by the gut microbiota and may also increase the diversity
of the microbiota [17,18]. Recently, the impact of food matrix components including fiber,
protein, lipid oxidation products, and emulsions, and their effects on gut and metabolic
health, has gained much attention. In this review, how the main components of coarse
grains exert their beneficial health characteristics by regulating intestinal flora and the
underlying mechanisms involved will be discussed (Figure 1).Foods 2021, 10, x FOR PEER REVIEW 3 of 26 
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Figure 1. The interaction between whole grains and gut microbiota. The bioactive components of
whole grains, which are produced after oral, gastric, and small intestine digestion, improve gut health
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by modulating gut microbiota. Phytochemicals and carbohydrates are metabolized by gut micro-
biota into short-chain fatty acids (SCFAs) and other small functional molecules. These functional
components can regulate gut microbiota that contribute to exerting health effects on various diseases.

2. Effects on Gastrointestinal Diseases

The gastrointestinal (GI) tract is the main interface for the interaction of dietary com-
pounds and the organism. This complex system has developed multiple protective mecha-
nisms against pathogens and toxic agents from the external environment, and it maintains
a specialized balance of GI homeostasis, which is crucial for the digestive system to absorb
nutrients and water [19]. However, poor lifestyle habits and imbalanced diet are the main
reasons for the increasing incidence of gastrointestinal diseases such as inflammatory bowel
disease (IBD), colorectal cancer (CRC), intestinal barrier dysfunction, etc.

Dietary interventions are not thought of as replacing agents in conventional medical
therapies, but may be effective as complementary strategies for GI disorders [20]. Moreover,
dietary molecules can influence the mechanisms of nutrient sensing and bioavailability, as
well as the composition and metabolism of the gut microbiota, which ultimately might also
affect GI homeostasis [21].

2.1. Inflammatory Bowel Disease

Recently, growing evidence points to the potential role of dietary bioactive compounds
and microbiota modulation in IBD [22,23]. The effect of whole-grain components on regu-
lating the gut microbiota is summarized in Table 1. For instance, intake of oat β-glucan
significantly ameliorated the clinical features of ulcerative colitis in mice, attenuating
the severe colonic inflammatory status and improving colonic mucosal barrier function
concurrently with regulating gut-derived SCFAs and intestinal microbial metabolic pro-
files [24]. According to the authors, the reversed expression levels of zonula occludens-1
(ZO-1), occludin, claudin-1, and claudin-4 indicated that oat β-glucan promoted tight junc-
tion protein formation and restored intestinal epithelial barrier function. Moreover, they
proved that pro-inflammatory cytokine interferon-γ (IFN-γ) and interleukin-6 (IL-6) were
inhibited, while the production of SCFAs (especially acetate and propionate) increased,
playing an important role in regulating intestinal epithelial tight junctions in UC mice.
In a similar experiment, the low-molecular-weight form of β-glucan had a positive effect
on the colon tissue of rats with lipopolysaccharide (LPS)-induced enteritis, resulting in
changes in the levels of IL-10, IL-12, and tumor necrosis factor-α (TNF-α), as well as the
number of intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs) [25].
Moreover, a statistically significant reduction in the formation of hydroxybutyric acid
and enhanced concentrations of lactic acid and propionic acid were observed, which was
consistent with the number of lactic acid bacteria. This suggests an improvement in the
alimentary tract contents.

Oat bran is one of the major byproducts in the processing of husked oat, and it
contains relatively high levels of protein, minerals, vitamins, and soluble β-glucan [26].
He et al. investigated the effects of oat bran on nutrient digestibility, intestinal microbiota,
and inflammatory responses in the hindgut of growing pigs. After supplementing with
10% oat bran (OB), the dietary nutrient digestibility showed no differences between the
OB group and the control group on day 28. However, the mRNA expression of IL-8,
nuclear factor-κB (NF-κB), and TNF-α was decreased in the OB group. Moreover, the
abundances of Prevotella, Butyricicoccus, and Catenibacterium were increased in the colonic
digesta, which may contribute to ameliorating inflammatory responses in the hindgut
via enhancing the fermentation of fiber to produce SCFAs. Similarly, insoluble fiber in
oat hulls could alleviate necrotic enteritis, and broilers fed with oat hulls had heavier
gizzards compared with those without oat hulls. The gut microbiota composition was
also improved by increasing the abundance of Clostridium perfringens and reducing the
abundance of Lactobacillus and Salmonellae [27]. However, despite the fact that dietary
fiber has been proved to be an effective strategy to prevent and relieve IBD through gut
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microbiota modulation, the function of soluble dietary fiber was found to be more favorable
than that of insoluble dietary fiber. Tian et al. evaluated the bioactivity of insoluble dietary
fiber from barley leaf (BLIDF) in inhibiting gut inflammation through regulating the
intestinal microbiota in dextran sulfate sodium (DSS)-induced colitis mice. After intake of
a BLIDF-supplemented diet for 28 days, they found that BLIDF markedly attenuated the
severity of inflammation in DSS-induced acute colitis mice and increased the abundance
of Parasutterella, Erysipelatoclostridium, and Alistipes, while the abundance of Akkermansia
was significantly decreased. Moreover, BLIDF feeding can reverse the DSS-induced decline
of short-chain fatty acids and secondary bile acids in mice feces [28]. Likewise, Li et al.
explored the potential modulating roles of gut microbial metabolites of BL (barley leaf)
in protecting against colitis and elucidated the underlying molecular mechanisms. They
reported that supplementing with BL ameliorated DSS-induced gut microbiota dysbiosis
and resulted in the enrichment of the microbiota-derived purine metabolite inosine, which
could simulate peroxisome-proliferators-activated receptor γ (PPARγ) signaling to improve
intestinal mucosal barrier functions in human colon epithelial cells [29].

It is also noteworthy that consumption of many purified dietary fibers has not been
shown to increase the diversity of gut microbiota. The beneficial effects of whole grains
on health are likely to be a combined result of many components within the grain rather
than one specific component [30,31]. It was demonstrated that consumption of quinoa
alleviated clinical symptoms according to the reduced disease activity index and the degree
of histological damage. Compared to the control group, the species richness and diversity
were increased in the quinoa consumption group, while abnormal expansion of the phylum
Proteobacteria was decreased. Moreover, the overgrowth of the genera Escherichia/Shigella
and Peptoclostridium was inhibited, whereas the abundances of Firmicutes and Bacteroidetes
did not change significantly in the quinoa treatment group [32]. Another experiment
investigated the effect of a buckwheat diet in a high-fat diet-induced gastritis mice model.
The results showed that gastritis was lessened after intake of buckwheat, and the microbial
dysbiosis induced by a high-salt diet could be recovered [33]. In the case of millet whole
grain, its consumption by DSS-induced colitis murines alleviated the symptoms of enteritis
to varying degrees, and completely alleviated DSS-induced dysbiosis. Moreover, the
decreased levels of IL-6 and claudin2 expression in the colon indicated that systemic
inflammation and gut barrier function was improved after the consumption of millet whole
grain [34].

2.2. Colorectal Cancer

Epidemiological studies have suggested that IBD patients exhibit a higher risk of CRC
and that the incidence of cancer is positively correlated with the duration of IBD [35]. A
recent study suggested that coarse cereal diets are beneficial for relieving CRC. Zhang et al.
reported that intake of foxtail millet ameliorated AOM/DSS-induced colitis-associated
CRC in mice via the activation of AHR and GPCRs and the inhibition of STAT3 phos-
phorylation by the microbial metabolites of the foxtail millet. In line with a previous
study, the abundances of Bifidobacterium and Bacteroidales_S24-7 were increased after millet
consumption, compared to the control group [36]. Similarly, Yang et al. studied the effect of
sorghum in an HFD-induced CRC mice model. The results showed that sorghum exhibited
tremendous anti-CRC effects by suppressing the growth and metastasis of cancerous colon
epithelial cells, as well as protecting against gut microbiota alterations linked to colitis [37].

Collectively, IBD, CRC, and intestinal barrier dysfunction could be alleviated by
intake of a diet supplemented with coarse cereals or their bioactive components, due to the
changes in relative gene expression, reduction of inflammatory cytokines (IL-6, IL-8, IL-10,
etc.) and increased production of SCFAs demonstrated to be affected by the composition of
gut microbiota.
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Table 1. Effect of whole-grain components on gut microbiota of gastrointestinal diseases host.

Cereal Component Pathological Type Study Characteristics Pathological Parameters Changes in Gut Microbiota Reference

barley

leaf colitis female C57Bl/6J mice
IL-4 ↑, IL-10 ↑, TNF-α ↓, stool frequency ↑,
gut transit time ↓, inosine ↑, guanosine ↑,

glucose ↓, lactic acid ↑, body Weight ↑

Proteobacteria ↓, Enterobacteriaceae ↑, Firmicutes
↑, Bacteroidetes ↓, Lactobacillus ↑ [29]

insoluble fiber colitis female C57BL/6J mice
IL-6 ↓, TNF-α ↓, IL-1β ↓, IL-4 ↓, IL-10 ↓,

SCFAs ↑, secondary bile acids ↑,
body Weight ↑

Akkermansia ↓, Parasutterella ↑,
Erysipelatoclostridium ↑, Alistipes ↑,

Verrucomicrobia ↓
[28]

buckwheat whole grain gastritis SPF male C57BL/6 mice IL-6 ↓, IL-1β ↓, IL-18 ↓, TH17 ↓, TGF-β ↓,
IL-17A ↓, ILA ↑

Unclassified_Lachnospiraceae ↓,
Un-classified_Clostridiales ↓,

Unclassified_Rikenellaceae ↓, Oscil-lospira ↓,
Unclassified_S24-7 ↑, Lactobacillus ↑

[33]

millet

polyphenol colorectal cancer male C57BL/6J mice COX-2 ↓and EMR1 ↓, PCNA cells ↓,
caspase 3 ↑

Firmicutes ↑, Bacteroidetes ↓, Prevotella ↓,
Corprobacillus ↑, Parabacteroides ↑, AF12 ↑,

Coprococcus ↑, Oscillospira ↑, Ruminococcus ↑,
Prevotella ↓, Desulfovibrio ↓

[38]

tryptophan and fiber colorectal cancer SPF male BALB/c mice

IL-6 ↓, IL-17 ↓, MPO ↓, MCP-1 ↓,
serum C-P ↓, IFN-γ ↓, LSP ↓, COX-2 ↓,

iNOS ↓, FOXP3 ↑, IL-22 ↑, ZO-1 ↑, IL-10 ↑,
occludin ↑, Bcl-2 ↑, PCNA ↑, VEGF ↑,

AHR ↑, SCFAs ↑

Allobaculum ↑, Bifidobacterium ↑,
Bacteroidales_S24-7 ↑, Alistipes ↓, [36]

whole grain acute ulcerative
colitis male C57BL/6 mice IL-6 ↓, claudin2 ↓, ZO-1 ↑, occludin ↑,

claudin 2 ↓ Muribaculaceae ↑ [34]

oat

bran inflammatory pig IL-8 ↓, colonic IL-8 ↓, NF-κB ↓, TNF-α ↓
Catenibacterium ↑, Peptococcus ↓, Prevotella ↑,

Butyricicoccus ↑, Catenibacterium ↑, Coprococcus
↓, Desulfovibrio ↓

[39]

β-glucan enteritis male SD rats
IL-12 ↓, IL-1α ↓, β, IL-6 ↓, IL-10 ↑,

TNF-alpha ↑, lactic acid ↑, propionic acid ↑,
hydroxybutyric acid ↓

- [25]

fiber necrotic enteritis broiler chickens succinic acid ↑, acetic acid ↓, propionic acid
↓, valeric acid ↓ Perfringens ↑, Lactobacillus ↓, Salmonellae ↓, [27]

quinoa whole grain colonic colitis male C57BL/6 mice IL-6 ↓, IL-1β ↓, IFN-γ ↑
Proteobacteria ↓, Escherichia/Shigella ↓,

Peptoclostridium↓, Bacteroidetes ↑,
Verrucomicrobia ↑

[32]

sorghum whole grain colorectal cancer humanfemale C57BL/6 mice -
Bacteroides ↑, Fusobacterium ↑, Dorea,

Porphyromonas ↑, Pseudomonas ↓, Prevotella ↓,
Acinetobacter ↓, Catenibacterium ↓

[37]

“↑” and “↓” indicated the “increase” and the “decrease” of content or expression.
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3. Effects on Cardiovascular Diseases

Hyperlipidemia is the main cause of cardiovascular diseases such as hypertension,
atherosclerosis, stroke, etc. [40]. Hyperlipidemia is a chronic lipid disorder that causes
abnormally increased levels of total cholesterol (TC), triglycerides (TG), and low-density
lipoprotein cholesterol (LDL-C), and a decreased level of high-density lipoprotein choles-
terol (HDL-C) [41]. Although hyperlipidemia can be controlled using pharmacological
strategies, long-term exposure to drugs may lead to unpleasant side effects [42]. Therefore,
natural lipid-lowering drugs without adverse effects have been considered the best alterna-
tives against hyperlipidemia. Increasing evidence has indicated that the gut microbiota,
which is involved in lipid absorption and liver cholesterol metabolism, is closely associated
with hyperlipidemia [43,44].

3.1. Hyperlipidemia

Recent studies have proved that the consumption of some beneficial whole-grain
products is associated with a lower risk of hyperlipidemia and has a close relationship
with alterations in the gut microbiota [45]. The composition, content, and functional
properties of phytochemicals in grains, including flavonoids, polysaccharides, polyphenols,
and polypeptides, have been shown to possess a potential antihyperlipidemic effect by
ameliorating lipid profiles and gut dysbiosis in vivo [46]. Here, we present a summary of
the bioactive substances of whole grains in the regulation of gut microbiota (Table 2). In a
high-fat diet (HFD)-induced hyperlipidemia mice model, flavonoids from whole-grain oat
(FO) improved serum lipid profiles and decreased lipid deposition. RT-qPCR and Western
blot analysis showed that FO suppressed lipogenesis and promoted lipolysis, BA synthesis,
and efflux to feces through the FXR pathway. Moreover, 16s rRNA sequencing revealed
that FO significantly increased Akkermansia and significantly decreased Lachnoclostridium,
Blautia, Colidextribacter, and Desulfovibrio, which was correlated with hyperlipidemia-related
parameters. Thus, FO exhibited hyperlipidemic inhibitory activity by regulating the
gut–liver axis (BA metabolism and gut microbiota) [47]. Likewise, intake of embryo-
remaining oat rice (EROR) dramatically improved the lipid profile in the serum and liver.
Furthermore, EROR supplementation significantly increased the total SCFAs, acetate, and
propionate and promoted the abundance of SCFA-producing bacteria. In addition, EROR
consumption caused an alteration in the composition of the indigenous flora, with increases
in Bifidobacterium and Akkermansia and decreases in Rombutsia, Fusicatenibacter, Holdemanella,
and Turicibacter that were correlated with the lipid-metabolism-related indices [48].

Plant-derived polysaccharides are natural polysaccharides and are non-toxic with
few side effects [49]. Cao et al. found that oral administration of quinoa polysaccharide
mitigated dyslipidemia and reduced hepatic lipid accumulation by decreasing the contents
of TG, LDL-C, glutamic oxaloacetic transaminase (AST), glutamic pyruvic transaminase
(ALT), and malondialdehyde (MDA). Concurrently, the species richness and gut microbiota
community structure were positively regulated by intake of quinoa polysaccharide. Further-
more, the results of 16s rRNA sequencing showed that the ratio of Firmicutes and Bacteroides
(F/B ratio) and the abundance of Proteobacteria, Desulfovibrio, and Allobaculum were de-
creased, which was beneficial in mitigating intestinal inflammation and ameliorating the
serum lipid levels. Thus, quinoa polysaccharide could reduce the numbers of potentially
pathogenic bacteria to decrease infection, inflammation, and hyperlipidemia [50].

Compared to most cereals, the protein fractions of quinoa and buckwheat have high
nutritive value. In the research of Fotschki and co-workers, the effects of quinoa and
buckwheat protein-rich flours on the growth parameters, intestinal microbial activity,
and plasma lipid profile were studied. The studied flours favorably reduced the plasma
total cholesterol and LDL cholesterol, increased the levels of plasma IL-6 and alanine
transaminase, and regulated the microbial production of SCFAs in rats [51]. Among these
SCFAs, butyric acid was significantly elevated. This is the preferred energy source for
colon epithelial cells and could decrease the pH together with other SCFAs [52]. Moreover,
butyric acid is able to activate AhR and negatively regulates several enzymes, including
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fatty-acid synthase and a cholesterol metabolism regulator in the form of sterol regulatory
element-binding protein-1c [53]. In a similar experiment, male C57BL/6 mice were fed
an HFD with buckwheat protein (BWP) to evaluate the effect of BWP in attenuating
dyslipidemia. The levels of TC, TG, LPS, TNF-α, and IL-6 in the mice fed on the HFD
with BWP were significantly lower than those on an HFD with casein. In addition, BWP
markedly increased the total bile acids and short-chain fatty acids, and also improved the
abundances of Lactobacillus, Bifidobacterium, and Enterococcus, and decreased the abundance
of Escherichia coli in HFD-fed mice. Notably, the Bifidobacterium population was closely
related to the plasma lipids content [54]. A previous study reported that the presence of
specific prebiotics in buckwheat may stimulate the growth of probiotics and other beneficial
gut bacteria present in the colon and help to maintain healthy gut conditions [55]. Zhou et al.
explored the effect of buckwheat fermented milk on the intestinal flora and SCFAs of HFD-
fed rats. The buckwheat fermented milk remarkably repressed the increases in LPS levels in
the colon and the antioxidant indexes in HFD-fed rats. In addition, buckwheat fermented
milk significantly enhanced the abundance of the genus Akkermansia and decreased the
abundance of the Lachnospiraceae family [56]. It has been proved that the species belonging
to Lachnospiraceae are linked to the development of obesity and type 2 diabetes in ob/ob
rats, whereas Akkermansia, belonging to Verrucomicrobia, plays an important role in treating
obesity, inflammation, type 2 diabetes, and metabolic syndrome [57,58].

There has been growing evidence suggesting that intake of oat and buckwheat is asso-
ciated with a reduction in serum cholesterol [59,60]. Zhou and co-workers reported that
whole-grain oat (WGO) flour improved insulin sensitivity and the plasma cholesterol pro-
file compared with low-bran oat (LBO) flour, resulting in lower plasma insulin, C-peptide,
total cholesterol, and non-HDL cholesterol, associated with the changes in cecal microbiota
composition. The relative abundances of Prevotellaceae, Lactobacillaceae, and Alcaligenaceae
families were increased in the WGO group, while abundances of Clostridiaceae and Lach-
nospiraceae families were greater in the LBO group [61]. Subsequent analysis investigated
the cholesterol-lowering effect of a whole-grain oat-based breakfast in a cardio-metabolic
“at risk” population. It was observed that TC and LDL-C were significantly decreased
after WGO consumption compared to the control group. Furthermore, a significant change
was also observed in the relative abundances of fecal bifidobacteria, lactobacilli, and total
bacterial count, which were all increased after WGO supplementation [62]. In another
similar study, the effect of oat- and tartary-buckwheat-based food (OF) on cholesterol
reduction and the gut microbiota in hypercholesterolemic hamsters was evaluated. After
intake of OF for 30 days, the plasma TC and LDL-C, liver TC, cholesterol ester (CE), and
TG were significantly decreased, whereas the concentrations of acetate, propionate, bu-
tyrate, and total SCFAs were significantly increased, in the hamsters fed with OF. Moreover,
16s rRNA sequencing results showed that the relative abundances of Erysipelotrichaceae,
Ruminococcaceae, and Lachnospiraceae were decreased and the relative abundance of Eu-
bacteriaceae was increased, beneficially influencing the fatty acid metabolism [60]. These
results indicated that the increased SCFAs and the improved gut microbiota served their
hypocholesterolemic function.

3.2. Hypertension

Hypertension is a major risk factor for cardiovascular disease [63]. Dietary approaches
to stop hypertension (DASH) involve diets rich in fruits, vegetables, whole grains, and
low-fat dairy products, with a reduced content of saturated and total fat, and are recom-
mended for adults with elevated hypertension or blood pressure [64]. In a randomized
controlled trial, the participants who consumed oat bran (30 g/d) had a lower office sys-
tolic blood pressure and office diastolic blood pressure, and the use of antihypertensive
drugs in the DF group was reduced. Moreover, the abundances of Bifidobacterium and
Spirillum were significantly elevated [65]. Similarly, the BP-lowering effect of buckwheat
iminosugar d-fagomine was measured in sucrose-induced hypertensive rats. D-fagomine
reduced sucrose-induced hypertension, urine uric acid, and steatosis, without impairing
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glucose tolerance and without affecting perigonadal fat deposition. The intestinal mi-
crobiota was also influenced under a high-sucrose (HS) diet with D-fagomine (FG): the
Bacteroidetes/Firmicutes ratio was slightly increased compared to the HS diet group, which
was consistent with the changes among the standard, HS, and HS+FG groups. Furthermore,
the increased numbers of excreted Enterobacteriales in the HS+FG group proved the in-
hibitory activity of d-fagomine on epithelial adhesion of Escherichia coli [66]. Recently, Guo
et al. studied the antihypertensive effect of quinoa protein on spontaneously hypertensive
rats (SHRs). During the five weeks of intake of quinoa protein, the blood pressure (BP)
was significantly decreased, while the alpha diversity was increased, and the microbial
structure was changed. Subsequent analysis revealed that the abundances of Turicibacter
and Allobaculum genera were negatively correlated with BP [67].

3.3. Nonalcoholic Fatty Liver Disease

In general, patients with dyslipidemia also suffer from nonalcoholic fatty liver disease
(NAFLD), and clinical manifestations include excessive accumulation of lipids, including
TG and FAs, in hepatocytes [68]. Previous studies suggested that the gut microbiome is
involved in the development of dyslipidemia and NAFLD [69], whereas the intestine and
liver are intrinsically linked and strongly interdependent in metabolic functions [70,71].
For example, common buckwheat consumption significantly improved physiological in-
dexes and biochemical parameters related to dyslipidemia and NAFLD in mice fed with
an HFD. In addition, the fecal bile acid (BA) abundance was increased and fecal SCFA
reductions were recovered after intake of buckwheat. Moreover, it has been found that
buckwheat intervention is more beneficial than simvastatin (10 mg/kg/d) in ameliorating
the dysbiosis of intestinal microbial populations induced by an HFD. The abundances of
Lactobacillus, Blautia, and Akkermansia were markedly increased, whereas the abundances
of Allobaculum, Desulfovibrio, and Bacteroidales_S24-7 were decreased under buckwheat
intervention [71]. It has been reported that the possible mechanism of the lipid-lowering
effect of Lactobacillus may be to produce lactic acid through intestinal glucose metabolism
and promote blood lipid metabolism γ-production of aminobutyric acid and other use-
ful substances [72]. The increase in the genus Blautia might occur mainly because of the
syntrophic effect [18]. Akkermansia could consume host-derived mucins such as carbon
and nitrogen sources and ferment indigestible carbohydrates, while mainly producing
propionic acid. In contrast, Allobaculum showed a strong positive association with lipid
metabolic phenotypes [73]. These changes were consistent with previous studies. However,
the abundance of Bacteroidales_S24-7, reported to be involved in host–microbe interactions
that impact gut function and health [74], was considerably increased by the HFD supple-
ment but reduced by the buckwheat intervention. Recent studies have shown that Monascus
fermentation can increase the content of polyphenols or flavonoids in the fermentation
substrate [75]. Huang and co-workers found that oral administration of Monascus pur-
pureus-fermented common buckwheat (HQ) significantly inhibited the abnormal growth of
body weight and epididymal white adipose tissue (eWAT), prevented the hypertrophy of
epididymal adipocytes, and alleviated some biochemical parameters of serum and liver
related to lipid metabolism in HFD-induced mice. Histological analysis also exhibited
that HQ supplementation reduced the excessive accumulation of lipid droplets in the
livers. Furthermore, HQ consumption significantly changed the structure of the intesti-
nal microflora. In the comparison of the HFD and HQ groups, intake of HQ markedly
increased the relative levels of Ruminiclostridium, Lacobacillus, and Alistipes and decreased
the abundances of the Bacteroidales S24-7 group and Clostridiales XIII in HFD-induced mice.
Moreover, UPLC-QTOF/MS-based liver metabolomics showed that HQ consumption
exerted remarkable effects on the metabolic pathways of primary bile acid biosynthesis,
ether lipid metabolism, glycine, serine and threonine metabolism, glutathione metabolism,
pyrimidine metabolism, amino sugar and nucleotide sugar metabolism, etc. These results
demonstrated that NAFLD could be attenuated by HQ intervention through regulating the
hepatic metabolite profile and gut microbiota. [76].
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3.4. Atherosclerosis

Atherosclerosis, the major cause of cardiovascular disease, is a chronic inflammatory
disease, which can lead to vascular cognitive impairment and dementia via gradual thick-
ening of large artery walls, reducing blood flow [77,78]. In atherosclerosis, inflammation
can damage vascular endothelial cells and promote the formation of foam cells, causing le-
sions. Increased inflammation and lipid accumulation play key roles in the development of
atherosclerosis [79,80]. In the classic atherosclerosis model, the anti-atherosclerotic activity
of millet shell polyphenols (MSPs) was measured in ApoE-/-mice fed with a high-fat diet.
The results showed that the atherosclerotic plaques in the aorta were effectively inhibited
by MSPs, and the LPS and inflammatory cytokine levels, including TNF-α and IL-1β,
were also decreased. Conversely, the mRNA expression of tight junction proteins such as
occludin, zona occludens-1, and claudin1 was significantly increased in the MSPs group.
Moreover, the structure of gut microbiota in ApoE-/-mice with a high-fat diet was im-
proved under consumption of MSPs, resulting in increased abundances of Oscillospira and
Ruminococcus and a decreased abundance of Allobaculum at the genus level [81]. Recently,
the LDL receptor knock-out mice (LDLR-/-) model, along with a high LDL-cholesterol
concentration, has been the established model for atherosclerotic-related cognitive dys-
function [82]. Gao et al. evaluated the effects of an oat-fiber intervention on cognitive
behavior by targeting the neuroinflammation signal and the microbiome–gut–brain axis
in a mouse model of atherosclerosis. They found that dietary oat fiber retarded the pro-
gression of cognitive impairment in a mouse model of atherosclerosis, due to the effect
of its metabolites and SCFAs on the diversity and abundance of the gut microbiota that
produced anti-inflammatory metabolites, leading to repressed neuroinflammation and
reduced gut permeability through the microbiome–gut–brain axis [83].

Overall, increasing numbers of bioactive components in coarse cereals have been
proved to possess a hypolipidemic effect, leading to decreased TC, TG, HDL-C, LDL-C,
AST, ALT, and MDA. The key genes of lipid metabolism and inflammatory factors are
inhibited, whereas the composition of gut microbiota may have an important role in
hyperlipidemic regulation. Among these changed bacteria, the F/B ratio, Akkermansia,
Prevotellaceae, and Lactobacillaceae were thought to contribute to regulating serum lipid,
while the abundances of Allobaculum, Lachnospiraceae, and Bacteroidales S24-7 were inversely
correlated with levels of plasma lipids.
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Table 2. Effect of whole-grain components on gut microbiota of cardiovascular diseases host.

Cereal Component Pathological Type Study Characteristics Pathological Parameters Changes in Gut Microbiota Reference

buckwheat

fermented milk dyslipidemia males C57BL/6 rats

weight ↓, LPS ↑, TNF-α ↑,
IL-6 ↑, SOD ↓, T-AOC ↓, CAT ↓,
MAD ↑, acetic ↑, propionate ↑,

total acid ↑

Firmicutes ↓, Bacteroidetes ↑,
norank-f-Bacteroidales-S24-7-group ↓,

unclassified-f-Lachnospiraceae ↓,
Blautia ↓, Enterobacter ↑, Akkermansia ↑

[56]

whole-grain-based food nonalcoholic fatty liver
disease male Kunming mice

SCFAs ↑, bile acid ↑, weight ↓,
TC ↓, TG ↓, LDL-C ↓, LPS ↓,

ALT ↓, AST ↓

Blautia ↑, Lactobacillus ↑, Streptococcus
↑, unclassified_Rikenellacea ↑,

Desulfovibrio ↓, Bacteroidales_S24-7 ↓,
Allobaculum ↓

[71]

hypercholesterolemia male gold hamsters

TC ↓, LDL-cholesterol ↓, CE ↓,
TG ↓, BA ↑, acetate ↑,

propionate ↑, butyrate ↑, SCFAs
↑

Erysipelotrichaceae ↓, Ruminococcaceae ↓,
Lactobac-illaceae ↓, Lachnospiraceae ↓,

Eubacteriaceae ↑, Bacteroide-tes ↓,
Ruminococcus-1 ↓, Ruminococcus-2 ↓,

Ru-minococcuceae-UGG-014 ↓

[60]

fermented common buckwheat non-alcoholic fatty liver
disease SPF male Kunming mice

weight ↓, TG ↓, TC ↓, LDL-C ↓,
AST ↓, ALT ↓, TBA ↓, NEFA ↓,

HDL-C ↑

Ruminiclostridium ↑, Lacobacillus,
Alistipes ↑, Bacteroidales S24-7 group ↓,

Clostridiales XIII ↓
[76]

fermented black tartary buckwheat hyperlipidemia male SD rats

tyrosine ↑, lysine ↑, total
flavonoids ↑, total

polyphenols ↑, quercetin ↑,
kaempferol ↑, rutin ↓

Lactobacillus ↑, Faecalibaculum ↑,
Allobaculum ↑, Romboutsia ↓ [84]

d-fagomine hypertension male WKY rats uric acid ↑ Bacteroidetes ↑, enterobacteriales ↑, E.
colipopulations ↑ [66]

protein dyslipidemia SPF Male C57BL/6 mice TC ↓, TG ↓, total bile acids ↑,
SCFAs ↑, LPS ↓, TNF-α ↓, IL-6 ↓

Lactobacillus ↑, Bifidobacterium ↑,
Enterococcus ↑, Escherichia coli ↓ [54]

millet

arabinoxylan lipid derangements,
endotoxemia

male mice (Swiss albino,
LACA strain)

total cholesterol ↓, HDL-C ↓,
LDL-C ↓, VLDL-C ↓, NEFA ↓,
FASN ↓, ACC ↓, SREBP-1c ↓,

HMGCOA-R ↓, HLST ↑,
TNF-α ↓, IL-1β ↓, IL-6 ↓, CRP ↓

Bacteroidales S24-7 ↑, Blautia sp. ↓,
Lactobacillus sp. ↓, Bifidobacterium sp. ↓,

Roseburia ↓, Bacteroidetes ↓
[85]

millet shell polyphenols atherosclerosis male ApoE−/−mice
LSP ↓, TNF-α ↓, IL-1β ↓,

occludin ↑, zona occludens-1 ↑,
claudin1 ↑

Verrucomicrobia ↓, Actinobacteria ↓,
Oscillospira ↓, Ruminococcus ↓,
Bacteroidetes ↑, Allobaculum ↑

[81]

vitexin brain oxidative stress and
inflammation male C57BL/6 N mice

SOD ↑, CAT ↑, GPx ↑, MDA ↓,
Keap1 ↓, TNF-α ↓, IL-1β ↓,

IL-6 ↓, IL-10 ↓

Firmicutes ↓, Verrucomicrobiota ↑,
Lachnospiraceae ↑, Escherichia-shigella ↑ [86]
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Table 2. Cont.

Cereal Component Pathological Type Study Characteristics Pathological Parameters Changes in Gut Microbiota Reference

oat

fiber hypertension human SCFAs ↑ Spirillum ↑, Bifidobacterium ↑,
Trichosporium ↑ [65]

fiber atherosclerosis male LDLR−/−mice
GFAP ↓, IBα1 ↓, SCFAs ↑,

zonula occludens-1 ↑,
occludin ↑, LSP ↓

Actinobacteria ↑, Peptostreptococcaceae ↑,
Coriobacteriaceae ↑, Eisenbergiella ↑,

Romboutsia ↑, Rikenellaceae ↓,
Anaerotruncus ↓, Parabacteroides ↓

[83]

flavonoids hyperlipidemia male C57BL/6N mice

weight ↓, PPARα ↑, CPT-1 ↑,
CYP7A1 ↑, FXR ↑, TGR5 ↑,

NTCP ↑, BSTP ↑, SREBP-1c ↓,
FAS ↓, ASBT ↓

Akkermansia ↑, Lachnoclostridium ↓,
Blautia ↓, Colidextribacter ↓,

Desulfovibrio ↓
[47]

β-glucan cardiovascular disease apo-E−/−mice total cholesterol ↓

Verrucomicrobia ↓, Proteobacteria ↑,
Peptostreptococcaceae ↓,

Christenellaceae ↓, Desulfovibrionaceae ↑,
Bacteroidaceae ↑, Helicobacter ↑,

Akkermansia ↑, Ruminococcus spp. ↑

[87]

whole grain cholesterol human TC ↓, LDL-C ↓ Bifidobacteria ↑, lactobacilli ↑ [62]

whole grain cholesterol and diabetes male C57BL/6J mice weight ↓, insulin ↓, plasma total
cholesterol ↓ Lachnospiraceae ↑ [61]

oat ethanol extracts lipid metabolic disorder male SD rats

the total SCFAs ↑, acetate ↑,
propionate ↑, SREBP-1C ↓, FAS
↓, HMGCR ↓, TG ↑, TC ↑,

LDL-C ↑, HDL-C ↑

Bifidobacterium ↑, Akkermansia ↑,
Rombutsia ↓, Fusicatenibacter ↓,
Holdemanella ↓, Turicibacter ↓

[48]

quinoa
soluble polysaccharide hyperlipidemia male SD rats TG ↓, LDL-C ↓, MDA ↓, ASTl ↓,

TC ↓, ALT ↓, HDL-C ↑, SCAFs ↑

the ratio of Firmicutes ↓, Bacteroides ↓,
Proteobacteria ↓, Desulfovibrio ↓,

Allobaculum ↓
[50]

protein antihypertensive SHRs and WKY rats Allobaculum ↑, Turicibacter ↑,
Staphylococcus ↑ [67]

“↑” and “↓” indicated the “increase” and the “decrease” of content or expression.
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4. Effects on Obesity

Obesity has become a serious public health problem all over the world [88], and is
closely associated with several diseases including hypertension, type 2 diabetes, coronary
artery disease, chronic inflammation, and cancer [89–91]. Previous studies have proved
that the occurrence and development of obesity is related to changes in the composition
and metabolism of the gut microbiota [92]. In the above section, coarse cereals and their
bioactive substances exhibited lipid-lowering efficacy in cardiovascular disease. Further-
more, they also have potential for the management of obesity and several related metabolic
disorders. In an experiment by Ji et al., dietary intake of a mixture of coarse cereals could
prevent body weight gain and fat accumulation, improve blood glucose tolerance and
serum lipids levels, and reduce systemic inflammation in HFD-fed mice. Moreover, the rela-
tive abundances of Lactobacillus and Bifidobacterium could be increased after supplementing
with a mixture of coarse cereals, which might contribute to the anti-obesity activity [93].

In addition to mixed coarse cereals, many single grains have also been proved to
promote weight reduction. For instance, obese db/db mice were fed commercial diets
with and without quinoa supplementation for eight weeks. The results showed that the
quinoa-supplemented diet delayed the body weight gain of mice. Moreover, 16s sequencing
analysis showed that the relative abundances of Enterococcus, Turicibacter, Akkermansia,
and Bacteroidetes returned to normal levels as shown in the lean group [94]. Among these
groups, Turicibacter was considered to be a group with several beneficial effects, whereas
Akkermansia was a mucin-degrading bacterial taxon that was negatively correlated with
beneficial body weight effects [95–97]. An opposite result was observed in this study: the
abundance of Firmicutes was higher in lean mice compared to db/db mice, which was
mainly related to their diets [94]. Likewise, the effect of barley supplementation on the fecal
microbiota was also measured in obese db/db mice. However, the fecal microbiota results
showed that barley consumption contributed to a phylogenetically unique microbiota
distinct from both obese and lean controls. Moreover, the content of cecal butyrate was
similar in obese mice, whereas succinic acid was lower in the barley group. Compared
to the obese group, barley supplementation was also relevant, with lower plasma insulin
and resistin levels. [98]. Furthermore, previous studies reported higher and lower levels of
cecal butyrate during intake of whole wheat and quinoa, respectively, compared to obese
controls [94,99].

Along the same lines, the effect of a whole barley (WB) supplement on preventing
obesity was evaluated in germ-free (GF) C57BL/6J mice and human-flora-associated (HFA)
mice. The results showed that WB prevented obesity and hypercholesterolemia in the GF
and HFA mice. The postulated mechanism was the inhibition of cholesterol synthesis due
to the downregulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase and sterol
regulatory element-binding protein-1c, thereby decreasing cholesterol accumulation. In
addition, intake of WB enriched a variety of bacterial genera that are negatively associated
with obesity, including Bacteroides, Parabacteroides, and Clostridium cluster XIVa, suggesting
that WB counteracted gut dysbiosis in obese mice [100]. In an experiment by Zhong et al.,
whole-grain barley and barley malt consumption improved the structure of cecal micro-
biota in HFD-induced rats. Compared to the control group, the barley group had lower
abundances of Firmicutes and Deferribacteres and higher abundances of Verrucomicrobia and
Actinobacteria. At the genus level, the abundances of Akkermansia, Ruminococcus, Blautia, and
Bilophila were increased, while Turicibacter and Roseburia were more abundant in the malt
group. Most genera correlated with acetic and propionic acids. However, Roseburia and
Turicibacter correlated with butyric acid, and Clostridium and Akkermansia correlated with
succinic acid [101]. It has also been demonstrated that a synbiotic consisting of Lactobacillus
plantarum S58 (LP.S58) and hull-less barley β-glucan (β-G) attenuates lipid accumulation in
HFD-induced mice. In addition, LP.S58 and β-G alleviated gut microbiological dysbiosis
in HFD-fed mice. The abundances of Helicobacter, Ruminococcaceae, and Bacteroides were
markedly reduced after synergistic treatment with LP.S58 and β-G, while the abundances
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of Lactobacillus, Allobaculum, Turicibacter, Dubosiella, Akkermansia, and Faecalibaculum were
increased [102].

Likewise, Hereu et al. investigated the effect of combined d-fagomine andω-3 polyun-
saturated fatty acids (ω-3 PUFAs) on weight gain and beneficial gut bacterial strains.
D-fagomine was first isolated from the seeds of buckwheat and could reduce weight gain
in the rats fed withω-3 PUFAs, compared to the controls. Moreover, intake ofω-3 PUFAs
promoted the diversity of the gut microbiota by increasing the abundance of Bacteroidetes
in healthy rats and mitigated the age-related reduction of Lactobacillus and Bifidobacterium,
which are presumed to be beneficial [103,104]. Eicosapentaenoic acid (EPA, 20:5, n-3) and
docosahexaenoic acid (DHA, 22:6, n-3) are the major ω-3 PUFAs, and they are considered
to be crucial components in preventing cardiovascular diseases [105]. Previous studies re-
ported that EPA and DHA significantly increased the abundances of Firmicutes (Lactobacillus
genus) and Bifidobacteria in mice fed an HFD [106,107]. According to the authors, the d-
fagomine andω-3 PUFAs combination group gained less weight compared to the controls
and theω-3 PUFAs group, and the combination helped maintain the relative populations
of Bacteroides and Prevotella in the rat intestinal tract, providing the anti-inflammatory and
cardiovascular benefits of ω-3 PUFAs [108]. It is well known that tartary buckwheat is rich
in flavonoids, and dietary rutin or quercetin in buckwheat can ameliorate lipid metabolism,
whereas buckwheat-resistant starch may also have beneficial effects on lipid metabolism.
For example, Peng et al. proved that quercetin could significantly reduce body weight,
serum TC, LDL-C, insulin, and TNF-α, while buckwheat significantly increased the weight
of the rats. Moreover, rutin, quercetin, and buckwheat tended to decrease fat deposition in
the liver of rats but had little effect on production of SCFAs. It has also been found that they
can shape the specific structure of the gut microbiota [109]. Zhou et al. investigated the
regulatory effects of tartary-buckwheat-resistant starch (BRS) on blood lipid levels and the
gut microbiota in HFD-induced mice. After treatment, plasma levels of TC, TG, glucose,
and cytokines were markedly decreased and the antioxidant capacity in the liver and duo-
denum was enhanced. Furthermore, the gut microbiota composition was regulated after
the intake of BRS, and the populations of Bacteroides, Blautia, Lactobacillus, Bifidobacterium,
and Enterococcus were promoted, while the growth of Faecalibaculum, Erysipelatoclostridium,
and Escherichia coli was inhibited [110,111].

Like quinoa, millet lacks gluten and is rich in dietary fiber, polyphenols, and minerals,
which means that it could be explored as a healthy food. Recently, Sarma and co-workers
investigated the protective role of whole-grain kodo millet supplementation in HFD-
induced mice. They found that millet consumption ameliorated glucose tolerance and
inhibited increases in the serum cholesterol and lipid parameters but did not influence
weight gain. Moreover, millet increased the beneficial gut bacterial abundances, including
Lactobacillus spp., Bifidobacteria, Akkermansia, and Roseburia spp. [112].

Grain sorghum is the world’s fifth most produced cereal crop, but it is commonly
grown only in specific areas. Sorghum contains various types of polyphenols, which are
found in the bran [113]. Ashley et al. studied the effect of grain sorghum polyphenols
on the gut microbiota of different weight classes. There were no significant changes in
total production of SCFAs between normal-weight and overweight/obese groups. In
contrast, a combination of sorghum bran polyphenols and fructo-oligosaccharides could
increase the populations of Bifidobacterium and Lactobacillus, and sorghum bran polyphenols
independently enhanced the abundances of Roseburia and Prevotella [114].

The same clinical parameters were observed in obesity as in cardiovascular diseases.
There were some differences in the flora changes, such as for Allobaculum and Blautia, which
were increased, but further study is needed on role of the gut microbiota in the regulation
of obesity.

5. Effects on Diabetes

Diabetes and its related diseases have reached alarming levels worldwide [115]. Type
2 diabetes (T2D) accounts for the vast majority of cases of diabetes. Unhealthy dietary
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habits, including excess consumption of sugar, oil, and flour, leads to obesity, which is
the main cause of T2D [116]. Growing evidence suggests that T2D can be prevented and
treated through intake of whole grains [117]. However, there are few studies about the
hypoglycemic effect of grains via regulation of the gut microbiota. Recently, Ren et al.
evaluated the hypoglycemic effect of foxtail millet (FM) in high-fat-diet and streptozotocin-
induced diabetic rats, and the results exhibited remarkably decreased fasting glucose (FG),
glycated serum protein, and areas under the glucose tolerance test. A 16s rRNA sequencing
analysis showed that FM consumption significantly increased the relative abundances of
Lactobacillus and Ruminococcus_2, which were significantly negatively correlated with FG
and 2 h glucose. Subsequently, a Spearman’s correlation analysis indicated a complicated
set of interdependences among the gut microbiota and metabolic parameters [118].

Regarding the protein of FM, the hypoglycemic impact of different protein types was
investigated by Fu and co-workers. Protein isolates from raw and cooked FM improved
glucose intolerance and insulin resistance in diabetic mice. However, only the protein of
cooked FM recovered the weight loss trend and alleviated lipid disorders in diabetic mice.
The results of the gut flora showed that intake of FM protein isolates simulated the popula-
tion of Akkermansia and decreased the abundance of Lachnospiraceae [119]. Akkermansia was
reported to be negatively associated with obesity, insulin resistance, diabetes, and other
metabolic diseases [120]. In this study, the increased population of Akkermansia may be
attributed to the fact that the amino acids produced by the hydrolysis of millet protein
isolate in the intestine can be metabolized by the intestinal flora, finally producing amines
and polyamines through a decarboxylation reaction, which was demonstrated to improve
the Akkermansia abundance [121,122]. Moreover, the protein isolated from the raw foxtail
millet increased the abundances of the Clostridiaceae_1 family and Faecalibaculum genus,
whereas protein isolate from the cooked foxtail millet increased the level of the genus
Ruminococcaceae_UCG-014. A previous study proved that the populations of the Clostridi-
aceae_1 family and Ruminococcaceae_UCG-014 genus were negatively associated with the
circulating isoleucine level in plasma [123]. Isoleucine belongs to the branched-chain amino
acids (BCAAs) and has been shown to be positively correlated with the development of
obesity and insulin resistance [124]. Furthermore, Faecalibaculum was found to produce
lactic acid, and its metabolites were reported to have anti-diabetic effects [125]. More
recently, these authors investigated the hypoglycemic effect of prolamin from cooked
foxtail millet (PCFM) on T2DM mice. PCFM ameliorated glucose metabolism disorders
associated with type 2 diabetes, and diabetes-related and gut microbiota dysbiosis in
mice. PCFM inhibited the growth of Lachnospiraceae_UCG-006, Anaerotruncus, and Butyrici-
monas, as well as promoting the populations of Odoribacter, Blautia, and Akkermansia [126].
Lachnospiraceae_UCG-006 was revealed to be positively correlated with TG, TC, HDL-C,
and LDL-C [127]. Moreover, Anaerotruncus genus was reported to be positively related to
glucose intolerance in HFD mice, whereas a positive correlation between the abundance of
Butyricimonas and fasting blood glucose in T2DM patients has been observed [128,129]. In
contrast, Odoribacter was negatively related to steady-state plasma glucose in pre-diabetic
individuals [130]. Moreover, the gut microbiota composition was markedly altered and
glucose metabolism disorders in STZ-induced diabetic rats were also attenuated after
intake of Akkermansia muciniphila [131]. Furthermore, enriched Blautia may contribute to
the amelioration of inflammation and insulin resistance in diabetes via the production of
short-chain fatty acids [132].

In a previous study, D-fagomine was proved to reverse sucrose-induced steatosis
and hypertension, presumably by reducing the postprandial levels of fructose in the
liver [66]. Lately, Ramos-Romero et al. measured the effect of buckwheat iminosugar D-
fagomine on diet-induced pre-diabetes in rats. They found that D-fagomine could reduce
fat-induced impaired glucose tolerance, inflammation markers, and mediators. In addition,
the changes in the main two bacterial phyla, Bacteroidetes and Firmicutes, in the intestinal
tract were measured, and D-fagomine had no impact on modifying the reduction in the
Bacteroidetes/Firmicutes ratio that led to body weight gain. Moreover, compared to the
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effect of D-fagomine on fat-induced changes in Enterobacteriales and Bifidobacteriales, it had
a significant effect on glucose tolerance and inflammation [133].

In brief, obesity is recognized as the main cause of diabetes; hence, the pathophysio-
logical parameters and changes in gut microbiota, such as the weight loss trend, insulin
resistance, glucose intolerance, and inflammation markers would be expected to be similar.
The composition of gut flora also exhibited similar alterations with an increasing abun-
dance of Blautia and Akkermansia and a reduction in the numbers of Lachnospiraceae and
Faecalibaculum. However, the relationships among gut microbiota, obesity, and diabetes are
still unclear.

6. Prebiotic Effect

The concept of prebiotics was proposed by Gibson and Roberfroid in 1995. They first
defined a prebiotic as a “non-digestible food ingredient that beneficially affects the host by
selectively stimulating the growth and/or activity of one or a limited number of bacteria in
the colon, and thus improves host health” [134]. The functional characteristics of prebiotics
include resistance to low pH in the stomach, resistance to hydrolysis by mammalian en-
zymes, resistance to absorption in the upper gastrointestinal tract, ability to be fermented by
intestinal microflora, and selective stimulation of the growth and/or activities of intestinal
bacteria related to host health and overall well-being [13,134]. Generally, non-digestible
carbohydrates were considered to be the main prebiotics, but other compounds, including
phenolics, polyunsaturated fatty acid, linoleic acid, and phytochemicals, were included in
the updated prebiotic definition [135]. As our knowledge and understanding of the gut
microbiota and the importance of the gut microbiota increases, consumers must understand
the key differences between the different forms of prebiotics and their presence in a variety
of foods and related products.

Whole grains are rich in dietary fiber, micronutrients, and phytochemicals, which
are considered to be natural prebiotics. For instance, the effect of oat bran on the human
fecal microbiota composition was measured via in vitro anaerobic batch-culture experi-
ments. The 16s rRNA sequencing results showed that the populations of Proteobacteria
and Bacteroidetes were increased after oat supplementation, whereas fermentation of the
1% (w/v) oat bran increased the abundances of Bifidobacterium unassigned at 10 h and
Bifidobacterium adolescentis at 10 and 24 h, compared to the control group. The SCFA analysis
showed that consumption of oats stimulated the production of acetic and propionic acid,
while oat bran fermentation resulted in an elevated SCFAs content. Meanwhile, β-glucan
treatment induced an increase in the phylum Bacteroidetes, and the polyphenol mix induced
an increase in the Enterobacteriaceae family at 24 h. It was concluded that the prebiotic effect
of oats could be attributed to the synergy of all oat compounds within the complex food
matrix [136]. Likewise, the prebiotic effect of quinoa and amaranth were evaluated in batch
cultures with fecal human inocula. In this study, fluorescence in situ hybridization (FISH)
was used to explore the microbiota composition and metabolic products. After treatment,
the changes in the SCFAs of the quinoa group and the amaranth group were consistent with
the decrease in pH. Moreover, there were significant alterations in the gut flora, including
Bifidobacterium spp., Lactobacillus–Enterococcus, Atopobium, Bacteroides–Prevotella, Clostridium
coccoides–Eubacterium rectale, Faecalibacterium prausnitzii, and Roseburia intestinalis. Due to
the growth of these bacterial groups, the SCFAs, acetate, propionate, and butyrate were
markedly increased, which is critical for maintaining a balanced intestinal microbiota [137].

The Maillard reaction (MR) produces several low-mass molecules by reducing sugar
and amino acids during food heat treatment and storage; these low-weight compounds
are usually recombined by a series of advanced MRs to form melanoidins [138]. Because
they have a similar structure to fibers, melanoidins were considered to have prebiotic
properties [139]. Aljahdali and co-workers examined the effect of intake of melanoidins
of barley malts on gut microbiota in mice. It was found that the melanoidins significantly
changed the gut microbiota and stimulated the production of SCFAs. The populations of
Lactobacillus, Parasutterella, Akkermansia, Bifidobacterium, and Barnesiella were remarkably
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increased, while Dorea, Oscillibacter, and Alisitpes were decreased, proving the prebiotic
effect of melanoidins [140].

7. Effect on Other Chronic Diseases
7.1. Metabolic Syndrome

Metabolic syndrome is a complex disease with a rapid increase in incidence in recent
years, and dietary intervention is an effective approach to ameliorate the metabolic status
of patients [141]. Dietary composition can actively change the composition and function
of intestinal microflora, so as to improve individual conditions related to metabolic dis-
orders [142]. Barley β-glucans have been demonstrated to exert a hypoglycemic effect
and a cholesterol-lowering effect. In an experiment by Velikonja et al., the impact of a
dietary supplement of barley β-glucans on metabolic syndrome patients was investigated.
After treatment, TC in plasma was decreased compared to the control group. Moreover,
the fecal SCFAs were markedly changed, with increased propionic acid, while the acetic
acid was decreased in the control group. Furthermore, 16s sequencing results showed that
the populations of health-associated Bifidobacterium spp. and Akkermansia municiphila were
increased after barley β-glucans consumption [143].

Growing evidence suggests that circadian disruption may increase the risk of metabolic
diseases, causing a series of metabolic abnormalities including obesity, dyslipidemia, and
glucose intolerance that are regarded as circadian-disruption-induced metabolic syndrome
(CDIMS). Moreover, circadian disruption can increase the gut permeability, leading to dys-
function of the gut barrier and alteration of the gut microbiota [144]. In an induced CDIMS
mice model, intake of oat β-glucans mitigated CDIMS, resulting in an increase in body
weight, liver-weight-to-body-weight ratio, and plasma leptin concentration, and restored
glucose tolerance. The analysis of gut microbiota showed that oat β-glucans increased the
species richness and improved the abundance of seven bacterial genera and increased bu-
tyrate producers such as Ruminococcaceae and Lachnospiraceae, which contribute to glucose
homeostasis and gut barrier protection [145]. On the other hand, antibiotic overuse can
also destroy the gut microbiota by changing the community structure and reducing the
diversity, resulting in gut barrier dysfunction [146,147]. Zhu and co-workers assessed the
effect of a water-soluble polysaccharide from Fagopyrum esculentum Moench bee pollen
(WFPP) on gut barrier integrity in antibiotic-treated mice. WFPP reversed the growth
retardation, atrophy of the thymus and spleen, increased gut permeability, and intestinal
barrier damage under ceftriaxone (a broad-spectrum antibiotic) treatment. Furthermore,
WFPP was correlated with reduced inflammatory response and enhanced intestinal sIgA
secretion. In addition, 16S rDNA sequencing results showed that WFPP ameliorated gut mi-
crobiota dysbiosis induced by ceftriaxone, and especially that it regulated the populations
of Proteobacteria (sIgA-secretion-related bacteria) and Enterococcus (inflammation-related
bacteria) [148].

7.2. Neurodegenerative Disorders

Neurodegenerative disorders such as Alzheimer’s disease (AD) and dementias are
major causes of incidence rates, reduced quality of life and medical costs in elderly peo-
ple [149]. There is evidence that microbial changes are related to neuroinflammation and
cognitive impairment, which are two critical features of AD pathogenesis and progres-
sion [150]. Although neurodegenerative diseases are currently incurable, one third of
dementia cases can be prevented by addressing lifestyle factors, including diet [149]. As an
example, β-glucan prevents cognitive impairment caused by a high-fat and fiber-deficient
diet (HFFD), as shown by behavioral appraisement through object positioning, new object
recognition and nesting tests. The results showed that β-glucan reversed the cognitive
function loss through more optimized synaptic and signaling transduction pathways in
crucial brain areas, while intake of β-glucan also improved gut barrier dysfunction and
reduced bacterial endotoxin translocation. Moreover, β-glucan alleviated gut microbiota
dysbiosis caused by HFFD, especially Bacteroidetes at phylum level and its lower taxa [151].
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A previous study demonstrated that the phylum Bacteroidetes was intimately related to
neurodegenerative diseases. There was a lower abundance of Bacteroides at genus level
in the gut microbiota of dementia patients, whereas the population of Bacteroides fragilis
at species level was lower in patients with cognitive impairment [152,153]. According
to the authors, oat β-glucan increased satiety in diet-induced obese mice by activating
the gut–hypothalamic (PYY-NPY) axis [154]. SCFAs that were produced from β-glucan
fermentation efficiently increased PYY production in human entero-endocrine cells [155].
In addition, excessive dietary energy intake and insulin resistance have adverse effects
on human cognition, but energy restriction could enhance neural plasticity by reducing
inflammation and increasing the expression of synaptic-plasticity-related proteins [156].
Therefore, β-glucan consumption is important for preventing cognitive impairment in-
duced by HFFD by maintaining the gut microbiota–brain axis.

7.3. Malnutrition

Malnutrition is usually caused by insufficient protein and micronutrients due to lack of
food [157]. Due to the poorly developed immune system and delayed puberty, children are
the group most vulnerable to malnutrition. Recently, Li and co-workers evaluated the effect
of a millet supplement on malnutrition and gut microbiota dysbiosis in a malnourished pig
model. Compared to the control group, the millet supplement improved the growth status,
gastrointestinal pathology, and content of total protein and globulin in the blood. Moreover,
intake of millet increased the abundance of Bacteroidetes, Firmicutes, and Lachnospira spp.,
while the population of Proteobacteria was decreased. Furthermore, a Pearson’s correlation
analysis showed a strong positive correlation between the abundances of Faecalibacterium
and Lachnospira spp. and body weight, crown–rump length and total serum protein [158].
Previously, a low abundance of Faecalibacterium prausnitzii was found in the intestines
of malnourished children and malnourished pigs in Bangladesh [159]. Moreover, the
abundance of Lachnospira spp. was positively associated with an anti-inflammatory effect
in weaner pigs fed with an HFD [160]. Therefore, millet exhibited a promising benefit in
regulating gut microbiota dysbiosis in malnourished pigs.

8. Prospects

In this study, we reviewed the functional components of coarse grains in alleviating
chronic diseases through modulating the gut microbiota. A correct understanding of the
critical role of coarse grains in gut health and microbial regulation could help ameliorate
chronic diseases and improve quality of life. The complexity of mechanisms among the
components of coarse grains, the digestive system and the gut microbiota is an important
factor restricting development and utilization of coarse grains. Despite the fact that many
bioactive substances in coarse grains have been proved to serve various functions in both
in vitro and in vivo experiments, there is still only limited research on accurate metabolic
processes of bioactive substances and their functional signal pathways. Moreover, the
intensity and the targeting effects of these substances in the treatment of chronic diseases
are far less than those of drugs. At present, there are a number of mature plant-derived
drug evaluation methods, including in vitro high-throughput screening, animal model
experiments, and human trials. However, single-substance experiments are not suitable for
assessing the nutritional characteristics of coarse grains.

Generally, coarse grains are considered to be food rather than drugs. Therefore, coarse
grains play a preventive and regulatory role via the synergistic action of various substances.
Moreover, gut dysbiosis usually occurs in the early stage of disease. In order to ensure
that the active substances of coarse cereals play a more effective role in improving chronic
diseases, several aspects should be further studied in detail, including: (1) improving
the bioactivity of these substances, which is effective and important for further research
and application; (2) exploring more precise and persuasive experiments to clarify the
interaction mechanisms between gut microbiota and bioactive substances; (3) combining
the in vitro bioreactor research model and the in vivo gut reaction model to establish rapid
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screening and comprehensive evaluation of the bioactivity of coarse cereals. The outcome
of this research would be helpful to further clarify the beneficial effects of cereal bioactive
components on chronic diseases.
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