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Abstract

Unless the targeted mesh is developable, metric distortion is inevitable during the process

of surface mesh parameterization, thus one important objective of all involved parametric

studies is to reduce the metric distortion. In order to further reduce area and angle distortion,

a novel method of boundary-free mesh parameterization is presented in the paper. Firstly,

the initial boundary-fixed conformal parameterization from 3D surface mesh patch to a

plane is performed in the method. Then, based on the initial parameterization, the iterations

of boundary-free quasi-harmonic parameterization are developed, where the tensor field is

updated in each iterative step and the principal curvature direction is utilized to terminate the

iteration. The solution of the novel method is convenient to calculate since it involves a

series of linear systems. In our novel parameterization method, lower metric distortion and

considerable efficiency have been obtained in experiments.

Introduction

3D surface mesh parameterization is an important topic in in mechanical engineering

research. Many computer-aided applications (such as mesh processing in reverse engineering,

mesh generation of finite element analysis and finite element simulation) that are commonly

used are based on mesh parameterization. Therefore, with the development of the computer

industry, It is more and more important to find a good parameterization method. [1].

Mesh parameterization involves computing the mapping between a triangulated mesh sur-

face and certain parametric domain. It is well known that, unless the targeted surface mesh is

developable, mesh parameterization inevitably incurs some metric distortions in both angle

and area. Therefore, to find the parameterization which preserves the geometric properties of

original 3D mesh as much as possible, that is, to try to reduce angle and area distortion, it has

been the major aim of mesh parameterization since its appearance. There are two types of

mesh parameterization goals: authalic (area-preserving) mapping and conformal (angle-pre-

serving) mapping. The construction of conformal (angle-preserving) parameterization is rela-

tively easy to solve. In fact, the construction of authalic (area-preserving) parameterization

which is general to reduce area and angle distortion is still a challenging problem and the

PLOS ONE | https://doi.org/10.1371/journal.pone.0217537 June 6, 2019 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Duan L, Luo X, Ruan L, Gu M (2019)

Novel method of boundary-free mesh

parameterization. PLoS ONE 14(6): e0217537.

https://doi.org/10.1371/journal.pone.0217537

Editor: Fang-Bao Tian, University of New South

Wales, AUSTRALIA

Received: June 12, 2018

Accepted: May 14, 2019

Published: June 6, 2019

Copyright: © 2019 Duan et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The work was supported by the National

Key Instrument and Equipment Development

Projects. China (Grant NO.2013YQ030629). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0001-7441-5266
https://doi.org/10.1371/journal.pone.0217537
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217537&domain=pdf&date_stamp=2019-06-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217537&domain=pdf&date_stamp=2019-06-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217537&domain=pdf&date_stamp=2019-06-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217537&domain=pdf&date_stamp=2019-06-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217537&domain=pdf&date_stamp=2019-06-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217537&domain=pdf&date_stamp=2019-06-06
https://doi.org/10.1371/journal.pone.0217537
http://creativecommons.org/licenses/by/4.0/


previous involved methods are all non-linear calculations. Compared with non-linear ones,

linear methods are preferred in parametric studies for the reason that they have shorter run-

ning time and smaller implementation complexity.

Surface mesh parameterization emerged in early years of 1990s. Detailed reviews of mesh

parameterization are referred in the relevant comprehensive references[2,3,4,5]. We con-

cerned merely the most relevant work of mesh parameterization in the paper. In mesh parame-

terization, the set boundary shape of the parametric domain has a significant influence on

metric distortion. It is crucial to take the boundary shape into account in the setup process of

parameterization. There are two types of the mesh parameterization methods: boundary-fixed

ones and boundary-free ones. Compared with that with constrained boundary, mesh parame-

terization with free boundary could achieve better results for its lower metric distortion. In

this paper, we consider boundary-free parameterization to parameterize a surface mesh patch

with a disk topology onto a plane without constrained boundary.

In boundary-fixed parameterization, the angle and area distortion is considerable due to

constraint of fixed boundary. Furthermore, boundary-fixed parameterization is far away from

isometric for reason that it’s merely guaranteed to be as conformal as possible. To further

reduce metric distortion and improve parameterization, the most straightforward method is to

release boundary constraints of parametric domain. At present, the fixed boundary parameter-

ization method of spherical parameterization has obtained better effect. Chao Peng et al. intro-

duced an efficient method to establish surface correspondences between genus-zero triangle

meshes and animate a morph between them[6]. Xin Hu et al. presentd a practically robust

approach to compute high-quality spherical parameterizations with bijection and low isomet-

ric distortion[7]. Choi et al. proposed a fast algorithm to compute the optimized spherical har-

monic parameterization with consistent landmark alignment[8], also, they proposeed an

iterative scheme called the north-south reiteration for achieving a spherical conformal parame-

terization[9]. Although they had addressed similar issues as those presented in our method in

distortion reduction, because they were not a very suitable parametric domain for surface

models, they were not able to get the ideal parameterized result. Through the constructive defi-

nition of the general convex space of piecewise linear mapping, Lipman guaranteed the largest

conformal distortion and the local and global injection of their mappings. This method

showed how common geometric processing objective functions can be restricted to these new

spaces, rather than the entire spaces of piecewise linear mapping, to provide a bounded version

of the popular algorithm[10]. In [11], Aigerman and Lipman developed an algorithm for com-

puting bounded distortion mapping in 3D. The algorithm can be applied for parameterizing

meshes to the 2D planes or polyhedrons. By growing “virtual boundary” which absorbed the

distortion partly induced by the boundary, Lee et al. embedded the surface mesh patch into an

increasing larger planar patch[12]. In addition, a non-linear method was presented, which

combined virtual boundaries with scaffolding triangles to achieve parameterization with par-

tial free-boundary[13]. Besides, other certain parameterization methods were presented whose

boundary conditions only required fixing (at least) two boundary vertices[14,15].

Boundary-free parameterization is superior to boundary-fixed parameterization on both

area-preserving and angle-preserving, since it runs without any constraints on the boundary.

The most prominent method of boundary-free parameterization is the angle based flattening

(ABF) which formulated the problem as a constrained non-linear optimization of angles[16].

ABF generates conformal mappings with great computational complexity, and it has been fur-

ther developed, e.g. its efficient and robust optimization: ABF++[17]. In spite of the improved

efficiency, the calculation of ABF++ is same as non-linear of ABF, hence later a complete

reconstruction of ABF emerged which possessed the linear solution marked as LABF[18]. Liu

et al. proposed a local/global linear boundary-free method, which was different from

Boundary-free mesh parameterization
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conventional ones to map the entire vertices on the surface mesh patch on plane, and it param-

eterized all the triangles on a surface mesh patch onto a plane and tried to force each 2D trian-

gle of the parameterized patch to be an version of its 3D counterpart as similar as possible[19].

By finding the largest eigenvalue/eigenvector of a sparse symmetric matrix, Mullen et al. pre-

sented a spectral method to obtain automatically boundary-free conformal parameterization

of surface mesh patch, where high-quality parameterized results were achieved [20]. With the

help of the distance from a centre vertex to all the boundary vertices, Jun-jie C. et al. proposed

a simple and fast method of measured boundary-free parameterization to achieve the goal of

minimizing the conformal distortion[21].Lam et al. presented a variational algorithm to com-

pute the optimized quasi-conformal parameterization with controllable area distortions by

controlling the Beltrami coefficient to guarantee the conformality of the parameterization[22].

The quasi-conformal parameterization (QCMC) is one of iterative algorithms, which can

simultaneously search for the conformal module and the optimal quasi-conformal parameteri-

zation by minimizing the Beltrami energy with the conformal module of the parameter

domain incorporated[23].T-Map is the latest and most effective way to compute conformal

parameterization. An efficient iterative algorithm (QCTM), called the quasi-conformal itera-

tion, was proposed to compute a unique T-Map between two surfaces which minimizes the

maximal conformality distortion[24,25]. For the same purpose, another iterative algorithm

was proposed to compute the extremal T-Map using the Beltrami holomorphic flow (BHF)

which produces a sequence of quasi-conformal mappings converging to the T-Map to mini-

mize the conformality distortion[26].

Listed above boundary-free parameterization methods are targeted to be as conformal as

possible, whose angle-preserving effects are obviously better than boundary-fixed ones. But

they didn’t consider the authalic issue, and their effects of area-preserving are dissatisfied in

general. Discrete tensorial quasi-harmonic parameterization premeditates area-preserving on

basis of conformal issue, which is a significant kind of method resulted in both angle-preserv-

ing and area-preserving performance[27,28]. It relies on the linear operator to capture parame-

ter distortion in the form of local deformation tensors which are used as guiding fields in a

manner similar to the Poisson equation setting. In fact, it tries to reduce the distortion of an

initial boundary-fixed parameterization by further computing a plane-to-plane parameteriza-

tion which reproduces a Jacobian as close to the Jacobian of initial parameterization as

possible.

Inspired by applications in mesh parameterization, Claici et al. presented a new precondi-

tioning technique for large-scale geometric optimization problems [29]. Kovalsky et al. pre-

sented the Accelerated Quadratic Proxy (AQP)—a simple first order algorithm for optimizing

geometric energies defined over triangular and tetrahedral meshes[30].These two methods

have a great contribution in accelerating the parameterization process. Inspired by these meth-

ods, we have added a method of energy minimization to the method in this paper, the solution

of the novel method involves a series of linear systems, which facilitate calculation and improve

efficiency.

Dong et al. developed a iterative method to compute a boundary-free quasi-conformal

parameterization, which fitted the parameter coordinate gradients to two orthogonal guiding

vector fields with equal magnitude[31]. Motivated by the methods in [28] and [31], a novel

boundary-free parameterization method to parameterize a surface mesh patch with a disk

topology onto plane is presented in the paper which may be considered as an improved version

of parameterization methods in [28] and [31]. Our method whose key-point was iterative, sub-

stantially the same as the method in [28], was to find a most isometric parameterization, and

we took the method from [28] and extended it with the guiding fields idea from [32]. Com-

pared with previous boundary-free parameterization methods, our method could obtain a

Boundary-free mesh parameterization
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considerable efficiency and achieve more isometric results which have lower area and angle

distortion by running the iterations which set the different local correctional tensors in each

iterative step. n

The remainder of the paper is organized as follows. Section 2 states the involved background

knowledge. Section 3 describes the novel method. Section 4 introduces setting of differential

operators of our method. Section 5 elaborates our method in detail. Section 6 outlines the exper-

iments and the discussion about several mesh models. The paper is concluded in section7.

Background knowledge

A parameterization is usually generated with boundary restrictions. Given appropriate Dirich-

let condition on the boundary, the resulting parameterization is guaranteed to be a one-to-one

mapping. For example, as the parameterized domain is restricted within a planar unit circle,

the Dirichlet condition on the boundary is

u2 þ n2 ¼ 1:

When computing the parameterization, the system of solution must consist of the regular solv-

ing system and a restricted equation

u2 þ n2 � 1:

However, the novel parameterization method in the paper is a free boundary, so there is no

need to consider Dirichlet boundary condition when computing the parameterization.

The goal of the paper is to calculate the boundary-free parameterization which maintains

angle-preserving and area-preserving (i.e., isometric) as much as possible. Relying on certain

knowledge of metric distortion, conformal parameterization and quasi-harmonic parameteri-

zation, our parameterization method was developed

Conception of metric distortion in parameterization

To better understand metric distortion in parameterization, let us see what happens to the sur-

face point f(u,v) as we move a tiny little away from (u, v) in the parameter domain. If we denote

this infinitesimal parameter displacement by(Δu,Δv), then the new surface point f(Δu,Δv) is

approximately given by the first order Taylor expansion f of f around (u,v),

~f ðuþ Du; nþ DnÞ ¼ f ðu; nÞ þ fuðu; nÞDuþ fvðu; vÞDv:

This linear function maps all 3D-surface points in the vicinity of w = (u,v) into the tangent

plane Tp at 3D-surface point p = f(u,v)2S and transforms circles around w into ellipses around

p (Fig 1). The latter property becomes obvious if we make the Taylor expansion more compact

as

~f ðuþ Du; vþ DvÞ ¼ pþ Jf ðsÞ
Du

Dv

 !

;

where Jf = (fu fv) is the Jacobian of function f, i.e. the 3×2 matrix with the partial derivatives of f
as column vectors. Then using the singular value decomposition of the Jacobian,

Jf ¼ USVT ¼ U

s1 0

0 s2

0 0

0

B
B
@

1

C
C
AVT;
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with singular values σ1�σ2>0, orthonormal matrices U2R3×3 and V2R2×2 with column vectors

U1, U2,U3, and V1,V2 respectively.

The transformation of circles into ellipses is called metric distortion of the parameterization

as it shows how f behaves locally around some parameter point w2O and the corresponding

surface point p = f(w)2S. All information about the metric distortion is hidden in the singular

values σ1 and σ2. If both values are identical, then Jf is just a rotation plus uniform scaling and f
does not distort angles around w, we say that f is angle-preserving, i.e. conformal; if the prod-

uct of the singular values is 1, the area of any circle in the parameter domain is identical to the

area of the corresponding ellipse in the tangent plane and we say that f is locally area-preserv-

ing, i.e. authalic.

We now summarize the main properties that the parameterization can have locally:

f is isometric or length-preserving, σ1 = σ2 = 1,

f is conformal or angle-preserving, σ1 = σ2,

f is authalic or area-preserving, σ1σ2 = 1.

Obviously, any isometric mapping is conformal and authalic, and every mapping that is

conformal and authalic is also isometric, in short,

Isometric, conformal + authalic.

In the process of obtaining the optimal parameter, it is necessary to construct an energy

function to measure the size of the parameterized metric distortion, and minimize the energy

functional. This idea is similar to [33].The most common and classical energy function in

mesh patch parameterization is the Dirichlet function[34]:

ED ¼
1

2

R

Mkruk2
þ krvk2

:

Knowledge of conformal parameterization

In the past two decades, surface conformal parameterization has been widely studied[35].

According to boundary constraint, There are two types of conformal parameterization: bound-

ary-fixed and boundary-free. Boundary-fixed conformal parameterization attains the mini-

mum of the quadratic Dirichlet energy:

ED ¼
1

2

R

Mkruk2
þ krvk2

;

whose solution is the root of the Laplace equations[1] (for specific principles, please refer to

Fig 1. First order Taylor expansion ~f of the parameterization f.

https://doi.org/10.1371/journal.pone.0217537.g001
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the literature [32]:

Du ¼ 0

Dv ¼ 0
:

(

Constrained by the piecewise-linear representation of the solution, boundary-fixed parame-

terization is far from the actual conformal demand. For more details on constrained mesh

parameterization, please refer to the literature [36]. Thus further exploration on boundary-free

has been carried on as follows.

It is wished to find an ideal pair of parametric coordinate functions(u, v):V!R2 with the

property that

ru ¼ Rrv; ð1Þ

where the operator R denotes a counter-clockwise rotation of 90ºaround the surface outward

normal. This is just one representation of the well-known Cauchy-Riemann equation which is

the necessary and sufficient condition to be conformal completely on parameterization[31].

For a surface mesh patch, no such piecewise-linear parameterization with complete conform-

ality exists unless it is developable. In practice, thus a parameterization tends to be found

which is as conformal as possible, in other word that the parameterized coordinate functions

(u,v) would like to be searched that be as far as possible to meet Cauchy-Riemann Eq (1).

Therefore, the following solution for (u,v) is proceeded.

It is trivial to find two vector fields(g1,g2):F!R3, where g2 = Rg1. The targeted coordinate

functions(u,v) would like to be found whose gradient fields approximate most closely to the

guiding vector fields(g1,g2):

min
ðu;vÞ

R

Mkru� g1k
2
þ kru � g2k

2
ð2Þ

In effect, it is just the boundary-free conformal parameterization that attains the minimum

of the quadratic Dirichlet energy without boundary conditions:

ED ¼
1

2

R

Mkru� g1k
2
þ krn � g2k

2
:

It is well known that the optimization variational problem formed as formula (2) may be

solved by Poisson equations:

Du ¼ divg1

Dn ¼ divg2

; ð3Þ

(

where g1 and g2 are a pair of guiding vector fields[18].

Knowledge of quasi-harmonic parameterization

Quasi-harmonic parameterization was claimed to find a most isometric map. In fact, it is a

map from a plane to another plane, and proceeds as a further procedure after initial conformal

parameterization from 3D mesh to the plane.

Discrete tensorial quasi-harmonic parameterization attempts to reduce the metric distor-

tion by minimizing the quasi-harmonic energy:

EOH ¼
R

MðCruÞ ruþ ðCrvÞ rv;

where the tensor field C is determined as follow: Given an initial convex boundary-fixed

Boundary-free mesh parameterization
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conformal parameterization, such a 2×2 tensor

Cj ¼ ðJ
T
j JjÞ

1
2

of per triangle j in M is defined, where Ji denotes the 3×2 Jacobian of the initial conformal

parameterization.

The partial differential solution associated with minimizing the quasi-harmonic energy EOH

is an alignment quasi-harmonic equations:

divðCgraduÞ ¼ 0

divðCgradvÞ ¼ 0
:

(

Quasi-harmonic parameterization establishes plane-to-plane map which mimic the original

3D-mesh shape not only in angle but also in area for the reason that C captures the properties

of Jacobian of the initial boundary-fixed conformal parameterization.

Building upon the Poisson setting in boundary-free conformal parameterization, quasi-har-

monic parameterization is easily extended to boundary-free case which is achieved by applying

its variant:

divðCgraduÞ ¼ divg1

divðCgradvÞ ¼ divg2

;

(

where g1 and g2 are the pair of guiding vector fields.

Description of novel method

Our novel boundary-free parameterization method would result in an isomorphic planar

mesh U (whose vertices set has vertices each with 2D coordinates(u,v)) mapped from a given

surface mesh patch M(whose vertices set V has vertices each with 3D coordinates(x,y,z)) with a

disk topology.

Our method consists of two steps: initial boundary-fixed conformal parameterization and

boundary-free quasi-harmonic parameterization. Our method flow is illustrated in (Fig 2).

The first step, initial boundary-fixed conformal parameterization, is expressed in form of

divðruÞ ¼ Du ¼ 0

divðrnÞ ¼ Dn ¼ 0

(

as described in section 2, which is the base and pre-step of our novel method. In above formu-

las, the unknowns are the result parameterized coordinates (u,v) of all mesh vertices on plane

O; the known items are the 3D coordinates (x,y,z) of all mesh vertices on the original surface S.

Fig 2. Novel method flow.

https://doi.org/10.1371/journal.pone.0217537.g002
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A series of linear equations corresponding to all mesh vertices for u and v could be solved, thus

obtaining parameterized result coordinates (u, v) for all vertices.

The later step, boundary-free quasi-harmonic parameterization, is iterative and the key to

our novelty. It is expressed in form of

divðCruÞ ¼ divg1

divðCrnÞ ¼ divg2

;

(

where g1 and g2 are the pair of guiding vector fields, C is the sense as explained in section 2.3.

Similar as initial boundary-fixed conformal parameterization, the solution process of bound-

ary-free quasi-harmonic parameterization is also to solve a series of linear equations corre-

sponding mesh vertices.

Setting of differential operators

In conformal parameterization, the differential operator is div(gradu) and div(gradv) (namely

Δu and Δv), while in quasi-harmonic parameterization, the differential operator is div(Cgradu)

and div(Cgradv). We take div(gradu) and div(Cgradv) as examples to clarify issues related to

later content. The 2×2 tensor C is piecewise-constant in the surface mesh patch which captures

the properties of the Jacobian of the initial boundary-fixed parameterization, and it is constant

in each triangle j of the mesh remarked as

Cj ¼ ðJ
T
j JjÞ

1
2:

On the right side of system (3), the divergence of the vector field g(i.e., g1 or g2)at a vertex

i2V is given as:

divg2 ¼
X

ðj;kÞ2Lki

g � Rejk;

here eik is a edge vector of the mesh and Lki is the link of vertex i—the set of all edges con-

nected to vertex i, as shown in (Fig 3A). The Laplace operator Δu of vertex i on surface mesh

patch is discretized as a linear system formed as:

divi ¼ Diu ¼
X

j2Ni

wijðui � ujÞ

where wij = 0.5×(cotα+cotβ), Nj is the set of all vertices connected to i, and α,β are the two

opposite angles of edge (i,j) on the triangle mesh (Fig 3B)[37].

As for the quasi-harmonic differential operator, it is marked as divi (Cgradu) and divi
(Cgradv) on vertex i of surface mesh patch. It could also be represented as a linear system,

Fig 3. Edges & angles in link of vertex i. (A) Edges in link of vertex i (B) Angles in link of vertex i.

https://doi.org/10.1371/journal.pone.0217537.g003
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formed as:

diviðCgraduÞ ¼
X

j2Nj

wij
0ðui � ujÞ

(with regard to parameter u), where wij
0 is interpreted as follows.

Referring to (Fig 4), the coefficient wij
0 on edge {i,j} is composed of two half-edge coeffi-

cients wij┴j-10 and wij┴j0, that is, wij
0 = wij┴j-10+wij┴j0. The half-edge coefficient wij┴j0 is given

as:

wTj
0

ij ¼
x?jþ1;j � ðCjx?i;jþ1

Þ

4Aj
;

where x┴i,j+1 refers to the vector of planar 2D edge vector xi,j+1 rotated by π/2 in its plane and

Aj is the area of triangle Ti = {i,j,j+1}. Thus coefficient wij
0 is expressed as

wij
0 ¼

x?j� 1;i � ðCj� 1x?j;j� 1
Þ

4Aj� 1

þ
x?jþ1;j � ðCjx?i;jþ1

Þ

4Aj
: ð4Þ

Novel method details

The process of the conformal parameterization method in [31] is iterative. Similarly, the major

of our method is iterative, yet the effect of our method is sounder a lot due to involving bound-

ary-free quasi-harmonic parameterization. In addition, by associating the principal directions

on vertices of original 3D mesh with termination condition of iteration, the parameterization

results of our method would be further maintain area-preserving and angle-preserving. Our

method has been proven in experiments, and its effect is superior to other previous methods

for its effective improvement brought from the developed iterations.

The two steps, initial boundary-fixed conformal parameterization and boundary-free

quasi-harmonic parameterization, are proceed sequentially in our method.

Fig 4. Illustration of coefficients of linear system of quasi-harmonic operator.

https://doi.org/10.1371/journal.pone.0217537.g004
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Initial boundary-fixed conformal parameterization

The initial boundary-fixed conformal parameterization is the mapping m from 3D surface mesh

to plane shown in (Fig 5). On basis of the result parameterization coordinates (u,v) of the initial

parameterization on each vertex of the mesh by solving Laplace equations, further measures

could be obtained that the Jacobian J of the parameterization of each triangle in the mesh patch:

J ¼

@x
@u

@y
@u

@z
@u

@x
@v

@y
@v

@z
@v

0

B
B
@

1

C
C
A

T

;

the initial gradient fields

(
r0u ¼

 
@u
@x

@u
@y

@u
@z

!T

r0v ¼
@v
@x

@v
@y

@v
@z

!T ; 

and the tensor fields Ci = (JiTJj)1/2. In the parameterization, the three measures are constant on

each triangle of the mesh (i.e., piecewise-constant on the mesh) and would be used in the subse-

quent procedure of our method.

Boundary-free quasi-harmonic parameterization

Following the initial boundary-fixed conformal parameterization, the boundary-free quasi-

harmonic parameterization, which is in essence the mapping f from a planar mesh patch to

another shown in (Fig 6), is carried out as the major and innovation part of our method.

Fig 5. Illustration of the initial boundary-fixed conformal parameterization.

https://doi.org/10.1371/journal.pone.0217537.g005

Fig 6. Illustration of boundary-free quasi-harmonic parameterization.

https://doi.org/10.1371/journal.pone.0217537.g006
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The solution of the boundary-free quasi-harmonic parameterization is the system of partial

differential equations:

divðCgraduÞ ¼ divg1

divðCgraduÞ ¼ divg2

; ð5Þ

(

where g1 and g2 are the pair of guiding vector fields. We would like to improve it into an itera-

tive procedure as our innovation.

Firstly same as the boundary-free conformal parameterization in [31], to ensure the param-

eterization to be as conformal as possible, we would like to find two guiding vector fields to be

orthogonal with equal magnitude everywhere: g1,g2:F!R3,g2 = Rg1. Given the gradient fields

r0
u andr0

v of the initial boundary-fixed conformal parameterization, we could construct the

two guiding vector fields g1,g2,g2 = Rg1, which is expressed by system (6) and illustrated in (Fig

7).

g1 ¼
1

2
ðr0u � Rr0vÞ

g2 ¼
1

2
ðr0uþ Rr0vÞ

: ð6Þ

8
>><

>>:

According system (6), the divergences of the two guiding vector fields g1 and g2 are obtained

as

divig1 ¼
1

2
r0u �

X

ðj;kÞ2Lki

ðv0

k � v0

j Þ
� �

divig2 ¼
1

2
r0vþ

X

ðj;kÞ2Lki

ðu0

k � u0

j Þ
� � :

8
>>>><

>>>>:

Fig 7. Illustration of constructing two guidance vector fields from two initial vectors.

https://doi.org/10.1371/journal.pone.0217537.g007
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Thus system (5), the solution of boundary-free quasi-harmonic parameterization, turns out to

be

diviðCgraduÞ ¼
1

2
diviðgraduÞ �

X

ðj;kÞ2Lki

ðn0

k � v0

j Þ
� �

diviðCgradnÞ ¼
1

2
diviðgradvÞ þ

X

ðj;kÞ2Lki

ðu0

k � u0

j Þ
� � ; ð7Þ

8
>>>><

>>>>:

where the tensor fields Ci = (JiTJj)1/2 are obtained from the result of initial boundary-fixed con-

formal parameterization. According to the aforementioned formula:

diviðCgraduÞ ¼
X

j2Ni

wij
0ðui � ujÞ

and

diviðgraduÞ ¼ Diu ¼
X

j2Ni

wijðui � ujÞ;

the parameterization results on vertex i, i.e(ui,vi). that the coordinates, would be obtained by

carrying out system (7). For a surface mesh patch with n vertices, this would give two n×n
sparse linear systems: one for u and one for v.

Compared with the quasi-harmonic parameterization method in [28],the effect of this one-

time boundary-free quasi-harmonic parameterization has been improved a lot. Due to the

introduction of the guiding vector fields

g1 ¼
1

2
ðr0u � Rr0vÞ

g2 ¼
1

2
ðr0vþ Rr0uÞ

;

8
>><

>>:

which makes the parameterization more conformal, the parameterization results with less

angle distortion could be obtained which further correspond to the geometry of original 3D

mesh.

Iterations in novel method

In practice, however the above one-time solution of boundary-free quasi-harmonic parameter-

ization could not meet the required accuracy (i.e., degree of corresponding to the geometry of

original 3D mesh) and efficiency (i.e., degree of reducing computational complexity and run-

ning time) of the parameterization, thus a new iterative solution was developed to further

reduce the metric distortion and improve the efficiency. Inspired by the principle of Seidel

iteration in Numerical Analysis, we constructed iterations in our method.

The linear system (7) could be transformed to be an iterative form as system (8) (where the

superscript m denotes the number of iterations) for achieving better parameterization results

with gradually less angle and area distortion along with deepening of the iterations. The tensor

field C is involved in the iterative process of system (8), and is updated in each step of the itera-

tions, thus obtaining the increased isometric parameterized coordinates (u,v) step by step. In

fact, each iterative step in system (8) plays the same role but with better effect as the later step

of the boundary-free conformal parameterization method in [28]. For the timely updated ten-

sor field C in the iterations, the better effect of our method is obtained. Due to its many itera-

tive steps, our method has much more running time than the one-time running method in
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[28], thence it possesses the more effective parameterization results. The solution of iterative

system (8) is a series of sparse linear systems, each of which is similar to system (7), linear and

convenient to calculate.

diviðCmþ1gradumþ1Þ ¼
1

2
diviðgradu

mÞ �
X

ðj;kÞ2Lki

ðnmk � vm
j Þ

� �

diviðCmþ1gradnmþ1Þ ¼
1

2
diviðgradv

mÞ þ
X

ðj;kÞ2Lki

ðum
k � um

j Þ
� � : ð8Þ

8
>>>><

>>>>:

The iterative method of boundary-free parameterization in [31] is just to make parameteriza-

tion angle-preserving as close as possible. Iterations of the method in [31], each of which fed

merely angle distortion of previous iterative step back to current iterative step using Poisson equa-

tion, are fundamentally different from ours in the novel method. However, iterations in our

method are to feed both angle and area distortion of previous iterative step back to current itera-

tive step, so the boundary-free parameterization in our method is as conformal and authalic as

possible. Therefore, our method has less metric distortion in parameterization and the results are

more effective than those of the iterative method in [31]. The basic idea of QCTM method[24] is

to represent the set of diffeomorphisms using Beltrami coefficients (BCs) and look for an optimal

BC associated with the desired T-Map to minimize the maximal conformality distortion. The

associated diffeomorphism can be efficiently reconstructed from the optimal BC by using the lin-

ear Beltrami solver (LBS). But the iterations of QCTM concern merely also on conformality while

not a little on authalic, its authalic effect is better a lot but the conformal effect is just passable.

We designed the termination criterion of our iterations as following. It is well known that

the existence of metric distortion in parameterization means that there is a geometrical differ-

ence between the result 2D mesh of parameterization and the original 3D mesh. Therefore to

minimize the metric distortion of parameterization in our method, we would like to have the

parameterized coordinates (u,v)be more consistent with the geometry of the original 3D mesh

when terminating iterations. Thus in certain iterative step, we tried to enable all the resulted

coordinate gradients (ru,rv) on vertices of the mesh to be totally minimally different from

the corresponding pairs of the principal directions on vertices. In view of this, we designed a

measure of metric distortion as Eq (9), where Ni is the set of triangles possessing vertex i, and

di1,di2 are the two principal directions on vertex i, Areai is the area value of triangle j, as illus-

trated in (Fig 8).

In Eq (9),riu andriv represent parameterized coordinate gradients on triangle j; and

X

j2Ni

Areajrju
�
�
�
�

X

j2Ni

Areajrju
�
�
�
�

or

X

j2Ni

Areajrjv
�
�
�
�

X

j2Ni

Areajrjv
�
�
�
�

represents the parameterized resulted coordinate gradients on vertex i. Then the measure of

difference between

X

j2Ni

Areajrju
�
�
�
�

X

j2Ni

Areajrju
�
�
�
�

X

j2Ni

Areajrjn

�
�
�
�

X

j2Ni

Areajrjn

�
�
�
�

and ðdi1 di2Þ

is expressed as the sum of squared differences. Due to the larger or smaller uncertainty of the

principal curvature directions di1 and di2 [38, 39], the operator min(•) representing the
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minimum value is used. Finally
X

i2V

integrating all the vertices on the targeted mesh, metric Ev

is achieved. Metric Ev is the convex function. Our method, represented by Eq (9), is guaranteed

to minimize Ev and the algorithm would be converged as the iteration deepens. Our algorithm

is consistent with [40] in the form of convergence, and requires multiple iterations to converge

to a numerical minimum.

Ev ¼
X

i2V

min

X

j2Ni

Areajrju
�
�
�
�

X

j2Ni

Areajrju
�
�
�
�

� di1
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C
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Experiments and discussion

The novel method presented in the paper has been implemented in MATLAB2008a. The

experiments were performed on a Windows8 PC with a 2.60 GHz Intel Celeron CPU and 2.0

GB RAM. To compare with our method, several previous boundary-free parameterization

methods including classic LABF[18], linear quasi-harmonic parameterization(LQHP)[28],

iterative quasi-conformal parameterization (IQCP)[31] and quasi-conformal T-Map(QCTM)

Fig 8. Illustration of parameters in termination criterion Ev.

https://doi.org/10.1371/journal.pone.0217537.g008
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[24], have been also realized in experiments on above experimental condition. The surface

mesh experimental models include a balls model, a beetle model and an ISIS model.

It is often convenient to express parametric metric distortion based on the singular values Γ
and γ of the 3×2 Jacobian matrix J. In parameterization of each triangle i on the surface mesh,

area distortion and angle distortion could be represented by Γiγi and Γi/γi respectively. We

would like to minimize area and angle distortion on all the triangles of the mesh. In our experi-

ments, we represent the total area distortion (angle distortion) of the surface mesh by (Γγ)m

((Γ/γ)m) which is the average value of area distortion (angle distortion) parameterized on all

the triangles of the mesh, for reason that the average value is just a determinant of the measure-

ment distortion. Note that: the variance of area (angle) distortion of parameterization on all

the triangles of the mesh, represented by (Γγ)v ((Γ/γ)v), explicit the non-uniformity of the dis-

tribution of the distortion along the surface geometry and the boundaries (including external

and interior boundaries) of the mesh patch; the maximum of area (angle) distortion explicit

the most non-uniformity of the distortion in the parameterization. In the paper, to describe

the metric distortion of a mesh patch as a whole, we utilized the average value of area distor-

tion (angle distortion) of parameterization to represent the metric distortion, while not consid-

ering the variance and the maximum of distortion on all the triangles which only have local

significance.

On the other hand, for reason that the relation between the singular values Γ and γ of

the 3×2 Jacobian matrix J represents the parameterized metric distortion, we may list the dis-

tribution of Γ and γ on all triangles of a mesh surface in the parameterization, which would

reflect fuzzily the metric distortion of a parameterization as a whole. In parameterization,

“Γγ = 1”represents area-preserving completely, and “Γ/γ = 1” represents angle-preserving

completely. Therefore, utilizing two groups of 3D parameterization data (Γ,γ,Γγ)and (Γ,γ,Γ/γ)

of all the triangles in the mesh patch, we fitted two 3D surface patches to compare with the

plane Z = 1(where Z represents Γγ or Γ/γ) for reason of more intuitive observation of the

authalic and conformal effect during the parameterization. At the same time, the histogram

was used to show the overall area distortion and angle distortion.

One representative kind of model to depict the effect of parameterization is the spherical

surface mesh such as the balls model (1032Δ) shown in (Fig 9A). The balls model was

Fig 9. Parameterization experiments on the balls model. (A) original mesh model,(B) result by LABF, (C) result by

LQHP, (D) result by IQCP, (E) result by QCTM, (F) result by our method.

https://doi.org/10.1371/journal.pone.0217537.g009
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segmented along the junction of the three balls surface into three patches each with a disk

topology by using the cutting method in [41].

In parameterization, the distribution of Γ, γ and their relation (i.e., Γγ or Γ/γ) on balls

model is illustrated in (Fig 10). By comparing with the plane Z = 1 which represents authalic

or conformal parameterization completely, the effect of metric distortion in parameterization

can be clearly expressed by fitting the 3D surface of the parameterized data by various meth-

ods. As shown in (Fig 10A and 10B), the authalic effects of the parameterizations by LABF and

by LQHP are far from satisfying the great distance between the fitted 3D surface and the plane

Γγ = 1; yet their conformal effects are just passable for its waver along the plane Γ/γ = 1.

Although the 3D fitting surfaces parameterized by IQCP and QCTM wave around the plane

Z = 1, the rolling vertical amplitude is too large to be acceptable whose changes from 5 to 30

can be seen in (Fig 10C and 10D). The 3D fitting surfaces on Γγ and Γ/γ by our method wave

around Z = 1 with the amplitude changing from 0.3 to 1.7 as shown in (Fig 10E), which exhib-

its the best effect among the five methods in authalic and conformal aspects.

The parameterization results operated by methods of LABF, LQHP, IQCP, QCTM and

ours are displayed respectively in (Fig 9B, 9C, 9D and 9E), from which some features of each

method could be found easily by comparison. The average value of area distortion (Γγ)m of

IQCP or QCTM or our method is much less than that of LABF or LQHP: (1.62 or 1.70 or 1.26)

vs. (20.13 or 11.06), and that of our method is obviously less than IQCP or QCTM: 1.26 vs.

1.62(or 1.70); in other words, the average value of area distortion of our method decreases

respectively 93.7%, 88.6%, 22.2% and 25.9% than that of LABF, LQHP, IQCP and QCTM. Our

method also achieves a significantly lower angle distortion (Γ/γ)m than that of previous meth-

ods. The comparison of average value of angle distortion is 1.05 vs.2.13 (or 1.33 or 1.13 or

1.10); in other words, the average value of angle distortion of our method decreases respec-

tively 50.7%, 21.1%, 7.1% and 4.5% than that of LABF, LQHP, IQCP and QCTM. In (Fig 11),

the contrasts between the area distortion of the method of LABF, LQHP, IQCP, QCTM and

our proposed algorithm show that our proposed algorithm possesses lower overall area distor-

tions. At the same time, according to(Fig 12), our proposed method possesses lower overall

angle distortion.

Beetle model (1759Δ) (shown in Fig 13A) was also segmented into a few patches with a disk

topology by using the cutting method in [41].

Fig 10. 3D fitted surface on the singular values and their relation of Jacobian matrix in parameterization on balls

model. (A) by LABF; (B) by LQHP; (C) by IQCP; (D) by QCTM; (E) by our method.

https://doi.org/10.1371/journal.pone.0217537.g010
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The distribution of Γ, γ and their relation on beetle model is illustrated in (Fig 14). Same as

balls model, through comparing with plane Z = 1, the 3D fitting surface by various methods

expresses explicitly the effect of metric distortion in parameterization. Similar to the balls

model, the parameterizations of LABF and LQHP is far from authalic effect shown in (Fig 14A

and 14B); the waving amplitude is a little or significantly greater on the fitting surface on

parameterization data by IQCP and QCTM as in (Fig 14C and 14D). By comparison, The

authalic and conformal effects in parameterization by our method on beetle model are the

best, whose two fitting surfaces are closed to the plane Z = 1.

The parameterization experiments of Beetle model are illustrated in (Fig 13B, 13C, 13D,

13E and 13F). The average value of area distortion (angle distortion) by our method is lower

than that by other four methods (LABF, LQHP, IQCP, QCTM): 1.22 vs. (15.08, 9.52, 1.53,

2.64) (1.12 vs. (1.18 or 1.21 or 1.28 or 1.87)); in other words, the average value of area (angle)

Fig 11. Histograms of area distortions on the balls model. (A) result by LABF, (B) result by LQHP, (C) result by

IQCP, (D) result by QCTM, (E) result by our method.

https://doi.org/10.1371/journal.pone.0217537.g011

Fig 12. Histograms of angle distortions on the balls model. (A) result by LABF,(B) result by LQHP,(C result by

IQCP,(D) result by QCTM,(eE) result by our method.

https://doi.org/10.1371/journal.pone.0217537.g012
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distortion of our method decreases respectively 91.9%, 87.2%, 20.3% and 53.8% (5.1%, 7.4%,

12.5% and 40.1%) than that of LABF, LQHP, IQCP and QCTM. According to (Fig 15), com-

pared with the method of LABF, LQHP, IQCP, QCTM, our proposed method also shows

lower overall area distortions. At the same time, our proposed method possesses lower overall

angle distortions in (Fig 16).

Because the great reduction of our method on average value of metric distortion which is

the determining factor to measure the metric distortion. It could be deduced easily from the

statistics data on above experiments that the parameterization effect of our method is better

than that of other four previous methods. Thus our method is considered to be better than

other previous ones.

Taking beetle model as an example, we list various properties of five methods including

ours in (Table 1). LABF, LQHP, IQCP, QCTM and ours are all linear. LABF and LQHP are

Fig 13. Parameterization experiments on beetle model. (A) original mesh model,(B) result by LABF, (C) result by

LQHP,(D) result by IQCP, (E) result by QCTM, (f) result by our method.

https://doi.org/10.1371/journal.pone.0217537.g013

Fig 14. 3D fitted surface on the singular values and their relation of Jacobian matrix in parameterization on

beetle model. (A) by LABF,(B) by LQHP, (C) by IQCP, (D) by QCTM, (E) by our method.

https://doi.org/10.1371/journal.pone.0217537.g014
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one-time, while IQCP, QCTM and ours are iterative. Because of intrinsic properties, the itera-

tive number of IQCP or QCTM is not very efficient and effective in their later iterative steps.

While in our method, multiple iterations could be performed for the following iterative steps

to run more efficiently and to obtain more evolutionary results than that of IQCP or QCTM.

Thus the parameterized effect in our iterations is enhanced increasingly step by step. Com-

pared with IQCP, QCTM and other two previous one-time methods: 0.75s is much shorter

than 0.98s or 2.53s which are running times of other two iterative methods, the parameteriza-

tion efficiency of our method has been improved significantly; in other words, the running

time of our method decreases respectively 23.4% and 70.4% than that of IQCP and QCTM.

The above experimental models are simpler 3D surface mesh models. For the more com-

plex 3D surface mesh model, the ISIS model as shown in (Fig 17), the method of this paper

also performs very well.

Fig 15. Histograms of area distortions on the beetle model. (A) result by LABF, (B) result by LQHP, (C) result by

IQCP,(D) result by QCTM, (E) result by our method.

https://doi.org/10.1371/journal.pone.0217537.g015

Fig 16. Histograms of angle distortions on the beetle model. (A) result by LABF, (B) result by LQHP, (C) result by

IQCP, (D) result by QCTM,(E) result by our method.

https://doi.org/10.1371/journal.pone.0217537.g016
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It can be seen from Fig 17 that the average value of the area distortion (Γ γ)m 2.02 of the

method on the ISIS model is less than the average of the area distortion of the IQCP parame-

terization method by 3.13, and the average value of the angular distortion (Γ/γ)m 1. 13 is also

less than the average of the angular distortion of the QCTM parameterization method of 2.07.

At the same time, the area distortion and angle distortion are significantly less than the distor-

tion average of the other two methods (is 1/8 to 1/5 of theirs). In addition, it can be seen from

(Fig 17B, 17C, 17D, 17E and 17F) that the variance of the area and angular distortion of the

method here is also smaller than the distortion variance of the other four methods.

Limitations

We propose an effective method for boundary-free mesh parameterization. This method has

higher efficiency and metric distortion smaller average value for mesh parameterization,

which has certain significance in practical applications.

However, the parameterization process usually needs to consider various factors, such as

the variance of area (angle) distortion, the maximum of area (angle) distortion and the average

value of area distortion (angle distortion). In our method, for reason that the average value is

just the determinant to measure metric distortion. we express the total area distortion (angle

distortion) of the surface mesh which is the average value of the parameterized area distortion

(angle distortion) on all the triangles of the mesh.

Therefore, the experiments in this paper are carried out under the condition that the vari-

ance of area (angle) distortion and the maximum of area (angle) distortion are in ideal state.

Table 1. Properties of the methods referring experiments on beetle.

If iterative If linear Iterative termination condition Iterative number Running time(s)

LABF One-time Yes − − 7.34

LQHP One-time Yes − − 0.25

IQCP Iterative Yes EIQCP<20 5 0.98

QCTM Iterative Yes EQCTM<12.5 12 2.53

Ours Iterative Yes EV<5 26 0.75

https://doi.org/10.1371/journal.pone.0217537.t001

Fig 17. Parameterization experiments on ISIS model. (A) original mesh model, (B) result by LABF, (C) result by

LQHP, (D) result by IQCP;,(E) result by QCTM, (F) result by our method.

https://doi.org/10.1371/journal.pone.0217537.g017
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This issue has been demonstrated at the beginning of the "Experiments and Discussions" sec-

tion. If the influence of them cannot be ignored in the parameterization process. It is necessary

to solve the problem caused by this.

Conclusion

The novel method of boundary-free mesh parameterization is implemented through a series of

linear systems. By use of the iterations of quasi-harmonic parameterization on the steps, the

angle and area distortion are reduced significantly. The iterations could be converged normally

by using new metric, which makes the parameterization results consistent with the geometry

of original 3D mesh, to terminate the iterations. Due to its linearity and iterative performance,

the method ensures considerable efficiency and good effect. Experiments on several mesh

models show that the method is superior to is superior to previous boundary-free parameteri-

zation methods. Thus the method can be considered a contribution to the mesh-parameteriza-

tion field. Furthermore, this research can be extended in some useful ways, for example, the

idea of constructing iterations of parameterization might be learned to conduct the global

parameterization on an entire closed surface mesh.
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