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Epigenetic signatures of smoking associate with
cognitive function, brain structure, and mental and
physical health outcomes in the Lothian Birth
Cohort 1936
Janie Corley1, Simon R. Cox 1, Sarah E. Harris 1, Maria Valdéz Hernandez1,2,3, Susana Muñoz Maniega1,2,3,
Mark E. Bastin1,2,3, Joanna M. Wardlaw 1,2,3, John M. Starr1,5, Riccardo E. Marioni1,4 and Ian J. Deary1

Abstract
Recent advances in genome-wide DNA methylation (DNAm) profiling for smoking behaviour have given rise to a new,
molecular biomarker of smoking exposure. It is unclear whether a smoking-associated DNAm (epigenetic) score has
predictive value for ageing-related health outcomes which is independent of contributions from self-reported
(phenotypic) smoking measures. Blood DNA methylation levels were measured in 895 adults aged 70 years in the
Lothian Birth Cohort 1936 (LBC1936) study using the Illumina 450K assay. A DNA methylation score based on 230 CpGs
was used as a proxy for smoking exposure. Associations between smoking variables and health outcomes at age 70
were modelled using general linear modelling (ANCOVA) and logistic regression. Additional analyses of smoking with
brain MRI measures at age 73 (n= 532) were performed. Smoking-DNAm scores were positively associated with self-
reported smoking status (P < 0.001, eta-squared ɳ2= 0.63) and smoking pack years (r= 0.69, P < 0.001). Higher
smoking DNAm scores were associated with variables related to poorer cognitive function, structural brain integrity,
physical health, and psychosocial health. Compared with phenotypic smoking, the methylation marker provided
stronger associations with all of the cognitive function scores, especially visuospatial ability (P < 0.001, partial eta-
squared ɳp2= 0.022) and processing speed (P < 0.001, ɳp2= 0.030); inflammatory markers (all P < 0.001, ranges from
ɳp2= 0.021 to 0.030); dietary patterns (healthy diet (P < 0.001, ɳp2= 0.052) and traditional diet (P < 0.001, ɳp2= 0.032);
stroke (P= 0.006, OR 1.48, 95% CI 1.12, 1.96); mortality (P < 0.001, OR 1.59, 95% CI 1.42, 1.79), and at age 73; with MRI
volumetric measures (all P < 0.001, ranges from ɳp2= 0.030 to 0.052). Additionally, education was the most important
life-course predictor of lifetime smoking tested. Our results suggest that a smoking-associated methylation biomarker
typically explains a greater proportion of the variance in some smoking-related morbidities in older adults, than
phenotypic measures of smoking exposure, with some of the accounted-for variance being independent of
phenotypic smoking status.

Introduction
Smoking is an exposure with broad and well-

characterised adverse health effects. Smoking-associated
death and disability remains a major global public health
problem1,2. Understanding the mechanisms by which
smoking predisposes individuals to chronic disease is
crucial for the provision of therapeutic targets3,4, yet they
are not well understood. Differential DNA methylation
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(DNAm) has been proposed as one possible partial
explanation, which also could mean that these changes
could act as a biomarker of smoking exposure. The pos-
sible attraction of a DNAm-based marker for smoking
exposure lies in part with the limitations of other ways of
quantifying smoking exposure. Analyses are usually
dependent on self-report data, such as smoking status and
pack years, which are prone to underestimation and
reporting biases5. Cotinine, a metabolite of nicotine, is a
widely used biomarker, but due to a half-life of around
15–20 h, it reflects only short-term exposure to smoke6.
Whether there is a direct dose-dependent association

between smoking exposure and disease is debatable, as
some studies have shown a non-linear relation with dis-
eases such as coronary heart disease3,7 and cancer8.
Although these studies show a trend for more cardio-
vascular events and cancer in active smokers, they have
failed to find a significant dose-dependent correlation
between risk, and the number of cigarettes smoked or the
pack-years of exposure. This suggests that phenotypic
measures of smoking are unable to capture the relevant
smoking-related variance (the cumulative ‘hit’ from
smoking, in lay terms) that relates to disease risk. These
limitations underline the need for an objective measure of
smoking exposure for precise classification in epidemio-
logical studies. A better biomarker of smoking could also
increase the effectiveness of interventions.
Smoking contributes to disease development and pro-

gression through genetic and epigenetic mechanisms9.
DNAm is an epigenetic modification of the DNA mole-
cule without altering the DNA sequence itself10. Epige-
netic modifications are increasingly recognised as key
mechanisms involved in response to environmental sti-
muli11, such as smoking, and in smoking-induced disease
onset12–17. Smoking is robustly associated with highly
specific DNAm changes at specific loci across the genome
(occurring mainly at CpG—cytosine-phosphate-guanine
—sites), which not only clearly distinguish between cur-
rent and never smokers, but may also reflect the cumu-
lative amount smoked, and time since quitting in former
smokers4,15,17–21. In the majority of loci, smoking induces
hypomethylation (loss of methylation)15,22–24. Recent
evidence suggests that smoking-related DNAm changes
occur after prolonged exposure to smoke (5–9 years for
heavy smokers and 15–19 years for lighter smokers) and
that these dose-dependent changes are reversible follow-
ing cessation19.
Advances in epigenome-wide profiling of DNAm pat-

terns associated with smoking have given rise to a new
molecular biomarker or ‘epigenetic signature’ (epigenetic
patterns detected in blood) of lifetime smoking exposure,
with the potential to improve the prediction of smoking-
related risks13,15,25–31. Differentially methylated loci with
respect to smoking are related to clinical outcomes.

Robust associations have been demonstrated between
smoking-methylation signatures and major diseases
including asthma32, COPD33, and lung cancer34, and
markers of physical health, including lung function and
periodontal disease28. Decreased methylation levels in the
aryl hydrocarbon receptor repressor (AHRR) gene was
found in the lung tissue of current smokers compared
with non-smokers35. Smoking associated DNAm has also
been shown to predict mortality across several studies,
including a Scottish sample36, in coronary heart disease
patients37, and in the ESTHER study in which a smoking-
related DNAm score based on two CpGs (cg05575921
and cg06126421) showed strong associations with all-
cause, cardiovascular, and cancer mortality38.
One previous study examined the relationships between

self-reported smoking, serum cotinine and smoking-
associated DNAm, and found that the smoking mea-
sures were correlated, and that the methylation marker
was superior in measuring long-term smoking exposure
based on its ability to discriminate between former smo-
kers and never smokers with high accuracy38. Although
several studies have examined smoking-related DNAm in
relation to a specific outcome such as mortality22, see
refs. 25,30,31, comparisons of the predictive value of epi-
genetic versus phenotypic smoking measures has never
been performed simultaneously in the same sample, and
for a range of health outcomes.
Here, we extend previous work by examining associa-

tions between smoking-associated changes in DNA
methylation (smoking-DNAm scores), phenotypic smok-
ing measures (current smoking status and pack years of
smoking), and a comprehensive range of smoking-related
health outcomes. We, (1) determine the proportion of
variance the epigenetic and phenotypic predictors explain
in their outcomes, (2) examine whether the smoking
methylation marker accounts for variance in these out-
come variables independently of the standard phenotypic
smoking measures, and, (3) examine the life-course pre-
dictors of epigenetic and phenotypic smoking. The sample
is a narrow-age cohort of older adults aged ~70 years at
baseline, for whom there are extensive phenotypic data.

Materials and methods
Participants
Participants were from the Lothian Birth Cohort 1936

(LBC1936), a group of relatively heathy community-
dwelling subjects in their seventies, enrolled in a long-
itudinal study of cognitive and brain ageing conducted in
Scotland39–41. Most participants had previously taken part
in the Scottish Mental Survey of 1947 (SMS194742) at
about age 11 years (from which we derived an age 11 IQ
score), and subsequently traced and recruited to the study
almost 60 years later, at approximately 70 years of age.
Briefly, individuals born in 1936, who were living in the
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Lothian area of Scotland, were contacted by Lothian
Health Board on behalf of the investigators and invited to
take part in the study. In total, 1091 men and women were
recruited at Wave 1 (2004–2007, age ∼70 years, n= 1091)
with further follow-up waves at ages 73 (n= 866), 76 (n=
697), 79 (n= 550) and 82 (ongoing). Extensive phenotypic
data have been collected, including blood biomarkers,
cognitive testing, neuroimaging, and psychosocial, life-
style, genetic, and health measures. All participants pro-
vided written informed consent before testing. The
LBC1936 study was approved by the Multi-Centre
Research Ethics Committee for Scotland (MREC/01/0/
56) and the Lothian Research Ethics Committee (LREC/
2003/2/29 for Wave 1 and 07/MRE00/58 for Waves 2–5).
Most of data for the present study come from Wave 1

(age 70). Structural brain imaging was undertaken three
years later for 700 participants at Wave 2 (age 73). Here, a
total of 895 individuals had smoking-DNAm data at age
70, and of the 895, 532 had MRI data at age 73. Following
quality control which removed instances in which aber-
rant surfaces or segmentation errors were removed,
additional analyses of cortical thickness were run for 521
participants.

Epigenetic DNAm data
Blood samples were obtained at the time of Wave 1

baseline (age 70, n= 1091) assessment by trained research
nurses using standard procedures, at the Wellcome Trust
Clinical Research Facility Genetics Core at the Western
General Hospital, Edinburgh. Of the 1091 LBC1936 par-
ticipants, 1005 who had previously passed GWAS quality
control were selected for methylation typing. Of these,
920 passed DNAm quality control. Due to missingness of
measured cell counts (n= 14) and missing phenotype
data (n= 11), this number dropped to the 895 that were
included in the current analyses. DNAm typing was
measured at 485,512 CpG sites using the Illumina Human
Methylation450 Bead Chip (Illumina Inc., San Diego, CA).
Full details of sample preparation and methylation typing
have been reported previously19,43. Briefly, after back-
ground correction, probes were removed if they were
poorly detected (P > 0.01) in >5% of samples or of low
quality (via manual inspection). Samples were removed if
they had a low call rate (P < 0.01 for <95% of probes), a
poor match between genotype and SNP control probes, or
incorrect DNAm-predicted sex.
A LASSO regression was performed to predict pack

years of smoking on 3444 participants (73% current
smokers, 27% never smokers) from the Generation Scot-
land study19. DNAm was assessed using the Illumina
EPIC array in Generation Scotland although the data were
subset to only consider CpG sites that were also present
on the 450k array. Prior to the LASSO regression, the
pack years phenotype was regressed on age, sex, and 10

genetic principal components. The optimal predictor
utilised information from 233 CpG sites, 230 of which
were available for analysis in the Lothian Birth Cohort
1936. Using the 230 CpG weights derived in McCartney
et al., smoking epigenetic scores (trained to predict pack
years of smoking) were created19. As pack years are
positively coded, a higher methylation score indicates
more smoking.

Phenotypic data
Smoking
Self-report smoking status (never smoker, former

smoker, current smoker) and smoking behaviour (age at
starting, age at quitting, average number of cigarettes
smoked per day) were ascertained at age 70 during a
baseline interview. Pack years were calculated as the
average number of cigarettes per day times years as a
smoker, divided by 20, with zero assigned to never smo-
kers. Pack years expresses lifelong exposure to cigarettes.
Cotinine data were not available in the LBC1936.

Sociodemographic
Sociodemographic measures were education (number of

years of formal full-time education), deprivation score at
age 11 (derived from a combination of number of people
sharing a room, inside or outside toilet, and number of
people sharing the toilet), and adult occupational social
class (highest status occupation classified as I-profes-
sional, to V-unskilled)44.

Cognitive function
Cognitive ability from childhood (age 11 IQ) was

derived from scores on the Moray House Test no.12
(MHT), a validated test of general intelligence, obtained
for the SMS194745. MHT scores were corrected for age in
days at time of testing and converted to standard IQ type
scores, where mean= 100 and SD= 15. This is a general
mental test comprising 71 items, mostly verbal reasoning,
but also some numerical, spatial, and other items. Cog-
nitive function measures at age 70 were age 70 IQ (the
same test taken at age 11), the Mini-Mental State Exam-
ination46, and four latent scores representing: Visuospatial
ability; Processing Speed; Memory; and Crystallised abil-
ities. Visuospatial ability consisted of two subtests from
the Wechsler Adult Intelligence Scale, 3rd UK Edition
(WAIS-IIIUK47): Matrix Reasoning and Block Design. It
also included the Spatial Span (Forward and Backward)
subtest from the Wechsler Memory Scale, 3rd UK Edition
(WMS-IIIUK48). Processing Speed was measured using
two tests from the WAIS-IIIUK (Symbol Search and
Digit-Symbol Substitution), Four-Choice Reaction time49,
and Inspection Time (a computer-based task where par-
ticipants must discriminate between two figures flashed
on a computer screen for a variety of durations from
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200ms to 6ms, then immediately backward-masked.
There were 150 Inspection Time trials (10 at each of 15
durations), and the measure we used was the total number
of correct responses50. Memory was measured using two
subtests from the WMS-IIIUK (Verbal Paired Associates
and Logical Memory), and the Digit Span Backward
subtest of the WAIS-IIIUK. Crystallised Ability was
measured by two tests that involved the participant
reading aloud a list of irregular words: the National Adult
Reading Test (NART51), and the Wechsler Test of Adult
Reading (WTAR52). We also included a test of phonemic
verbal fluency, using the letters C, F, and L53.

MRI measures
Brain structural MRI was first performed 3-years after

baseline (when participants were ~age 73 years. Brain
MRI acquisition and processing has been reported pre-
viously54. Briefly, a 1.5 T GE Signa HDx clinical scanner
(General Electric, Milwaukee, WI, USA) was used to
collect structural T1-, T2-, T2*-, and fluid attenuated
inversion recovery-weighted images. Total brain volume
(TBV), grey matter volume (GMV), white matter hyper-
intensity volume (WMHV), and normal-appearing white
matter volume (NAWMV), are used in the present study.
Measures were adjusted for intracranial volume (ICV) to
control for head size. In addition, regional brain cortical
thickness data were measured using FreeSurfer v5.1.
Cortical thickness denotes the closest distance from the
brain’s grey-white matter boundary to the grey-CSF
boundary at each of 327,684 vertices. The sample lag
between baseline assessment and MRI assessment was
relatively small. That the phenotypic and epigenetic
smoking variables were measured at the same time is
more important for the purposes of comparison, i.e. the
increased noise in the signal introduced by sampling lag is
likely to be constant, and therefore unlikely to affect the
relative differences in their magnitude.

Physical function
Physical function measures were: lung function (forced

expiratory volume in one second FEV1) based on the
highest score from three tests using a Micro Medical
Spriometer); grip strength (based on the highest reading
from the right hand using a North Coast Hydraulic Hand
Dynamometer (JAMAR); walking speed (time in seconds
to walk six metres at quickest pace); and body mass index
(BMI) derived from height and weight (kg/m2). All mea-
sures were taken at time of assessment by trained nurses.

Biomarkers
Whole blood samples were drawn from participants on

the day of assessment at the Western General Hospital,
Edinburgh. Blood biomarkers used in the current study
include: cholesterol (total cholesterol, HDL cholesterol,

triglycerides, cholesterol ratio); inflammation (C-reactive
protein (CRP), fibrinogen), and glycaemic status (glycated
haemoglobin (HbA1c)). Serum cholesterol (mmol/L) was
measured via non-fasting blood and analysed within 24 h
in serum stored at 4 °C using an enzymatic Quinoneimine
dye method measuring at 500 nm. The CRP (mg/L) assay
was performed using a dry-slide immuno-rate method on
OrthoFusion 5.1 F.S analysers (Ortho Clinical Diag-
nostics). The fibrinogen (g/L) assay was performed using
an automated Clauss assay (TOPS coagulometer; Instru-
mentation Laboratory).

Psychosocial
Psychosocial measures were the HADS (Hospital

Anxiety and Depression Score; anxiety and depression
subscales, and total score55), and the WHOQoL (World
Health Organisation Quality of Life physical, psychologi-
cal, social relationships and environment subscales56).

Health behaviours
Health behaviour data, including alcohol intake (units/

week) and dietary intake (dietary pattern scores), were
derived from responses to a food frequency questionnaire
(FFQ57). Dietary pattern scores were obtained previously
via principal components analysis of all FFQ items (see
ref. 58), and include: Mediterranean-style diet; Health-
aware diet; Traditional diet; Sweet-foods diet.

Medical history
Binary variables relating to self-reported disease history

include: cardiovascular disease (CVD); hypertension; dia-
betes; hypercholesterolaemia; and stroke. Deaths during
follow-up (between 2004 and 2018) were identified by
record linkage and coded as yes/no.

Statistical analyses
The majority of the data used in the current study were

collected at baseline (age ~70 years). MRI was performed
age 73. Three-year stability in imaging markers in this
cohort has been previously ascertained59. General linear
modelling (ANCOVA) was used to investigate the asso-
ciations between smoking measures (smoking-DNAm
and phenotypic) and continuous outcome variables. An
additive model included both smoking status and
smoking-DNAm together. Logistic regression was used to
investigate the associations between smoking and binary
health variables (disease/no disease), namely: CVD;
hypertension; high cholesterol; stroke; and, diabetes. The
relationship between each smoking exposure and all-
cause mortality was assessed using Cox proportional
hazards models. We note that smoking-phenotypic asso-
ciations with brain cortical thickness have been previously
reported in this sample60 and are shown here for com-
parison with DNAm-smoking associations.
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To examine the associations between life-course
predictors of smoking in later life, we entered four
life-course measures (age 11 deprivation score, age 11
IQ, education, and adult SES) into models, simulta-
neously, with smoking status (using logistic regression)
and smoking-DNAm (using general linear models). We
ran a series of path models within a structural equation
modelling framework to assess the degree to which
early-life factors (age 11 IQ and childhood deprivation)
contributed to phenotypic and epigenetic smoking
measures in later life, and whether their associations
were mediated via years of education and adult SES-
occupation. Specifically, we modelled the contributions
of both childhood deprivation and childhood intelli-
gence on education and adult SES, with the variables in
a life-course order, and allowing a residual correlation
between these two early-life factors. Contributions of
all four predictors were modelled on smoking category
and DNAm-smoking; that is, we fitted two models, one
for each separate smoking outcome. The numerical
values in the models’ results are standardised path
coefficients, which may be treated like standardised
partial beta weights.
All models were adjusted for age (exact age in days at

time of testing) and sex. Height was included as an
additional covariate in the models for FEV1, grip strength,
and walking speed. All p-values were corrected for mul-
tiple comparisons using the false discovery rate (FDR)
with an FDR corrected p-value ≤ 0.024 considered sig-
nificant. We report partial-eta squared (ηp2) effect sizes
for ANCOVA models (to derive % variance explained)
and R2, and odds ratios (OR) and 95% confidence intervals
(95% CI) for logistic regression models. We report hazard
ratios for associations between smoking and mortality
using Cox proportional hazards regression. Most analyses
were carried out using SPSS version 22. The brain cortical
thickness linear regression analyses were conducted using
the SurfStat toolbox (http://www.math.mcgill.ca/keith/
surfstat) for Matrix Laboratory R2018a (The Math-
Works Inc., Natick, MA). The path analyses were imple-
mented using structural equation modelling which was
conducted using ‘lavaan’ in R version 3.5.061.

Results
Associations between smoking variables
Higher scores on the smoking-DNAm marker were

strongly associated with higher self-reported smoking
exposure. The Spearman correlation between DNAm
scores and smoking pack years was r= 0.69 (P < 0.001).
There was a significant association between DNAm and
self-reported smoking status (F(2,892)= 764.03, P <
0.001, ɳ2= 0.63). Thus, 63% of the variance in smoking-
DNAm scores can be explained by phenotypic smoking
status. The smoking DNAm values (mean ± sd) for never

smokers was 3.08 ± 0.35, for former smokers was 3.71 ±
0.68, and for current smokers was 5.48 ± 0.74.

Characteristics of the study sample
Table 1 shows the characteristics of the study sample (n=

895) by current smoking status. Of the total sample, 418
(47%) were self-reported never smokers, 375 (42%) were
former smokers, and 102 (11%) were current smokers. The
mean age of participants was 69.5 years (sd 0.8). Never
smokers were more likely to be female and, compared with
ever smokers, consumed less alcohol, had a higher childhood
IQ and more education, and had fewer cases of CVD, and
diabetes. Average pack years (cumulative smoking exposure)
of current smokers was 45.0 and former smokers was 27.5.
Current smokers had the highest prevalence of stroke and
the lowest physical activity. Former smokers had the highest
prevalence of CVD and diabetes, the highest BMI, alcohol
consumption, and were most physically active. Over 14 years
of follow-up, there were 224 (25%) deaths from 895 parti-
cipants; 51% of current smokers at baseline had died, com-
pared to 27% of former smokers and 17% of never smokers.

Smoking-DNAm and health outcomes
Table 2 shows the associations between phenotypic and

epigenetic smoking and a range of health-related, cogni-
tive, psychosocial, and lifestyle outcomes. Higher DNAm
smoking scores were associated with significantly poorer
outcomes in most of the domains tested (see Table 2 for
full results). We summarise by reporting the % variance
accounted for by smoking-DNAm. Higher DNAm was
associated with lower cognitive function and poorer
structural brain integrity: visuospatial ability (2.2%); pro-
cessing speed (3.0%); crystallised abilities (0.8%); age 70
1Q (2.0%); lower TBV (4.0%); lower GMV (3.0%); lower
normal appearing white matter volume (5.2%); and a
higher volume of white matter hyperintensities (2.9%).
Figure 1 shows associations between brain cortical

thickness and phenotypic and epigenetic smoking. Higher
smoking-DNAm was associated with a thinner brain
cortex across a distributed network of regions including
superior frontal and temporal cortices. The FDR-
significant loci showed considerable overlap with areas
which were also thinner in relation to smoking category.
Higher smoking-DNAm scores were associated with

markers of poorer physical function and health: lower lung
function FEV1 (1.3%); slower 6-m walk time (1.4%); higher
BMI (0.7%); higher triglycerides (1.7%); higher CRP (2.1%)
and fibrinogen (3.0%). DNAm was not associated with grip
strength, total cholesterol, HDL cholesterol, or HbA1c.
Higher smoking-DNAm scores were associated with lower
psychosocial health (explaining 1.7% of the variance in
WHOQoL-physical and 2.4% in WHOQoL-environment
domain scores), and with poorer dietary patterns (explain-
ing 0.8% of the variance in Mediterranean diet scores, 5.2%
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in ‘health-aware’ diet scores, and 3.2% in traditional diet
scores). DNAm was also associated with lower quality of life
on all of the domains tested; following correction for mul-
tiple testing, DNAm remained significantly associated with
the WHOQoL Physical and Environment domains,
accounting for 1.75 and 2.4% in these outcomes,
respectively.
Table 3 shows that higher smoking-DNAm was also

associated with a higher prevalence of stroke (OR 1.48,
95% CI= 1.12, 1.96, P= 0.006) and hypercholester-
olaemia (OR 1.19, 95% CI= 1.02, 1.38, P= 0.024). Using
Cox’s proportional hazards models, we observed a higher
all-cause mortality risk (hazard ratio [HR] 1.59, 95% CI=
1.42, 1.79, P < 0.001). A positive association with mortality
risk (HR 1.29, 95% CI= 1.05, 1.57, P= 0.013) has pre-
viously been shown in the LBC1936, over a slightly
shorter (12 year) follow-up period36. Here, we showed
that smoking-DNAm accounts for a proportion of the
variance in stroke and mortality outcomes, which is
independent of phenotypic smoking status.

Compared with the phenotypic smoking measures epi-
genetic smoking accounted for a greater proportion of the
variance for many of the significant smoking-health
associations (see Table 2 for partial-eta squared values)
including cognitive function, structural brain integrity,
inflammatory markers, and dietary patterns.

Phenotypic smoking and health outcomes
Smoking status and smoking pack years were sig-

nificantly associated with most of the same outcome
variables, and in the same direction, as epigenetic smok-
ing (see Table 2). In addition to those outcomes, increased
smoking exposure measured by the phenotypic smoking
variables were also associated with poorer scores on some
of the other psychosocial measures (HADS-depression
score and WHOQOL-psychological and social relation-
ship scores), a lower HDL cholesterol and a higher HbA1c
level. Smoking status was associated with alcohol intake
and physical activity but the results were not linear with
smoking exposure (as previously reported in Table 1).

Table 1 Participant characteristics by smoking status

Characteristics All participants Smoking status

Never smokers Former smokers Current smokers P

n 895 418 375 102

Age, in years 69.5 ± 0.8 69.5 ± 0.9 69.6 ± 0.8 69.5 ± 0.7 0.92

Pack years of smokinga 6.5 ± 25.8 0 27.5 ± 29.0 45.0 ± 20.7 <0.001

DNAm smoking scoreb 3.6 ± 0.9 3.1 ± 0.3 3.7 ± 0.7 5.5 ± 0.7 <0.001

Education (years/full-time) 10.7 ± 1.1 10.9 ± 1.1 10.7 ± 1.1 10.5 ± 0.9 <0.001

Childhood (age 11) IQc 99.8 ± 15.2 101.5 ± 15.2 98.6 ± 15.3 97.4 ± 14.8 0.008

Body mass index 7.8 ± 4.4 27.5 ± 4.1 28.5 ± 4.5 25.9 ± 4.6 <0.001

Alcohol consumption (units/week) 10.1 ± 9.2 8.3 ± 12.5 12.3 ± 14.4 9.2 ± 13.7 <0.001

Physical activity (days/month) 7.7 ± 8.1 7.8 ± 7.7 8.2 ± 8.6 5.2 ± 8.1 0.009

Sex (male) 453 (50.6%) 186 (44.5%) 220 (58.7%) 47 (46.1%) 0.001

CVD (yes) 218 (24.3%) 85 (20.3%) 105 (28.0%) 28 (27.5%) 0.03

Stroke (yes) 44 (4.9%) 17 (4.1%) 15 (4.0%) 12 (11.8%) 0.003

Diabetes (yes) 73 (8.2%) 24 (5.7%) 42 (11.2%) 7 (6.9%) 0.02

Hypertension (yes) 365 (40.8%) 169 (40.4%) 158 (42.1%) 38 (37.2%) 0.66

Hypercholesterolaemia (yes) 305 (34.1%) 127 (30.4%) 140 (37.3%) 38 (37.2%) 0.10

Deaths by 14 year-follow-upd 224 (25.0%) 72 (17.2%) 100 (26.7%) 52 (51.0%) <0.001

We report mean ± standard deviation unless indicated as n (percent). P-values are derived from comparisons between categories of smoking status (never, former and
current)
All results in bold-type are significant following FDR correction
M mean, SD standard deviation, DNAm DNA methylation, CVD cardiovascular disease
aPack years of smoking was calculated for former and current smokers
bHigher methylation score= increased smoking exposure
cChildhood IQ was derived from a validated test of mental ability collected as part of the Scottish Mental Survey of 1947. Raw scores were corrected for age
in days at time of testing and converted to standard IQ type scores, where mean= 100 and SD= 15
dNumber of deaths recorded between Nov 2004 and April 2018
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Compared with smoking-DNAm scores, the phenotypic
smoking measures were generally stronger predictors of
the psychosocial measures. We report higher effect sizes
for phenotypic smoking and HADS-Depression score and
all four quality of life subdomains of the WHOQOL).
Both phenotypic smoking variables were associated with a

higher prevalence of stroke (this association was sig-
nificant for current smokers, (OR 3.20, 95% CI= 1.47,
6.96), P= 0.003), and for higher pack years (OR 1.38, 95%
CI= 1.09, 1.74, P= 0.007). Higher pack years was asso-
ciated with hypercholesterolaemia (OR 1.19, 95% CI=
1.03, 1.36, P= 0.015) (see Table 3), and past smoking, but

Table 2 Phenotypic smoking, epigenetic smoking, and phenotypic+ epigenetic smoking, as predictors of health
outcomes

Phenotypic smoking Epigenetic smoking Additive model

Smoking status Pack years Smoking-DNAm Smoking status Smoking-DNAm

P ɳp2 R2 P ɳp2 R2 P ɳp2 R2 P ɳp2 P ɳp2 R2

Cognitive function

Age 70 IQ 0.001 0.015 0.018 <0.001 0.017 0.019 <0.001 0.020 0.022 0.600 0.000 0.034 0.005 0.023

Visuospatial factor# <0.001 0.017 0.079 <0.001 0.015 0.074 <0.001 0.022 0.083 0.776 0.001 0.033 0.005 0.083

Speed factor# <0.001 0.021 0.069 <0.001 0.020 0.067 <0.001 0.030 0.078 0.788 0.001 0.003 0.010 0.078

Memory factor# 0.221 0.004 0.072 0.112 0.003 0.072 0.152 0.002 0.071 0.614 0.001 0.924 0.000 0.072

Crystallised factor# 0.398 0.002 0.050 0.011 0.007 0.055 0.010 0.008 0.055 0.450 0.002 0.011 0.007 0.057

Structural MRI measures

TBVa 0.002 0.024 0.110 <0.001 0.024 0.111 <0.001 0.040 0.125 0.686 0.001 0.002 0.018 0.126

GMVa 0.005 0.020 0.038 0.012 0.012 0.032 <0.001 0.030 0.048 0.256 0.005 0.005 0.015 0.053

WMHVa 0.006 0.019 0.029 <0.001 0.042 0.034 <0.001 0.029 0.039 0.511 0.003 0.010 0.012 0.042

NAWMVa <0.001 0.038 0.069 <0.001 0.025 0.073 <0.001 0.052 0.083 0.179 0.007 0.001 0.021 0.088

Physical function

Lung function (FEV1)b <0.001 0.113 0.528 <0.001 0.142 0.542 <0.001 0.133 0.538 0.029 0.008 <0.001 0.030 0.542

Grip strength (right hand)b 0.558 0.001 0.637 0.355 0.001 0.638 0.257 0.001 0.638 0.883 0.000 0.120 0.003 0.638

6-m walk time (s)b 0.007 0.011 0.071 <0.001 0.026 0.083 <0.001 0.014 0.073 0.780 0.001 0.100 0.003 0.074

Body mass index (kg/m2) <0.001 0.032 0.040 0.003 0.010 0.017 0.011 0.007 0.015 <0.001 0.025 0.710 0.007 0.040

Bloods and biomarkers

Total cholesterol (mmol/l) 0.186 0.004 0.112 0.042 0.005 0.115 0.139 0.002 0.111 0.456 0.002 0.525 0.000 0.113

HDL cholesterol (mmol/L) 0.036 0.008 0.104 0.001 0.015 0.110 0.096 0.003 0.099 0.131 0.005 0.673 0.000 0.104

Triglycerides (mmol/L) <0.001 0.017 0.024 <0.001 0.033 0.040 <0.001 0.017 0.024 0.292 0.003 0.125 0.003 0.027

C-reactive protein (mg/L) <0.001 0.017 0.033 <0.001 0.028 0.044 <0.001 0.021 0.036 0.631 0.001 0.052 0.004 0.037

Fibrinogen (g/L) <0.001 0.023 0.028 <0.001 0.016 0.022 <0.001 0.030 0.036 0.682 0.001 0.006 0.009 0.037

HbA1C mmol/mol 0.061 0.006 0.012 0.001 0.012 0.017 0.058 0.004 0.009 0.359 0.002 0.834 0.000 0.012

Psychosocial

HADS anxiety subscale 0.425 0.002 0.046 0.044 0.005 0.046 0.548 0.000 0.044 0.425 0.002 0.723 0.000 0.046

HADS depression subscale 0.006 0.012 0.015 <0.001 0.016 0.020 0.480 0.001 0.009 0.063 0.006 0.615 0.000 0.016

WHOQoL physical <0.001 0.032 0.034 <0.001 0.044 0.046 <0.001 0.017 0.020 0.001 0.017 0.240 0.002 0.036

WHOQoL psychological <0.001 0.021 0.026 <0.001 0.028 0.033 0.029 0.006 0.011 0.001 0.018 0.138 0.003 0.029

WHOQoL social relationships <0.001 0.017 0.022 0.004 0.011 0.015 0.036 0.006 0.010 0.006 0.013 0.327 0.001 0.023

WHOQoL environment <0.001 0.041 0.046 <0.001 0.050 0.054 <0.001 0.024 0.029 0.001 0.018 0.904 0.000 0.046

Lifestyle

Alcohol intake (units/day) 0.005 0.012 0.092 0.123 0.003 0.081 0.210 0.002 0.083 0.007 0.011 0.352 0.001 0.093

Physical activity (days/month) 0.011 0.012 0.014 0.103 0.003 0.006 0.206 0.002 0.004 0.014 0.011 0.304 0.001 0.015

Mediterranean diet pattern 0.001 0.018 0.047 0.011 0.009 0.039 0.018 0.008 0.037 0.530 0.001 0.941 0.000 0.047

Healthy diet pattern <0.001 0.038 0.153 <0.001 0.034 0.147 <0.001 0.052 0.165 0.708 0.001 0.001 0.015 0.165

Traditional diet pattern 0.002 0.017 0.059 0.001 0.016 0.059 <0.001 0.032 0.074 0.845 0.000 0.001 0.016 0.074

Sweet foods diet pattern 0.026 0.010 0.011 <0.001 0.017 0.018 0.023 0.007 0.008 0.165 0.005 0.231 0.002 0.013

All models used ANCOVA and were adjusted for age (exact age in days at time of testing) and sex
All results in bold-type are significant following FDR correction
DNAm DNA methylation, TBV total brain volume, GMV grey matter volume, WMHV white matter hyperintensity volume, NAWMV normal-appearing white matter
volume, FEV1 forced expiratory volume in 1 s, HDL high-density lipoprotein, HbA1c haemoglobin A1c, HADS Hospital Anxiety and Depression Scale, WHOQoL World
Health Organisation Quality of Life
aMRI performed at age 73, all MRI measures were adjusted for intracranial volume (ICV)
bMeasures were additionally adjusted for height
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not current smoking, was associated with diabetes (OR
1.96, 95% CI= 1.16, 3.32, P= 0.012). Associations of
phenotypic smoking with CVD became non-significant
following correction for multiple testing. Higher mortality
risk over 14 years of follow-up was associated with higher
pack years of smoking (HR 1.28, 95% CI= 1.16, 1.40, P <
0.001). Compared with never smokers, we found a higher
mortality risk in former smokers (HR 1.58, 95% CI= 1.16,
2.14, P= 0.003), and current smokers (HR 3.94, 95% CI=
2.75, 5.63, P < 0.001).

Additive model (smoking status + smoking-DNAm) and
health outcomes
The additive model included both smoking status and

epigenetic score simultaneously in order to examine
whether the R2 was better than in the single predictor
models. In none of the models were both predictors sig-
nificantly associated with an outcome variable. For ten of
the additive models, the smoking epigenetic score
remained a significant predictor of health outcome mea-
sures even after smoking status was included. We report
% variance accounted for in the outcome measure. These
measures included processing speed (1.0%), crystallised
ability (0.7%), structural brain MRI markers (range 1.2%
to 2.1%), lung function FEV1 (3.0%), fibrinogen con-
centrations (0.9%), healthy diet pattern (1.5%) and

traditional diet pattern (1.6%) (all Table 2), stroke (OR
1.15, 95% CI 0.68, 1.93, P= 0.006), and all-cause mortality
risk (HR 1.33, 95% CI 1.08, 1.64, P= 0.007) (see Table 3).
Phenotypic smoking category remained a significant

predictor, after DNAm smoking was included in the
additive models, for BMI (2.5%), all of the WHOQoL
measures (range 1.3–1.8%), alcohol intake (1.1%), physical
activity (1.1%), and diabetes, for ex-smokers only, (OR
2.06, 95% CI 1.15, 3.68, P= 0.015).
For vertex-wise brain cortical thickness, age and sex-

corrected FDR significant associations between cortical
thickness and smoking-DNAm were attenuated by an
average of 33.3% when further corrected for phenotypic
smoking category (Fig. 2). This also substantially reduced
the spatial extent of FDR-corrected vertices, which were
limited to only small clusters in left superior temporal and
right supramarginal gyri.

Life-course predictors of smoking
Table 4 shows the associations between life-course

predictors and smoking using GLM (for epigenetic-
smoking DNAm) and logistic regression (for
phenotypic-smoking status). We entered life-course vari-
ables (age 11 deprivation, age 11 IQ, education, adult SES,
plus age and sex) simultaneously into models in order to
determine each predictor’s association with smoking pack

Fig. 1 Associations between phenotypic and epigenetic smoking and cortical thickness. Figures denotes t-maps (top) and FDR q-values for
age and sex corrected associations between smoking category (left) and DNAm-smoking (centre). Right hand panel shows the percentage
attenuation (top) and FDR q-values (bottom) for the significant associations between DNAm-smoking and cortical thickness (shown in the centre
panel) when also controlling for smoking category
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years and smoking-DNAm. Education was the only sig-
nificant predictor of smoking behaviour, accounting for
0.7% of the variance in smoking-DNAm, and for ex-
smoking (OR 0.82, 95% CI 0.70, 0.96, P= 0.015), with the
exception of adult SES, which was significant only for
current smoking (OR 1.45, 95% CI 1.06, 1.99, P= 0.022).
Finally, path models were fit, using SEM, for each of the

smoking outcome measures in order to examine the
strength of associations between the life-course predictors
and lifetime smoking behaviour, and to test whether any
early-life associations were mediated via education and
adult occupational status. The path diagrams are pre-
sented in Fig. 2. The standardised path coefficients show

that smoking was directly and inversely associated with
education (−0.106 for smoking category, and −0.097 for
smoking-DNAm). We note that the total effect for edu-
cation includes partial mediation via adult SES. We also
note that education is moderately predicted by childhood
intelligence (0.38). Therefore, the variables that con-
tributed most to smoking behaviour were early-life mea-
sures rather than adult social position.

Discussion
Using genome-wide DNAm values from the Illumina

450 K platform, we created a DNm biomarker of smoking
and examined its ability to predict multiple smoking-

Fig. 2 Path diagram for models of lifecourse predictors and smoking using structural equation modelling. Path coefficients are standardised

Table 4 Life-course predictors of smoking status and smoking-DNAm

Phenotypic smoking Epigenetic smoking

Smoking status (former)a Smoking status (current)a Smoking-DNAm

OR (95% CI) P OR (95% CI) P 95% CI P ηp2

Deprivation score age 11 1.051 (0.985, 1.122) 0.130 1.029 (0.936, 0.113) 0.559 (0.001, 0.055) 0.041 0.005

IQ score at age 11 0.993 (0.981, 1.004) 0.202 0.995 (0.978, 1.012) 0.574 (−0.007, 0.003) 0.444 0.001

Education 0.818 (0.695, 0.962) 0.015 0.827 (0.632, 1.081) 0.165 (−0.152, −0.016) 0.015 0.007

Adult SES 0.837 (0.689, 1.017) 0.074 1.450 (1.056, 1.992) 0.022 (−0.008, 0.155) 0.078 0.004

Models used either logistic regression (phenotypic smoking) or linear regression (epigenetic smoking) and were adjusted for age (exact age in days at time of testing)
and sex
All results in bold-type are significant following FDR correction
DNAm DNA methylation
aSmoking status reference category= non-smoker
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associated adverse health outcomes in a healthy ageing
cohort, the LBC1936. We found that higher smoking-
DNAm scores were cross-sectionally associated with
poorer cognitive function, physical function, psychosocial
health, blood biomarkers of health, diet, and with markers
of structural brain health measured at follow-up. Our
analyses also showed that epigenetic signatures of smok-
ing were associated with stroke, hypercholesterolaemia,
and with a higher mortality rate after 14 years. The novel
findings in the current study are, firstly, the epigenetic
biomarker of smoking explained a greater proportion of
the variance in many smoking-related morbidities than
phenotypic smoking. The largest effect sizes for the
methylation marker were observed for measures of cog-
nitive function, structural brain integrity, lung function
(FEV1), systemic inflammation, and mortality. Secondly,
by combining the methylation predictor and self-reported
smoking predictor in an additive model, we demonstrated
that some of the accounted-for variance was independent
of phenotypic smoking status. These findings support the
predictive utility of a smoking-associated DNAm score
compared with more traditionally used markers of
smoking exposure for assessing smoking-related health
risks. To our knowledge, this is the first study to compare
the predictive capabilities of smoking-DNAm scores and
conventional phenotypic self-report measures of smoking
exposure, over a wide range of health-related outcomes,
and in the same sample.
Quantification of smoking behaviour in epidemiologic

studies, for the purposes of assessing smoking-attributable
risk, is typically derived from questionnaire-based metrics
of current and past smoking. Pack years is the most
commonly used measure of smoking intensity. However,
self-reported smoking data are hampered by recall bias,
and as a socially undesirable behaviour, they are subject to
under-reporting62. These data likely result in an under-
estimation of true effects25. Methylation derived scores
reflect the cumulative physiological effects of smoking,
compared with cotinine—an already present serological
marker of smoking—which exclusively measures short-
term exposure. Research into the distribution of methy-
lation changes by time since smoking cessation, found
that for many CpGs, methylation levels reverted back to
levels of never smokers, but for some CpGs, hypo- and
hypermethylation were still present 30–40 years after
quitting63. Given the age of LBC1936 participants, most of
whom were in their eighth decade at time of testing,
smoking DNAm is a more informative and sensitive
biomarker of lifetime smoking. As such, this objective,
blood-based biomarker is more desirable for accurate
evaluation and stratification of smoking-related disease
risk, and has the potential to validate self-reports of
smoking behaviour. Of prime importance is that, even in
cohorts which have not collected phenotypic data on

smoking, a DNAm-based measure can be used as a proxy
for smoking exposure.

Smoking-DNAm and cognitive function
In the current study, which benefits from a compre-

hensive assessment of cognitive function, the
methylation-based biomarker of smoking better predicted
deficiencies in visuospatial function and processing speed
than either phenotypic measure (self-reported smoking
status or pack years). Smoking is a well-established risk
factor for cognitive decline64 and our results suggest that
this biomarker may improve the ability to capture the
deleterious effects of smoking exposure across major
ageing-related domains of cognitive function, and provide
valuable clues to disease pathways. The authors are una-
ware of any previous research to examine the link
between smoking-associated DNAm and risk of cognitive
decline but note that the precise regulation of DNAm is
essential for normal cognitive function65,66. DNAm
changes have been linked with the pathophysiology of
brain ageing, Alzheimer’s Disease and other types of
dementia67.

Smoking-DNAm and MRI markers of brain health
We also observed that the epigenetic smoking score was

a better predictor of decreased structural brain integrity in
older age than the phenotypic markers of smoking. The
strength of the associations between DNAm and brain
MRI indices—accounting for between 3 and 5% of the
variance in structural deficits such as reduced white
matter integrity and cortical thinning—were striking
given the time lag in measurement between baseline and
MRI assessment. Moreover, that the smoking DNAm
predictor explained variance in brain health indepen-
dently of phenotypic smoking (in the additive model) may
suggest that the methylation signatures are capturing
additional effects of smoking which have neurobiological
consequences. Previous neuroimaging studies have
demonstrated widespread structural brain abnormalities
in cigarette smokers, including ventricular enlargement68,
cortical thinning60 (using the present sample), white
matter hyperintensities69, reduced GMV70, and atrophy71.
In a large UK Biobank study, pack years of smoking was
related to a range of brain MRI measures including higher
WMH volume, lower global and regional GMV, poorer
white matter microstructure and lower subcortical
volumes72. These structural MRI measures have been
linked to an increased risk for dementia73. Differential
brain structural measures, such as we observed here with
higher DNAm, including lower overall brain volume,
smaller GMV, reduced white matter integrity, increased
WMHV, and greater cortical thinning, could indicate an
effect of chronic nicotine exposure on pathological brain
changes74. However, smoking-associated DNAm
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accounted for around double the proportion of variance
in some of these brain volume measures compared with
pack years, suggesting that a dose-response effect of life-
time nicotine exposure is less likely to be a cause, and
rather, that DNAm better captures the neurological
impact of chronic smoking.

Smoking-DNAm and health
A number of novel smoking-DNAm biomarkers have

been identified in recent years, using epigenome-wide
association studies, which have been shown to be highly
predictive for smoking-related health outcomes such as
cancer and mortality15,27,30,31,75–77. In addition to cogni-
tive and brain health, we also observed that smoking
DNAm was a strong predictor of inflammatory marker
concentrations, hypercholesterolaemia, stroke, and with
all-cause mortality after 14 years.
We found that the smoking epigenetic score explained

2–3% of the variation in circulating CRP and fibrinogen.
Smoking has a systemic impact and induces the release of
pro-inflammatory markers78. Smokers have higher levels
of CRP and Interleukin-6 (IL-6), but less is known about
how epigenetic variation such as DNAm, correlates with
chronic inflammation concentrations. Ligthart et al.79

performed a meta-analysis of EWAS of CRP and reported
strong correlations with 58 methylation sites, and other
studies report similar findings with other serum cytokines
including IL-6 and tumour necrosis factor (TNF)80.
Smoking-associated DNAm changes have previously been
found in genes involved in inflammatory networks81 but
the link between the epigenetic impact of smoking and
inflammatory marker concentrations has not yet been
evaluated in population studies. Given the crucial func-
tions that inflammation has in brain ageing, neurode-
generation, and disease, it is important to discern whether
smoking is driving the inflammatory response or whether
this association is confounded by chronic disease.
Cigarette smokers are three to four times more likely to

have a stroke82. In the current study, all three smoking
measures were associated with a history of stroke, and the
risk of stroke among those still smoking into their
seventies, was over three times that of lifelong non-smo-
kers, and in those with higher smoking DNA-methylation
values. In the LBC1936 sample, neither epigenetic
smoking nor phenotypic smoking variables were sig-
nificant predictors of cardiovascular disease, a well-
established health effect of prolonged smoking exposure.
This in contrast with many previous studies which report
associations between differential DNAm with smoking
exposure, and various coronary artery diseases9,31,37,76.
On average, smokers die 13–14 years earlier than do

non-smokers83, and differential methylation associated
with smoking has been suggested as a potential
mechanism. Zhang et al. reported clear dose-response

relationships between smoking-related DNAm and mor-
tality30, and in a further study, developed a biomarker
strongly associated with all-cause mortality, cardiovas-
cular, and cancer mortality31. Our results strongly support
an increased risk of early death with smoking-associated
DNm (also reported by McCartney et al.36), and we
showed that current smokers had a fourfold increase in
risk of death compared with lifelong non-smokers. Over
half the current smokers at baseline (age 70) had died by
follow-up approximately 14 years later, compared with
27% of ex-smokers, and 17% of never smokers. Smoking is
associated with other unhealthy behaviours84–86, and
lifestyle factors are associated with poorer health and
mortality87. Here, we also observed significantly poorer
dietary habits in those with higher smoking-DNAm
values. To a lesser extent, poorer psychosocial health
was observed in those with higher DNAm values in terms
of lower quality of life associated with one’s physical
health and environment.

Life-course predictors of smoking
Interestingly, the epigenetic signatures of smoking at

age 70 were associated with factors from early life, such as
childhood deprivation, childhood cognitive function, and
educational level. Furthermore, we showed that the var-
iance explained by these childhood factors in smoking
behaviour, were independent of phenotypic smoking.
Previous studies have suggested that environmental
influences including adversity in childhood have been
linked with stable DNAm differences that persist into
adulthood88–92. Early-life exposures (including those
associated with SES) during sensitive periods may be
stored in cells through epigenetic modifications that can
be sustained for decades93,94. It is plausible that the
accumulation of environmental exposures across the
lifespan, contributes to epigenetic change with age. An
alternative explanation could be that early-life factors,
including low childhood IQ/high deprivation, leads to
increased smoking uptake. Smoking is a strongly social-
patterned risk factor; it is more prevalent among those
with lower incomes and its association with economic,
occupational and educational levels is well documented95.
In epidemiological studies, it is often unclear whether the
observed associations are true associations between epi-
genetic smoking signatures and poor health, or whether
the associations are influenced by the socioeconomic path
of an individual across the life-course, i.e., the result of
poorer people ageing faster than more affluent people due
to the unhealthy environments to which they are
exposed96.
It is important to understand the life-course influences

on such an important health-related variable as smoking,
and we rarely have so many relevant, well-measured
variables in one sample, across most of the human life-
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course. The LBC1936 study is relatively rare in having a
direct measure of IQ from youth, multiple childhood
deprivation data, education, and adult SES, especially in
combination with both self-reported smoking and epige-
netic smoking data. As far as the authors are aware, there
have been no studies to date which have examined both
childhood and adult SES influences, on smoking DNAm
patterns. The results of the current study suggest that
individual differences in smoking behaviour in later life,
are best explained by education level rather than other
life-course predictors. This finding supports previous
studies that suggest education is the SES indicator that
shows the greatest disparity in smoking outcomes97.
However, the causal pathways between education and
smoking are complex and subject to confounding from
social networks, risk preferences and other factors. In
addition, the initiation of regular smoking generally
occurs before the completion of education. On the other
hand, support for educational gradients in smoking come
from those who argue that more schooling leads to the
acquisition of important skills and resources that impact
health management98.

Strengths and limitations
The key strengths of our study include the use of a

wide (almost ‘pheWAS’) array of traits examined in
relation to smoking in a large single, narrow-age cohort
study with DNAm. Given the age of participants, the
DNAm score for smoking was based on many years of
exposure, and is likely to be a more sensitive marker
than in younger cohorts. Future analyses of longitudinal
changes in smoking-DNAm in the LBC1936 are possible
given that the study is ongoing. In terms of limitations,
we must consider the causative versus correlative role of
DNAm with respect to its relationship with age. It may
be that the common changes in age-related epigenetic
mechanisms across individuals are important con-
tributors to the ageing process, rather than a con-
sequence. Cotinine data were not available for this
cohort, and therefore we were unable to compare the
predictive capability of smoking DNAm with another
smoking biomarker, or to validate self-reports of non-
smoking. However, a single measure of cotinine con-
centrations is insufficient to reclassify participants into
smoking categories given that it measures recent
smoking only (previous 15–20 h), and LBC1936 parti-
cipants (many of whom did not smoke daily) who
refrained from smoking on the day of assessment or the
day before, would have misleading data. Finally, the
cross-sectional nature of the majority of our analyses
limits our ability to make causal inferences and to study
the time course of smoking effects. To that end, future
studies with longitudinal data would be desirable to
extend these findings in the current sample, and in other

datasets, may partially explain the variable susceptibility
to the health effects of cigarette smoking.

Conclusions
Our study supports the potential utility of a smoking

DNAm score, derived from genome-wide data, as a bio-
marker of lifetime smoking exposure, and for contributing
toward the prediction of important ageing-related health
outcomes in later life. In particular, the smoking methy-
lation biomarker better predicted poorer cognitive func-
tion and brain structural integrity, chronic inflammation,
stroke and mortality in later life, compared with much-
used phenotypic measures of smoking. It may help to
identify novel health impacts, improve adjustment for
smoking in research studies, and shed light on the
molecular mechanisms by which smoking predisposes to
chronic mental and physical disease, and less good brain
and cognitive health. In terms of clinical impacts, a
methylation marker holds promise for better risk pre-
diction in precision medicine. A useful implication of the
present study is that it suggests that one may obtain an
indication of smoking exposure and its implications even
in studies which have not collected smoking data.
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