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Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany, 3 Department of Nephrology
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In conjunction with the endothelin (ET) type A (ETAR) and type B (ETBR) receptors, angiotensin
(AT) type 1 (AT1R) and type 2 (AT2R) receptors, are peptide-binding class A G-protein-
coupled receptors (GPCRs) acting in a physiologically overlapping context. Angiotensin
receptors (ATRs) are involved in regulating cell proliferation, as well as cardiovascular, renal,
neurological, and endothelial functions. They are important therapeutic targets for several
diseases or pathological conditions, such as hypertrophy, vascular inflammation,
atherosclerosis, angiogenesis, and cancer. Endothelin receptors (ETRs) are expressed
primarily in blood vessels, but also in the central nervous system or epithelial cells. They
regulate blood pressure and cardiovascular homeostasis. Pathogenic conditions associated
with ETR dysfunctions include cancer and pulmonary hypertension. While both receptor
groups are activated by their respective peptide agonists, pathogenic autoantibodies (auto-
Abs) can also activate the AT1R and ETAR accompanied by respective clinical conditions. To
date, the exact mechanisms and differences in binding and receptor-activation mediated by
auto-Abs as opposed to endogenous ligands are not well understood. Further, several
questions regarding signaling regulation in these receptors remain open. In the last decade,
several receptor structures in the apo- and ligand-bound states were determined with protein
X-ray crystallography using conventional synchrotrons or X-ray Free-Electron Lasers (XFEL).
These inactive and active complexes provide detailed information on ligand binding, signal
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induction or inhibition, as well as signal transduction, which is fundamental for understanding
properties of different activity states. They are also supportive in the development of
pharmacological strategies against dysfunctions at the receptors or in the associated
signaling axis. Here, we summarize current structural information for the AT1R, AT2R, and
ETBR to provide an improved molecular understanding.
Keywords: angiotensin II type 1 receptor (AT1R), angiotensin II type 2 receptor (AT2R), endothelin type A receptor
(ETAR), endothelin type B receptor (ETBR), G-protein coupled receptor (GPCR), autoantibodies, GPCR structures
INTRODUCTION

The high biological, medical, and pharmacological relevance of
GPCRs (~830 in humans) is due to their key role in signal
transduction across the cell membrane from the extracellular
side toward the cell interior (1). They interact with a large
number of stimulants (agonists), such as odors, peptides,
metabolites, light, nucleotides, amines, or a variety of
hormones and proteins (2). Generally, receptor interaction
with agonists results in an increased capacity of intracellular
coupling and subsequent activation of G-protein(s) or arrestin(s)
(3). This causes induction of downstream pathways regulating
e.g., ion channel activity or gene expression (4–7). GPCR
signaling is linked with almost all physiological processes, such
as growth, learning, memory, reproduction, or senses like taste
and vision (7). More than 100 diseases or pathogenic conditions
are linked to dysfunctional GPCRs (8), including viral infections,
cancer, infertility, inflammation, and metabolic and neurological
disorders (9–11), which, altogether, makes these receptors
essential for pharmacological and structural studies [e.g (12)].
The angiotensin (ATRs) and endothelin receptors (ETRs) belong
to class A GPCRs (13, 14). For the groups of ETRs and ATRs,
respectively, much detailed physiological information, but also
pathophysiological relations are known.

In brief, the AT1 receptor (AT1R) binds different angiotensin
(Ang) subtypes Ang I, Ang II, Ang III, and Ang IV, which are the
main effector peptide hormones of the renin-angiotensin system
(15). AT1R can activate the G-protein subtypes Gi/o and Gq/11,
and also b-arrestin, upon agonist action (16).

Pharmacologic interventions that either decrease Ang
production or modulate Ang actions through AT1R blockade
are the current mainstay of renoprotection, as documented by
extensive experimental work and clinical trials of diabetic and
non-diabetic renal diseases (17). AT1R dysfunction leads to
several pathophysiological conditions, including hypertrophy,
vascular inflammation, atherosclerosis, endothelial dysfunction,
insulin resistance, angiogenesis, and cancer (18). Antibodies
(Abs) are involved in the development of preeclampsia, acute
graft rejection, and systemic sclerosis (19–22). Of note, the Ang
II/AT1R signaling axis was identified recently to be involved in
inflammatory processes, collateral tissue damage, and systemic
failure related to COVID-19 infection (23). AT1R blockers or
biased AT1R agonists are discussed to contribute potentially to
treatment strategies against COVID-19 effects (24–26).

Endogenous ligands of the AT2 receptor (AT2R) are Ang II
and Ang III with affinities in the nanomolar range (14). Of note,
n.org 2
during the elucidation of AT2R related signaling pathways
several hypotheses arised and were studied/confirmed,
including G-protein independent signal transduction (27–30),
G-protein subtype Gi/o activation (31), and also ligand-
independent signaling crucial in apoptosis (32). AT2R is
expressed in vessels (endothelial cells), heart, kidney (tubules,
glomeruli, collecting ducts, arterioles, and interstitial cells), brain,
and immune cells (33). In the kidney, physiological stimulation
of the receptor causes diuresis and natriuresis by decreasing salt
and water transport from the tubules to the capillaries, triggering
sodium and water excretion (34). Chronic AT2R overexpression
has deleterious effects on cardiomyocytes (35) and AT2R
activation, as AT1R, is involved in neuropathic pain (36, 37).

The ETA receptor (ETAR) (38, 39) is localized mainly in
vascular smooth muscle cells and, therefore, in all tissues
supplied with blood, including the heart, lung, and brain, but
are also present on other cell types, including myocytes within
the heart (38, 40) or endothelial cells. ETAR has a stronger
affinity for ET-1 and ET-2 than for ET-3, all three constituting
the family of endothelin peptides (41). ETAR has been associated
with the vasoconstrictive effects of ET-1 and is involved in
different pathologies (6). Hence, it was shown that ETAR
activation has detrimental effects on preeclampsia (42), heart
failure (43), and pulmonary hypertension (44). In the kidney,
ETAR induces natriuresis (45) and its inhibition can improve
short-term lesions triggered by ischemia-reperfusion injury (46).
Finally, point mutations in the gene coding for ETAR are
responsible for mandibulofacial dysostosis with alopecia (47)
and Oro-Oto-Cardiac syndrome (48), as the receptor is involved
in craniofacial development. ETAR signaling activity is associated
primarily with the G-protein subtypes Gq/11, but there are also
indications for Gi/o signaling (16).

With the same affinity the ETB receptor (ETBR) interacts with
all three endothelin (ET-1, ET-2, and ET-3) peptides. It
resembles many actions of ATRs on renal cell types (49). This
receptor couples to the G-protein subtypes Gs, Gi/o, and Gq/11
(16). ETBR is expressed in the lungs and brain (50), and conveys
reversal effects as ETAR, mainly vasodilatation by stimulating
nitric oxide (NO) production and clearing ET-1 (51). In the
kidney, ETBR is involved in sodium excretion (52). The ETBR
contains a metal-proteinase cleavage site at the long N-terminus
around an A-G-x-P-P-R motif (Figure 1) (55). Interestingly,
there are reports on endothelin receptors homo- or
heterodimerization with other receptors (see chapter below for
details). Depending on the particular receptor-receptor
configuration, the resulting signaling effects can differ (56).
April 2022 | Volume 13 | Article 880002

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Speck et al. Angiotensin and Endothelin Receptor Structures
In summary, AT and ET receptors are of high physiological
and medical importance, including e.g., renal effects, blood
pressure (57), cell proliferation (6, 58, 59), or cancer
development (60). Of note, an increasing amount of structural
information has been published in recent years, complementing
functional insights. Several structures in different activity states
were determined by protein X-ray crystallography using
conventional synchrotrons or XFELs (Table 1) for AT1R,
AT2R, and ETBR. They reveal details of the signal transduction
process at the molecular level. In this brief review, we summarise
the current state of knowledge about these receptors and receptor
complex structures. We aimed to provide a first systematic
overview of structural insights into these receptors including
ligand binding, dimerization, receptor activation, and
inactivation. Thus, we will also identify open knowledge gaps
that will aid in the identification of topics relevant for
future studies.
LESSONS FROM INACTIVE STATE
STRUCTURES

Two AT1R and three ETBR inactive state structures solved by X-
ray crystallography have been published (as of January 2022;
summarized in Table 1). They provide deeper insights into
structural features associated with the inactive receptor states
and how antagonists block the signaling process. Highly
conserved amino acids (Figure 2A) significant for each GPCR
class (74, 75) are generally important for expression and the
Frontiers in Endocrinology | www.frontiersin.org 3
folding of diverse receptor components, e.g., prolines defining
weak points in helices because of steric conflicts with the
preceding residue and the loss of a backbone H-bond, which
can cause kinks (76, 77) as observed in the CWxP6.50 motif in
transmembrane helix 6 (TM6) [superscripted numbers are
provided additionally according to the unifying Ballesteros &
Weinstein numbering for class A GPCRs (74)]. Conserved amino
acids also play a fundamental role in maintaining an inactive state
conformation(s), as, for example, in the AT1R the D742.50 in the
transmembrane helix (TM) 2, or N2987.49 in TM7 (Figure 2A).
They interact through hydrogen bonds with each other or with
other hydrophilic amino acid side chains, or with water molecules
constraining the inactive state between TM’s 1, 2, 3, and 7
(Figure 2B). In most of the inactive state structures of AT1R
and ETBR, no water or sodium ions (region between D2.50-N7.49,
as known from other GPCRs (78)) can be observed due to the low
resolutions between 2.7 to 3.6 Å (Table 1). However, in the ETBR
structure with a resolution of 2.2 Å [Protein Data Bank (79)
(PDB) ID: 5x93 (68)], water molecules in tight interaction to
hydrophilic amino acid side chains are visible (Figure 2B). This
network of hydrogen bonds between hydrophilic residues in
TM1, TM3, and TM7, as well as water molecules, is not
observable in all active state structures of ATRs or ETBR
receptors, nor in other active state GPCR structures (80),
because they disappear in the course of receptor activation and
related structural rearrangements. Of note, in an active state, such
as the ETBR structure complexed with the partial agonist
IRL1620, a few water molecules are still observed, and they are
supposed to partly preserve the interaction network typical for
inactive states (70). This might be related to the fact that in this
FIGURE 1 | Sequence comparison between the ATRs, ETRs, and bovine rhodopsin (bOPSD) or human b-2 adrenergic receptor (hADRB2). The length of each
transmembrane helix (TM1-7) or loops (IL, intracellular loop; EL, extracellular loop) are indicated above the sequence according to an AT1R structure [PDB ID: 4zud
(53)] but can differ slightly in other structures. The overall sequence similarity between ETAR and ETBR is approximately 63%, whereas between AT1R and AT2R
~47%. Sequence similarities between ATRs and ETRs, respectively, are around 30%. The sequences of prototypical class A GPCRs bOPSD and hADRB2 are
provided additionally for comparison. The alignment was visualized using the software BioEdit (54). Specific background colors reflect chemical properties of the
amino acid side chains or the type of amino acid: black-proline; blue-positively charged; cyan/green-aromatic and hydrophobic; green- hydrophobic; red-negatively
charged; gray-hydrophilic; dark red-cysteines; and magenta-histidine.
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structure, as for all ETBR structures with bound agonists so far, no
intracellular transducer protein as a G-protein molecule stabilizes
the active state conformation and, therefore, the TM6 orientation
is different to known fully active state structures (restricted
movement toward the membrane). In conclusion, such
structures do not display a fully active receptor conformation.

For diverse GPCRs a significant interaction (previously
named “ionic lock”) between the highly conserved R3.50 in
Frontiers in Endocrinology | www.frontiersin.org 4
TM3 (Figure 2A) of the DR3.50Y motif and a negatively
charged residue located at the intracellularly site of TM6 is
known to be essential for maintaining the inactive state (72,
73). According to the available structures, such interaction has
not yet been observed in AT1R or ETBR. Only in the case of an
AT1R structure [PDB ID: 4yay (61)] a potential hydrogen bond
interaction between R1263.50 and N2356.30 (backbone) is
observable (Figure 2C), which may constrain the typical
TABLE 1 | Overview of ETR and ATR structures known so far (as of January 2022).

Receptor PDB Ligand Modifications, fusion proteins, interaction partners Method Resolution
(Å)

Year References

AT1R 4zud Olmesartan, inverse
agonist

N-terminal BRIL; Δ1, 7-16, Δ316–59 X-ray 2.80 2015 (53)

4yay ZD7155,
antagonist

N-terminal BRIL; Δ1, 7-16, Δ320–359 X-ray
with
XFEL

2.90 2015 (61)

6do1 S1I8, angiotensin II
analog, partial
agonist

BRIL between 226–227; I320 to stop codon; Nb.AT110i1; dimeric receptor X-ray 2.90 2019 (62)

6os1 TRV023, agonist,
b-arrestin bias

BRIL between 226–227; I320 to stop codon; Nb.AT110i1_le X-ray 2.79 2020 (63)

6os2 TRV026, agonist,
b-arrestin bias

BRIL between 226–227; I320 to stop codon; Nb.AT110i1_le X-ray 2.70 2020 (63)

6os0 Ang II, agonist BRIL between 226–227; I320 to stop codon; Nb.AT110i1 X-ray 2.90 2020 (63)

AT2R 5xjm [Sar1, Ile8]Ang II,
partial agonist

Δ1-34 & Δ347–363; BRIL between 240–246; Fab4A03 - positive allosteric
modulator

X-ray 3.20 2018 (64)

5unf Compound 1*,
agonist

N-terminal BRIL; Δ1-34 & Δ336–363 X-ray
with
XFEL

2.80 2017 (65)

5ung Compound 1*,
agonist

N-terminal BRIL; Δ1-34 & Δ336–363 X-ray
with
XFEL

2.80 2017 (65)

5unh Compound 2**,
agonist

N-terminal BRIL; Δ1-34 & Δ336–363 X-ray 2.90 2017 (65)

6jod Ang II, agonist N-terminal BRIL variant mbIIG between 34–35, Δ347–363; point mutation
S208A; Fab4A03

X-ray 3.20 2020 (66)

ETBR 6k1q IRL2500, inverse
agonist

TEV cleavage sequence between 57–66, Δ408–442; point mutations C396A,
C400A, C405A, R124Y, K270A, S342A, I381A; mT4 lysozyme between 303 & 311

X-ray 2.70 2019 (67)

5x93 K-8794, antagonist TEV cleavage sequence between 57–66, Δ408–442; point mutations C396A,
C400A, C405A, R124Y, D154A, K270A, S342A, I381A; mT4 lysozyme between
303 & 311

X-ray 2.20 2017 (68)

5xpr Bosentan,
antagonist

TEV cleavage sequence between 57–66, Δ408–442; point mutations C396A,
C400A, C405A, R124Y, K270A, S342A, I381A; mT4 lysozyme between 303–311

X-ray 3.60 2017 (68)

5gli apo-state, ligand
free

TEV cleavage sequence between 57–66, Δ408-442; point mutations C396A, C400A,
C405A, R124Y, D154A, K270A, S342A, I381A; mT4 lysozyme between 303–311

X-ray 2.50 2016 (69)

6igl IRL1620 partial
agonist

TEV cleavage sequence between 57-66, Δ408–442; point mutations C396A,
C400A, C405A, R124Y, D154A, K270A, S342A, I381A; T4 lysozyme between
303–311

X-ray 2.70 2018 (70)

5glh ET-1, agonist TEV cleavage sequence between 57–66, Δ408-442; point mutations C396A,
C400A, C405A, R124Y, D154A, K270A, S342A, I381A; T4 lysozyme between
303–311

X-ray 2.80 2016 (69)

6igk ET-3, agonist TEV cleavage sequence between 57–66, Δ408–442; point mutations C396A,
C400A, C405A, R124Y, D154A, K270A, S342A, I381A; T4 lysozyme between
303–311

X-ray 2.00 2018 (70)

6lry Sarafotoxin S6b,
agonist

TEV cleavage sequence between 57–66, Δ408–442; point mutations C396A,
C400A, C405A, R124Y, K270A, S342A, I381A; T4 lysozyme between 303-311

X-ray 3.00 2020 (71)

ETAR no 3D structures available
April 2
022 | Volume
 13 | A
Additional information is provided as the bound ligand or fusion proteins. Color code: green: active state-like; blue: inactive or antagonized; white: ligand-free.
*N-benzyl-N-(2-ethyl-4-oxo-3-{[2’-(2H-tetrazol-5-yl)[1,1’-biphenyl]-4-yl] methyl}-3,4-dihydroquinazolin-6-yl)thiophene-2-carboxamide,
**N-[(furan-2-yl)methyl]-N-(4-oxo-2-propyl-3-{[2’-(2H-tetrazol-5-yl)[1,1’- biphenyl]-4-yl]methyl}-3,4-dihydroquinazolin-6-yl)benzamide.
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inactive state conformation of TM6 directed inward to the
transmembrane core (Figure 2A) (1).

All previously known structures of inactivated or
antagonized receptor states were obtained by binding
antagonists (“antagonized”) or inverse agonists (“inactive”),
in addition to specifically-directed mutations, which were
usually necessary to stabilize an individual receptor state or
improve receptor expression. (Table 1, Figures 2D, E). In the
two inactive/antagonized AT1R structures, the ligands are
bound mainly between residues located in the EL2, TM1,
and TM2 (Figure 2D). This binding crevice (Figure 2D1)
overlaps greatly with the binding sites of antagonists for the
ETBR (Figure 2E). However, significant differences exist in
binding details by an extended binding region of ETBR
antagonists and the inverse agonist IRL2500 (Figure 2E).
Here, specific residues in TM3 and TM5 are essentially
involved in antagonist binding.
Frontiers in Endocrinology | www.frontiersin.org 5
Of note, the inverse agonist IRL2500 in the inactive ETBR
structure [PDB ID: 6k1q (67)] interacts, in addition to other
residues, with an aromatic moiety directly at W3366.48 in TM6,
which is known generally for class A GPCRs to be a crucial
trigger for receptor activation. This W6.48 is located in the
CWxP6.50 motif involved in activation-related TM6 outward
movement as part of the “global toggle-switch” activation
model (81, 82), also described as the “rotamer toggle switch”
hypothesis (1, 83). The inverse agonistic activity of this ligand is
assumed to be potentially associated with this interaction, which
constraints tryptophan in a basally non-active state (67).
However, independent of the antagonist or an inverse agonist
status, these ligands (Figures 2D, E) occupy a receptor region
that is also involved in agonist binding (next section, Figure 4)
and therefore compete with agonist binding.

Notably, aside from diverse directed structural alterations for
protein stabilization such as fusion with T4 lysozyme or
A B D

EC

FIGURE 2 | Structural features of inactive or antagonized AT1R and ETBR conformations. (A) Conserved residues in class A GPCRs (magenta sticks) important
for receptor-fold, expression, and signaling are highlighted at the inactive state structure of AT1R (backbone cartoon) in complex with the antagonist ZD7155
(green sticks). Highly significant for non-active state conformations is the inward direction of the transmembrane helix (TM) 6 into the helical bundle, which closes
the intracellular binding cavity for G-proteins or arrestin (see also Figure 4E). The antagonist ZD7155 (green) is bound in a pocket between the transmembrane
helices and their transition to the extracellular loops. Notably, a disulfide bridge (yellow sticks) between the N-terminus and the EL3-TM7 transition forms and
stabilizes the spatial region between the N-terminus and EL3, which is also present in the AT2R and the ETBR (not shown). (B) In the antagonized ETBR
structure bound with the antagonist K-8794, water molecules solved at a high resolution of 2.2 Å. These water molecules are located centrally in the helical
bundle, participating by H-bonds with hydrophilic residues in maintaining an inactive state conformation. (C) Of the currently known five inactive state structures
for ETRs and ATRs, only one inactive state shows a H-bond between the intracellular parts of TM3 and TM6 involving the highly conserved R3.50. In several
class A GPCRs, an “ionic lock” between this arginine and a negatively charged amino acid in TM6 has been postulated or shown to be essential for constraining
the inactive state (72, 73). This cannot be perceived equally for most of the available inactive ETBR and AT1R structures. (D) AT1R antagonists olmesartan
(inverse agonist, cyan sticks) and ZD7155 (green sticks, Table 1) are bound mainly between three residues in EL2, TM1, and TM2 in the upper part of the
helical bundle (PDB IDs: 4zud and 4yay). Red circles indicate the main contact points. (D1) Visualized is the binding pocket of olmesartan by a clipped inner
surface representation. (E) Superimposition of ETBR structures (PDB IDs: 6k1q, 5x93, 5xpr - only one backbone structure is visualized as cartoon because of
high overlap between these structures) with antagonists K-8794 (green), bosentan (orange), and IRL2500 (inverse agonist, magenta) shows partially largely
binding regions in the receptors, but also significant differences to antagonist binding sites of AT1R (red circles). While a residue of the N-terminal EL2 is involved
in ligand binding in both receptors, several H-bonds to amino acids in TM3 and TM5 can be observed in the ETBR. The inverse agonist IRL2500 additionally
contacts (blocks) the highly conserved tryptophan in TM6 (W336 in ETBR), which is part of the CWxP6.50 motif that participates in the activation mechanism of
class A GPCRs. Red circles indicate the main contact points. All graphic representations in this article were created using the PyMol Molecular Graphics System
Version 1.5 (Schrödinger, LLC, New York, NY). EL, extracellular loop; Nt, N terminus; IL, intracellular loop; H8, helix 8; TM1–7, transmembrane helices 1–7.
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deletions, the inactive, apo-, and agonist bound structural
complexes of the ETBR are modified in their amino acid
sequence (Table 1). Five combined particular substitutions
were used to stabilize complexes with both antagonists, the apo
state, and also with agonists, which is not unusual in GPCR
preparation for crystallization studies (Supplementary Table
S1). These mainly alanine substitutions are located in diverse
receptor regions as TM’s 1, 2, 5, 6, and 7 (Figure 3A). Generally,
individual or combined thermostabilizing mutations used in
class A GPCRs (Supplementary Table S1, Figures 3B-D) can
be localized at very diverse structural parts, either with side
chains directed into the transmembrane core or with side chains
directed toward the membrane. A statistical analysis of the
distribution of thermostabilizing mutations used for class A GPCR
crystallization (analysis of 17 different GPCRs; Supplementary
Table S1 and Figure 3D) shows thermostabilization via mutations
is principally feasible in each helix, including helix 8. The molecular
effect of such mutations and their combinations is associated with,
e.g., the stabilization of a certain conformational state (directed into
the transmembrane core) as inactive or active, substitutions of
Frontiers in Endocrinology | www.frontiersin.org 6
residues facing lipids (directed toward the membrane or
detergent), or mutations stabilizing local structural areas (e.g.,
helix-helix interface directed) (84, 85). In the case of the ETBR, a
mixture of these “types” of substitutions can be postulated, whereby
R124Y and I381A are directed to the membrane, D154A points into
the helical core, K270A is in the interface between TM5 and EL2, and
S342A is part of the TM6-TM7 interface (Figure 3A).
RECEPTOR STRUCTURES WITH
BOUND AGONISTS

GPCR activation commonly involves binding of an agonistic
ligand or sensing of a physical trigger (e.g., light or mechanical
forces), which induces alterations in the binding region and,
subsequently, in specific helical adjustments relative to each
other. This process finally enables intracellular binding of a
transducer protein by enlargement of the crevice between the
helices and ILs. The active state conformation is, therefore,
stabilized by the ligand, the intracellular effector, and particular
A B D

C

FIGURE 3 | Thermostabilizing mutations of the ETBR and thermostabilizing mutant positions reported for class A GPCRs. (A) The five commonly and in combination used
thermostabilizing ETBR substitutions are visualized at an active state structure bound with the agonist. These substitutions are also used for stabilizing inactive state and apo-
state structures. (B) Positions (backbone as cyan-colored sticks) of thermostabilizing substitutions used for protein preparation of diverse class A GPCRs (Supplementary
Table S1) are highlighted in a rhodopsin model (only transmembrane helices), as well as (C) of thermostabilizing substitutions in determined active state structures highlighted
in an opsin model (brown backbone sticks). This mapping demonstrates that substitutions contributing to thermostability can be principally designed at each transmembrane
helix [see also diagram in (D)]. (D) This depiction (top view from the extracellular side) of the rhodopsin/opsin wild-type side chains of positions in class A GPCRs used for
thermostabilization of both states (~130 substitutions at 97 positions, Supplementary Table S1) demonstrates that they act in a contrasting manner, either by modulating the
protein-membrane interaction or by changes of intramolecular interactions participating in the regulation of activity state-related conformations. The substitutions used for
stabilizing class A GPCR structures either in the apo-, inactive-, or active-state (in the diagram termed as Agonist, Antagonist or Neutral according to the state of ligand
occupancy) are located at each helix, however, more identified mutants to stabilize active than inactive state conformations are located in TM1, TM2, TM6, and TM7, whereby
in TM3 and also in TM5/TM6 a high number of inactive state stabilizing mutations were identified.
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intramolecular side-chain interactions. In turn, this process, with
the receptor as a central signaling hub of information, is
primarily related to structural rearrangements, dependent on
spatial-fit-in’s and biochemical recognition patterns [or
“recognition barcodes” (86)] between the receptor-ligand
complex and effector, such as the G-protein. How is this
“activation process”, “signal transduction”, or “stabilization of
the active state conformation” reflected by available ATR and
ETBR structures?

More than ten ETBR and AT1R/AT2R structures (Table 1) with
a bound agonist are known so far (Figure 4). These structures show
specific features as intracellularly bound nanobodies (Figure 3A),
Frontiers in Endocrinology | www.frontiersin.org 7
extracellular bound antibody-fragments (Figure 4B), a non-
canonical helix 8 orientation (Figure 4B1), or specificities in
transmembrane helix conformations (Figure 4C). However, none
of them is part of a complex with a G-protein or arrestin. However,
when compared to inactive/antagonized conformations
(Figures 4E, F), these active state-like conformations reveal how
these GPCRs interact with agonists and how this binding process
induces changes in receptor structure (Figure 5).

Generally, ATR and ETR agonists bind deep into an
extracellular cleft formed between the EL1–3 and the adjacent
TMs close to W6.48 (Figures 4, 5). The EL2, EL3, and the N-
terminus cover the ligand-binding pocket extracellularly for both
A

B

D

E

C

FIGURE 4 | Agonist-bound and apo-state conformations of ATRs and ETBR. (A) Diverse AT1R structures in the agonist-bound state are already available
(Table 1). The agonist [endogenous peptide agonist sequences are provided in (A1), including annotated disulfide bridges and conserved regions (colored
background)] is bound extracellularly between the ELs and their transitions to the helices (Figure 5). Several AT1R structures are stabilized intracellularly by a
bound nanobody (Table 1). The agonist-bound structures are not complexed yet with G-protein or arrestin. (B) The AT2R structures not only contain various
agonists but have been further stabilized in some cases with Fabs (fragment antigen binding), which bind on the extracellular side. (B1) For AT2R, intracellular
helix 8 has been observed to be directed inward to the transmembrane helix core and stabilizes the active state structure instead of a transducer protein like the
G-protein. Generally, helix 8 is oriented parallel to the membrane and outside the helical bundle in GPCRs. (C) The active state ETBR structure bound with ET-1
represents endogenous ligand binding, whereby the ligand is buried deep within the ligand-binding pocket (see Figure 5). The helical transition from EL2 to TM5
is kinked (red line) in contrast to the ATR structures. (D) Comparison with the ligand-free apo-state conformation highlights structural differences in the
extracellular region where the ligand is bound, mainly in TM6 and TM7, but also for EL2 (red arrows). A further difference is the helical transition between the N-
terminus and helix 1 in the apo-state structure compared to an unfolded transition in the ligand-bound structure. (E) Agonist-bound AT1R and AT2R receptor
conformations deviate from the inactive state structures in the intracellular orientation of TM6, but also relative spatial shifts are observed at the intracellular parts
of TM5 and TM7 (red arrows). For the AT1R, strong deviations in the H8 orientation are observable in dependency of the activity state. (E1) The structural
transitions between inactive and active state conformations are accompanied by re-organization of intramolecular interactions in the transmembrane helical core
(62), as visualized here exemplarily at amino acid residues in TM6 and TM7. This re-organization and subsequent new interactions are involved in maintaining
active state-like conformations.
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ETBR and ATRs (Figures 4A, 5A-A1). Receptor amino acids
participating in ligand binding are located mainly at the C-
terminal part of the receptor EL2, in TM2, TM6, and TM7
(Figures 5A, B). Further, direct interactions between the ligand
and the N-terminus can be observed (AT1R- b-arrestin biased
agonist TRV026 (PDB ID: 6os2) and ETBR/ET-3 (PDB ID: 6igk)
complexes, Figure 5B).

Although no structure is available for the ETAR yet, it can be
assumed that the binding mode of peptide-agonists at this
receptor should be in principle similar to the binding mode
observed at the agonist-bound ETBR structures. This hypothesis
is based on comparison between receptor amino acids that are in
direct contact to agonists (e.g. structure ETBR/ET-1, PDB ID:
5glh). Key contact (hydrogen bonds) amino acid residues from
the receptor to the ligand are for instance K161 (TM2), K182
(TM3), E236 (TM5), R343 (TM6), K346 (TM6), Y350 (TM6),
and they can be found also in the ETAR sequence at
Frontiers in Endocrinology | www.frontiersin.org 8
corresponding positions (K140, K166, E220, R326, K329,
Y333). Based on this circumstance and the high overall
sequence similarity of 62% between both receptor subtypes, it
can be expected that the identified ETBR structures can serve as
ideal templates to build ETAR homology-models. This is
supported by experimental studies providing overlapping
amino acids relevant for peptide-ligand binding (87). However,
elucidation of potential differences in ligand binding properties
(88), such as ligand affinity, definitely requires the determination
of ETAR structures and structural complexes.

Together with W6.48, hydrophobic amino acids in TM3 (e.g.,
at positions 3.32 and 3.36) form a hydrophobic pocket that
triggers receptor activation caused by endogenous ligand contact
with an aromatic moiety (66). As mentioned above, this
tryptophan is part of the CWxP6.50 motif that participates in
the activation mechanism of class A GPCRs. Superimposition of
ET-1 (bound to ETBR, PDB ID: 5glh) and Ang II (bound to
A B

D

C

FIGURE 5 | Details of agonist binding at AT1R, AT2R, and ETBR. (A) The ligands ET and Ang (or their derivatives) are bound mainly between the N-terminus, EL2,
and several transmembrane helices, whereby the ligand-binding cavity is embedded deeply toward the transmembrane helical core close to tryptophan W3666.48

(ETBR). This essential tryptophan is in direct contact with the ligand-binding site of all receptors and their endogenous peptides [also (B, B1, C)]. Of note, the
arrestin-biased angiotensin II analog TRV023 does not contact the W6.48 (B-B1) (magenta translucent circle). Many hydrophilic interactions between the receptors
and the peptides can be observed, whereby four positively charged lysines and three tyrosines play a fundamental role in the corresponding ligand-receptor
recognition in the ETBR/ET-1 complex. Generally, EL2, EL3, and the N-terminus cover the ligand-binding pocket [(A1), inner surface representation] extracellularly for
both ETBR and ATRs. Several structures reveal direct interactions between the ligand and the N-terminus, for example, in the AT1R- b-arrestin biased agonist
TRV026 (6os2) and ETBR- ET-3 (6igk) complexes. (A2) The bound peptide ET-1 in the ETBR (5glh) with superimposed non-peptidic antagonist bosentan (5xpr)
shows partially overlapping binding pockets close to W6.48. (C) Superimposition of ET-1 (bound to ETBR, 5glh) and Ang II (bound to AT1R, 6os0) reveal structural
differences between the ligands due to deviations in sequence composition and length (see also Figure 4A1); however, the C-terminally located aromatic residue in
both ligands is close to the highly conserved W6.48, which is part of the activation-related toggle switch motif in helix 6. (D) Non-peptide AT2R agonists as compound
1 (Table 1) are bound deep within the ligand-binding region. This section is also occupied by the endogenous peptide agonist Ang II, indicating a region highly
relevant for receptor activation. (D1) The non-peptide inverse agonist olmesartan for AT1R (4zud) is principally bound in the same region as the AT2R non-peptide
agonist compound 1 (5ung) with identical interactions to EL2. The different effects of these ligands are attributed to their detailed interactions in corresponding
receptors (not visualized in detail).
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AT1R, PDB ID: 6os0, Figure 5C) reveals structural differences
between the ligands due to strong diversity in their sequence
composition and length (Figure 4A1); however, the C-terminally
located aromatic residues in both ligands are close to the highly
conserved W6.48. Of note, the arrestin-biased Ang II analog
ligand TRV023 with a shorter C-terminus does not interact
with W6.48 (Figures 5B-B1), indicating selective receptor
activation-dependent on specific ligand features.

What else can be observed via a comparison of structures with
agonists vs. antagonists? Superimposing the structure of the
agonistic peptide ET-1 in ETBR with that of the non-peptidic
antagonist bosentan reveals a partially overlapping binding mode
in the vicinity of W6.48, indicating that this region is important for
receptor activation or inhibition of activation (Figure 5A2). In
addition, several positively charged lysines are essential for ET-1
binding to the receptor in the ETBR/ET-1 complex (Figure 5A).
These lysines are also key interaction partners for antagonist
binding (Figure 2E), suggesting the importance of the inhibitory
effect of antagonists on the binding of agonists. In the case of AT1R,
the non-peptide inverse agonist olmesartan (PDB ID: 4zud) is
bound in the same region as the AT2R non-peptide agonist
compound 1 (PDB ID: 5ung, Figure 5D1), including identical
interactions to the EL2. The different effects of these ligands can be
attributed to their detailed interactions in corresponding receptors,
namely an additional hydrogen-bond of the antagonist with a
tyrosine in TM1 and a contact of the agonist with W6.48, which is
blocked by a tyrosine in TM7 (Y2927.43) of the AT1R with an
inverse agonist.

Interestingly, a comparison of the ETBR/ET-1 complex with
the ligand-free apo-state conformation (Figure 4D) highlights
structural differences specifically in the ligand-binding region at
the extracellular ends of TM6, TM7, and in the EL2. Agonist
binding causes structural modifications in the extracellular part,
which, is, in strong contrast to observations from the comparison
between agonist-bound and inactive/antagonized structures by
antagonists (Figures 4E, E1). The agonist-bound structures of
AT1R and AT2R deviate from the inactive state structures in the
intracellular orientation of TM6 (shift of ~9Å), combined with
relative spatial shifts at the intracellular parts of TM5 and TM7
(Figure 4E). These structural transitions between inactive and
active state conformations are accompanied by re-organization
of intramolecular interactions in the transmembrane helical core
(62) (Figure 4E1).

As already noted, intracellular processes, such as G-protein
binding or arrestin interactions concomitant to receptor-agonist
complex formation, cannot yet be studied at available structures
(Table 1). Usually, these molecules contribute toward stabilizing
active state conformations. In the agonist-bound AT1R, a nanobody
instead stabilizes the active state conformation [Figure 4A (63)]
and, surprisingly, helix H8 is intracellularly directed inward to the
transmembrane helix core of AT2R and stabilizes the active state
receptor structure [Figure 4B1 (65)]. This non-canonical helix 8
orientation would impede binding of G-protein or arrestin and is
assumed to be related to the finding of G-protein independent
AT2R signaling (27–30). However, in a recent AT2R structure
complexed with Ang II a regular helix 8 orientation as known to
Frontiers in Endocrinology | www.frontiersin.org 9
be canonical in GPCRs is observed (PDB ID: 6jod (66), shown in
Figure 6), which evidences that this receptor can also adapt into a
conformation able to bind G-protein or arrestin.

In the agonist-bound ETBR structures (Table 1) without a
nanobody, G-protein, or an inside orientated helix 8, the TM6
orientation is similar as in the inactive state conformations,
whereby comparing the inactive state structure (PDB ID: 4zud)
with the active state conformation (PDB ID: 6do1) of AT1R, a
distance of intracellular TM6 of 9.4Å can be measured
(Figure 4E). Moreover, in AT2R structures bound with a
developed antibody Fab fragment without an intracellular
stabilizer (PDB ID’s: 5xjm, 6jod), the extent of TM6 movement
outside is smaller, only by approximately 7.8 Å compared to
inactive AT1R structures, which indicates that these structures
likely do not represent fully “active state conformations”.
ANTIBODY BINDING

The available AT2R-Fab complexes with Ang II or its derivative
[Sar1, Ile8]-AngII (64, 66) show a specific binding epitope of the Fab
fragment at the receptor, which is close to the ligand ‘core’ binding
region, although not overlapping. The Fab fragment (Fab4A03) acts
as a positive allosteric modulator without direct interaction with the
ligands but increases the affinity of both agonists (64). Such a
receptor/antibody interplay is known for many GPCRs (89).
Recently, a human antibody (Ab) against human ETAR that
exhibits antitumor potency has been published (90).
Autoantibodies (auto-Abs) directed against AT1R acting as
agonists or probably positive agonistic modulators inducing
pathogenic conditions have been demonstrated several times (22,
91–93) as in women with preeclampsia (21), or in patients with
acute vascular graft rejection (19, 94, 95). AT1R auto-Abs
association with clinical features has also been studied extensively
in the context of transplantation (96–100), or their effects on
angiogenesis in preeclampsia (101–103). Binding of activating
AT1R-Abs promotes specific downstream signaling via activation
of AT1R (19, 20); however, while Ang II binding to the receptor has
been already explored intensively (104–108), the binding mode(s)
between auto-Abs and receptors have not yet been determined.

Based on current literature, only AT1R auto-Abs from patients
with transplant rejection recognize epitopes that are located
primarily in EL2 (19, 21). Accordingly, the known crystallized
AT2R-Fab complexes (64, 66) (Table 1 and Figure 6) reveal that
EL2 is involved in binding, namely with residues E188, Y189, and
G191 located in the central EL2 (Figure 6). Furthermore, Y106
(backbone) and D109 in the receptor EL1 contribute to Fab
binding as well as Q37 and P39 (backbone) in the N-terminus.
This leads to the conclusion for ATRs that distinct receptor parts
can interact simultaneously with Fabs and agonistic ligands (Figs.
4–6), whereby the concrete binding sites are distinct as at the N-
terminus or EL2. This observation helps to explain how Fab
fragments or antibodies mediate positive allosteric effects on
signaling or directly trigger activation. The Abs may increase the
predisposition of the receptor to bind Ang by a direct structural
impact on the extended ligand-binding site (e.g., EL2), or/and
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increased signaling activity by bound Abs should lower the
energetic barrier for the endogenous ligand to further stimulate
the receptor. Of note, sequence comparison reveals that potential
binding sites for antibodies in the EL1, EL2, and N-terminus are
not conserved among ATRs and ETRs subtypes (Figure 1), with
only a few amino acids at corresponding positions identical. This
may support that so far known activating antibodies for both
receptor subtypes could recognize specific structural
conformations rather than binding-specific epitope residues at
the receptor, which is in principle known from antibody studies at
other proteins (109–111). However, different antibodies will bind
naturally in a variety of ways and may differ in their receptor
binding sites.
IMPLICATIONS FOR RECEPTOR
OLIGOMERIZATION AND
HETEROMER ARRANGEMENTS

The term oligomerization indicates dimeric, trimeric, tetrameric,
or higher-order complexes between GPCR protomers
(monomers) and has been reported for numerous GPCRs not
Frontiers in Endocrinology | www.frontiersin.org 10
only in vitro (112) but also in native tissues (in vivo) (113–115).
Homo- or hetero-oligomerization between single receptor
protomers are mostly not a prerequisite for class A GPCR
signaling capacity (116), but defines the spectrum of fine-
tuning options in signaling, as they can act as a functional unit
(117, 118). GPCR oligomerization has been reported for several
GPCR classes, such as for class A, class B, taste receptors (119–
121), or class D (122).

Dimerization describes interacting xGPCR/xGPCR
(homodimer) or xGPCR-yGPCR (heterodimer) constellations. For
defining relevant GPCR-GPCR dimers or oligomers, several aspects
are of significance, such as direct intermolecular side-chain
interactions or an impact on functionalities (e.g., expression,
internalization, signaling, ligand binding) compared to
monomeric receptors. In heterodimerization, GPCR expression in
the same cell type and cell compartment, as well as simultaneous
occurrence (time-dependent expression), are prerequisites (123,
124). A large amount of GPCR-GPCR protomer interfaces with
intermolecular interactions between single amino acids or between
several side chains have been reported under the involvement of
TM4 (125–127), TM1, and TM5-6 (128, 129). Studying the
available class A GPCR dimers in determined structures,
specifically the TM1-TM1/helix8-helix8 and the TM4-TM4/TM5-
A B

FIGURE 6 | AT2R in complex with an antibody Fab-fragment and Ang II [PDB ID: 6jod (66)]. (A) The receptor is presented as a backbone cartoon, the ligand and
the Fab are visualized with surfaces for clarity reasons. Amino acids involved in ligand and Fab binding are shown as sticks. Extracellular loops are colored red. (B)
Ang II is bound deep within the helical bundle. Significant interactions can be observed with helices TM2, TM5, TM6, and EL2 (M197 backbone, R182). EL2 is
involved simultaneously in Fab binding, namely with residues located in the central EL2 (E188, Y189, G191 backbone). In addition, Y106 (backbone) and D109 in the
receptor EL1, contacting the Fab as well as amino acids Q37, P39 in the N-terminus. R107 in the EL1 is an important stabilizer of this constellation by several H-
bonds to the transition between the N-terminus and TM1. The translucent-filled squares highlight distinguishable contact regions between the receptor with Fab and
the receptor with the ligand.
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TM5 interfaces, occur often (130). However, different oligomer
GPCR interfaces for homo- and heterodimers can be assumed,
whereby likely no universal interface exists. Supposedly, receptor
interfaces are of dynamic character (131) and GPCRs are expressed
as a mixture of monomers and homomers, whereby the two forms
may interconvert dynamically (132). Several examples demonstrate
that GPCR oligomerization can have a major impact on the
signaling properties of interacting protomers, e.g., in ligand
binding (133, 134), G-protein coupling specificity, and signal
transduction mechanisms (114), or cell surface expression (135).
In the event of a direct mutual effect of GPCRs organized in dimeric
arrangements, a horizontal allosteric impact on each other, either
positively or negatively, may occur (136).

For the ATRs and ETRs, a tremendous set of information is
available, supporting a wide spectrum of oligomer formations. As
exemplarily summarized from literature databases and a direct
collection of GPCR oligomers (GPCR Interaction Network,
http://www.gpcr-hetnet.com (137)), the following oligomers
have been reported for ATRs or ETRs:

• AT1Rwith PAR1 (138), mOR (139), prostaglandin F2aR (140),
ETBR (141), RXFP1 (in vivo (142, 143)), ADRB2 (144), AT2R
(145), CB1R (146), secretin receptor (SCTR, class B) (147),
bradykinin B2R (148);

• AT2R with AT2R (149), bradykinin B2R (150);
• ETBR with D3R (151), ETAR (56, 152–154); and
• ETAR with µOR (155).
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Oligomerization of wild-type and a non-functional AT1R
mutant inhibits Gaq-mediated signaling but not ERK
activation, supporting a functional influence of a homo-
oligomerization (156). Aldosterone-related effects activate
AT1R and AT2R hetero-dimerizations (149), altering trafficking
and arrestin recruitment profiles (145). Further functional effects
reported to be associated with homo- or heterodimerization are,
for example, transactivation and synergism [AT1R with PAR1
(138)], altered expression levels for AT1R - ETBR heteromers
(141), or ATRs with RXFP1 show functional crosstalk in
myofibroblasts (142, 143). AT2R heterodimerization with
bradykinin B2R (150) has a strong impact on the signaling
outcome and amplitude (NO production). ETBR-ETAR
heterodimers are modified in internalization rates compared to
the homo-dimerization of the wild-type receptors (152).

To date, only one report on the AT1R homodimer structure
exists [PDB ID: 6do1 (62)]. The interface between the single
protomers is constituted by hydrophobic and aromatic amino
acid side chain contacts at EL1, TM1, TM2, TM3, and helix 8
(Figure 7A). Interestingly, this dimer is in an active state
conformation, bound with an Ang II analog and with
intracellularly stabilizing nanobodies at each protomer. The
observable interface in the AT1R dimer is in agreement with
interfaces in many other GPCR dimers (157), which might imply
relevance also in vivo to cause a mutually allosteric (158) functional
impact on ligand binding capacities or internalization rates.
However, other interfaces were studied and recently proposed by
A B

FIGURE 7 | Dimer arrangement of the active state AT1R bound with an Ang II analog and nanobodies. (A) The complex between the Ang II analog, AT1R, and
active state stabilizing nanobodies has been crystallized as a homodimer [PDB ID: 6do1 (62)]. The interface between the protomers is constituted by hydrophobic
and aromatic amino acid side chain contacts at EL1 (M90, F96), TM1 (F55, intracellularly), TM2 (Y99), and helix 3 (L100). (B) In a putative scenario of a dimeric
receptor arrangement with antibody binding at one protomer, the Fab fragment should also simultaneously contact the second receptor protomer. For this model,
the AT2R structure (6jod), with and without a Fab, were arranged together as suggested by the AT1R homodimer.
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atom molecular dynamics simulations (159), which is in line with
the assumed multitude of feasible GPCR oligomer arrangements.

As exemplified in Figure 6B in a dimeric receptor formation, a
bound antibody at one protomer should simultaneously contact the
second protomer (Figure 7B). This should be the case for
homodimers of AT1R (156), AT2R (149), or heterodimers of
ATRs (145) and ETRs (56, 141), which are known to be occupied
endogenously by antibodies under pathogenic conditions (160,
161). As already mentioned above, an AT2R/Ang II analog
complex was co-crystallized with a Fab. This Fab acts as a
positive allosteric modulator (64), which might also be related to
observed dimeric receptor constellations or might have
consequences on the functional reactivity of receptor dimers.

Finally, if homo- or heterodimeric ATR and ETR arrangements
are of functional and physiological relevance, pharmacological
interventions may (must) target or consider these oligomers,
especially with the aim of circumventing adverse effects mediated
by allosteric heterodimer actions. Correspondingly, if the large
number of putative heterodimers between ATRs/ETRs and other
GPCRs are functionally relevant in vivo, any pharmacological
intervention at their interaction partner should also have an
impact on both receptor subtypes (ETR, ATR), which might be
registered medically as unwanted adverse effects. Pharmacological
strategies may profit from homo- or heterobivalent ligands
specifically entering GPCR dimers (162, 163) in diverse ligand
constellations, e.g., as bitopic and dualsteric ligands (164).
CONCLUDING REMARKS

As summarized in this short review, an enormous amount of
structural-functional information on ATRs and ETRs is available,
with a clear boost on structure determination since 2015. These
structures provide details and general insights into mechanisms of
activation and features of nonactive or inactive states. An advantage
of the high number of solved structures is the resulting capability for
comparison, including diversities in ligand binding, and to study the
spectrum of possibilities in structural arrangements, e.g., helix
conformations or dimer formation. However, several gaps in
knowledge are evident, with primary emphasis on not yet
determined ETAR structures and missing structural information
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on G-protein or arrestin binding. Moreover, reflecting the high
number of GPCR heteromer reports for ATRs and ETRs with
functional impact, it also appears necessary to intensify further
means of exploring ways to elucidate heteromer arrangements, both
structurally and functionally for these receptors and binding
partners. In addition, this is an area of utmost pharmacological
importance (165, 166) and, therefore, must be of structural interest,
especially given the increasing possibilities in the determination of
complex structures (167). Finally, the relevance of autoantibody
binding to both receptor groups require questions on antibody
binding and its functional significance to be explored in-depth,
intending to use improved understanding to tailor the design of
optimal ligands useful for pharmacological intervention strategies or
to recruit these receptors (as monomers or dimers) as hubs for
precisely sought specific responses.
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