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INTRODUCTION

“The advent of science and new discoveries has unearthed the 
wonder lying within us. The very essence of life, the wondrous 
molecules defending us and laboring hard for every breath 
we take.”

Diverse environmental and physiological factors are known 
to induce a set of genes encoding special protective molecules 
known as “molecular chaperones” within our cells. This 
phenomenon is called as the heat shock response (HSR), which 
is an ordered genetic response.[1] The HSR was first discovered 
by Ritossa,[2] who observed a pattern of Drosophila salivary 
gland chromosome puffs which were induced as a response 
phenomenon to transient exposure to elevated temperatures. 
Since then, many investigators have proven it to be indeed 
ubiquitous and highly conserved  –  in all organisms from 
prokaryotes to eukaryotes, – an essential defense mechanism, 
protecting the cells from a wide range of harmful conditions.[3,4]

There are many “stressors” that can presumably activate the 
transcription of these heat shock genes. The list includes 

various acute and chronic conditions such as elevated 
temperatures, heavy metals, small molecule chemical 
toxicants, infection and oxidative stress. Mutations and 
environmental influences including inflammation, ischemia, 
tissue wounding and repair, cancer and neurodegenerative 
diseases are also associated with the aberrant expression of 
heat shock proteins (HSPs).[1,5] Once expressed, varied roles 
are modulated via these molecules [Figure 1].

At the molecular level, the cellular response to stress 
is demonstrated by the induced synthesis of HSPs, of 
which molecular chaperones and proteases represent two 
well‑characterized families of proteins. The molecular 
chaperones chiefly function in protein folding, translocation 
and refolding of intermediates, whereas the proteases such 
as the ubiquitin‑dependent proteasome, ensure that damaged 
and short‑lived proteins are degraded or destroyed in an 
effective manner. Under “stressed” conditions the molecular 
chaperones are directed toward the capture of folding 
intermediates to prevent misfolding and aggregation and 
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to facilitate refolding or degradation.[6‑8] HSPs have been 
classified into six major families according to their molecular 
sizes: Hsp100, Hsp90, Hsp70, Hsp60, Hsp40 and small 
HSPs  (sHSPs) with sizes ranging from 15 kDa to 30 kDa. 
High molecular weight HSPs are also known as adenosine 
triphosphate  (ATP)‑dependent chaperones. They assist in 
the folding of newly synthesized or damaged proteins in an 
ATP‑dependent active process. In contrast, sHSPs work in an 
ATP‑independent fashion.[9] Members of each gene family are 
constitutively expressed, inducibly regulated and/or targeted 
to different compartments [Table 1].

The molecular analysis of HSP genes in eukaryotes have also 
identified the heat shock element (HSE). This is a promoter 
element essential for heat shock inducibility in response to 
the previously mentioned various conditions of stress and 
comprises multiple adjacent inverted arrays of the binding 
site (5_‑nGAAn‑3_). HSEs are positioned at various distances 
upstream of transcription initiation; in vertebrates, inducible 
transcription requires the de novo binding of heat shock 
transcription factors  (HSFs) transiently to the HSEs.[10,11] A 
family of HSF regulate the HSR at the transcriptional level.[12] 
Of the three human HSF genes, HSF 1, ‑2 and ‑4; HSF1 is the 
best characterized and essential for the HSR. Under normal 
conditions, HSF1 largely exists as a repressed monomer in the 
cytoplasm and is thought to be bound, directly or indirectly, by 
the protein chaperones Hsp90, Hsp70 and Hsp40.

It is a multi‑domain stress‑activated transcription factor 
consisting of an amino‑terminal helix, winged‑loop helix 
DNA binding domain, three leucine zipper domains (LZ1‑3) 
that form coiled‑coil interactions to facilitate HSF1 
multimerization, a central regulatory domain that is extensively 
modified by phosphorylation, acetylation and sumolyation, an 
additional LZ4 domain and a carboxyl‑terminal transcription 
activation domain.[13] Under varied conditions of stress 
the HSF1 derepresses, trimerizes and accumulates in the 
nucleus. HSF1 trimers subsequently bind with high affinity 

to the previously mentioned HSEs. These consist of inverted 
repeats of consensus sequence nGAAn. The binding occurs in 
varied orientations.[14] This then leads to an up‑regulation in 
the expression of HSPs in the cell‑HSR. The elevated levels 
of protective and adaptive response, also known as induced 
thermotolerance, ensures that the cell responds rapidly to 
repeated sub‑acute challenges by diverse conditions of cell 
stress.[15] This lead us to propose that the induction of the 
HSR may have broad therapeutic benefits in the treatment of 
various types of tissue trauma and disease.

Regulation of heat shock transcription factors

Apart from induction by misfolded protein aggregates, altered 
intracellular redox status caused by changes in temperature 
or other stresses have been suggested to be involved in the 
activation of mammalian HSF1.[16] A role for stress‑specific 
pathways in HSF1 activation has also been suggested.[17,18] 
The balance of kinase and phosphatase activities acting on 
HSF1 is of fundamental importance to the regulation of the 
HSR, as suggested by mathematical modeling.[19] HSF1 is 
negatively regulated by feedback control through interaction 
with Hsp70 and Hsp90.[12] In cells expressing high levels 
of these chaperones, the inducible expression of heat shock 
genes is affected. Lately, HSF1 as well as other HSFs have 
also shown to be able to interact or cooperate with signal 
transducers and activators of transcriptions (STATs) (STAT1 
and STAT3) or nuclear factor interleukin‑6 family members. 
It has been concluded that STAT1 can interact with p53 and 
that both of these factors are able to modulate the effects of 
HSF1 on HSP expression.[20]

Heat shock proteins as the “coordinating mediators 
of immunology”

The coordinated response by the innate immunity and the 
adaptive immunity is essential for efficient immune response. 
Taking antitumor immunity as an example, the first line of 
defense is mediated by natural killer cells which are part of 
the innate immunity.[21,22] These cause lysis of the tumor cells 
and the cross‑presentation of antigens by dendritic cells (DCs) 
to prime adaptive T‑cells. Activated T‑cells in turn release 
cytokines or express cluster of differentiation (CD40) ligand 
on their cell surface to reciprocally activate DCs. It is suggested 
that HSPs may play important roles in both innate and 
adaptive immunity. DCs are activated by a range of microbial 
molecules, one such being lipopolysaccharide (LPS) which in 
turn trigger adaptive T‑ and B‑cell immunity.[23]

Studies thus far suggest that HSPs could be such endogenous 
molecules that activate DCs in manner similar to these 
microbial antigens.[24] The initial clues came from a study on 
the immune responses to purified endoplasmic reticular (ER) 
HSP, gp96,[25] which concluded that the interaction of 
purified gp96‑peptide complexes with antigen presenting 
cells (APCs), such as macrophages or DCs, leads to binding 

Figure 1: Activation of heat shock proteins and its varied effector 
functions
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of gp96‑peptide complexes to common HSP receptor, CD91, 
on APCs,[26,27] followed by its internalization, processing 
of the gp96‑chaperoned peptides and their re‑presentation 
by major histocompatibility complex I  (MHC I) and MHC 
II molecules. The MHC‑peptide complexes act as “signal 
one” to stimulate the cognate CD4−  and CD8−  T‑cells. 
Also, the interaction of gp96 with APCs causes activation 
and maturation of DCs, which secrets pro‑inflammatory 
cytokines and provides costimulatory signals (“signal two”) 
for effective T‑cell priming. These findings have been proven 
correct using cells expressing gp96 on the cell surface.[28] It 
was found that cell surface expression of gp96 by tumor cells 
leads to DC maturation and cross priming of tumor‑specific 
T‑cells [Figure 2].

Liu has substantiated the role of gp96  (endoplasmin) as 
an important chaperone for inflammation and cancer. 
It has been well‑established as a mediator in inducing 
toll‑like receptor  (TLR) signaling when challenged with 
pathogen‑associated LPS molecules, thus leading to 
inflammatory responses. Its role in immunology can also be 
verified by the fact that gp96 is induced 10‑folds on B‑cell 
activation.[29]

The immunological features of HSPs have been summarized:
•	 HSPs chaperone interact with immunologically important 

molecules such as MHC I,[30] immunoglobulin’s,[31] 
T‑cell receptors and TLRs[32]

•	 HSPs chaperone bind cellular peptides
•	 Extracellular HSPs serve as cytokines to activate the 

innate functions of APCs, such as DCs, because of their 
binding to specific receptors on APCs

•	 HSPs can deliver their chaperoned peptides from 
non‑APCs to MHC molecules of APCs and

•	 Depending upon different modes of tissue damage, the 
release of HSPs may play immunoregulatory roles in 
in vivo.

Thus, they were hailed by some as the immune system’s“swiss 
army knives”.[33]

Role of heat shock proteins in antigen processing 
and presentation

Formation of stable MHC complexes capable of presenting 
antigenic peptides to T‑cells depends on their proper folding 
and assembly in the ER, as well as on the availability of 
peptide ligands. Folding and assembly of both MHC class I 
and class II molecules is initiated in the ER, whereas the site 

Table 1: The HSP family and its varied functions
Family Location Function
Hsp100 Cytosol Role in stress tolerance; helps the resolubilization of heat‑inactivated proteins from insoluble aggregates
Hsp90 Cytosol, ER, 

mitochondria, 
nucleus

Role in signal transduction (e.g., interaction with steroid hormone receptors, tyrosine kinases, serine/
threonine kinases); refolds and maintains proteins in vitro; autoregulation of the heat shock response; 
role in cell cycle and proliferation

Hsp70 Cytosol, nucleus, 
mitochondria, ER

Roles in lambda phage replication; autoregulation of the heat shock response; interaction with nascent 
chain polypeptides; functions in interorganellar transport; roles in signal transduction; refolds and 
maintains denatured proteins in vitro; role in cell cycle and proliferation; antiapoptotic activity; 
potential antigen‑presenting molecule in tumor cells

Hsp60 Cytosol, 
mitochondria

Refolds and prevents aggregation of denatured proteins in vitro; may facilitate protein degradation 
by acting as a cofactor in proteolytic systems; role in the assembly of bacteriophages and Rubisco 
(an abundant protein in the chloroplast)

Hsp40 Cytosol/nucleus Essential co‑chaperone activity with Hsp70 proteins to enhance rate of adenosine triphosphatease 
activity and substrate release

Small 
Hsps

Cytosol Suppresses aggregation and heat inactivation of proteins in vitro; confers thermotolerance through 
stabilization of microfilaments; antiapoptotic activity

Adapted from: Jolly and Morimoto. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 
2000;92:1564‑72. HSPs: Heat shock proteins, ER: Endoplasmic reticular

Figure 2: Role of heat shock proteins in cancer: Heat shock proteins 
(e.g., gp96) stimulating anticancer immunity. The interaction of gp96 
with its specific receptors, such as CD91 on antigen presenting cells is 
followed by cross-presentation of antigens to major histocompatibility 
complex class I and increase in the release of co-stimulatory molecules 
such as B7. These dendritic cells subsequently migrate to the draining 
lymph nodes and prime antigen-specific naive T-cells. Those CD8+ 
T-cells (helped by CD4+ T-cells) exit from lymph into the tumor sites for 
lysis and clearance of tumors in an antigen specific manner
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of peptide loading depends on the intracellular compartment 
in which degraded protein fragments are sampled.[34] MHC 
class I molecules are loaded in the ER with ligands derived 
from endogenous proteins present in the cytosol (viral, tumor 
or self‑antigens). Peptides from the cytoplasm are transported 
into the ER by a specialized transport system, termed the 
transporter associated with antigen processing  (TAP). In 
contrast, MHC class II molecules bind ligands of extracellular 
origin in the endosomal compartment. To prevent premature 
loading of the MHC class II molecule in the ER, its binding 
site is blocked by the invariant chain, which is released in 
the endosome, so that loading of MHC class  II molecules 
with endosomal peptides becomes possible.[35] Several lines 
of evidence suggest that HSP plays a role in MHC‑antigen 
processing.[36‑39] Folding and assembly of MHC‑peptide 
complexes are promoted by molecular chaperones, which 
holds true for many other proteins. Members of the Hsp70 
family are critically involved in the processing and presentation 
of antigens.[37,39‑42] Binding immunoglobulin protein  (BiP) 
and another endoplasmic chaperone, calnexin, promote the 
assembly of both MHC class I and class II molecules in the 
ER.[43,44] Furthermore, for BiP and other chaperones such as 
gp96 and Hsp70 (ERp72), an interaction with misfolded MHC 
class II molecules has been demonstrated, resulting in their 
retention in the ER.[45]

Srivastava et  al. have provided substantial evidence that 
peptide transport from the proteasome to the ER and 
subsequent peptide loading of MHC class  I molecules in 
the ER depend on a battery of HSP including cytosolic and 
endoplasmic members of the Hsp70 and Hsp90 families.[46,47] 
Recent studies have revealed that gp96 in the ER acts as a 
peptide acceptor, receiving peptides of cytosolic origin 
after their transport through the ER membrane by TAP 
molecules.[48] Subsequently, gp96‑peptide complexes bind to 
MHC and the peptides are then translocated from gp96 to 
MHC class I molecules in an ATP‑dependent manner.[47] Due 
to its proteolytic activity, gp96 may also participate in further 
trimming of MHC class I peptides in the ER.[49,50]

The immunological roles of HSPs have come to light 
primarily because of their involvement in antitumor immunity 
and the ensuing implications for antigen presentation and 
re‑presentation. According to Li et  al., HSP polypeptides 
interact with macrophages, DCs, T‑cells and platelets 
through known and yet to be discovered receptors. HSP/APC 
interaction leads to the secretion of cytokines and chemokines 
and to the maturation and migration of DCs, possibly as a 
result of the translocation of nuclear factor‑kappa beta into 
the nucleus. They are effective in antigen presentation via the 
MHC I and MHC II pathway.[30]

Recently, Javid et al. have shown similarities in the peptide 
binding between HSP70 and MHC I molecules and detailed 
on the role of Hsp70 and Hsp90 in antigen processing and 
presentation in an ATP‑dependent manner.[51]

Autoimmune diseases: Heat shock proteins role in 
breaking immune tolerance: A hypothesis

The beauty of the immune system lies in its ability to 
mount effective immune responses against pathogens, while 
remaining nonresponsive to more abundant and normal 
self‑antigens.

For T‑lymphocytes, the vast majority of potentially 
self‑reactive cells are eliminated during development in 
the thymus by what is called as negative selection.[52,53] 
When self‑reactive T‑cells do migrate into the periphery, 
multiple mechanisms play pivotal role to prevent 
these cells from inappropriate activation, including 
antigen sequestration, clonal exhaustion, anergy and 
antigen‑specific suppression or regulation.[54] The prevalent 
hypothesis regarding antigen‑driven peripheral tolerance 
is that antigen  (signal 1) alone without the presence of 
costimulatory molecules (signal 2) leads to antigen‑specific 
unresponsiveness or anergy.[55,56] The default pathway for 
immunological response to tumor thus might be tolerance 
attributable to lack of signal 2. This tolerance has been 
shown to be overcome by transfecting tumor cells with 
costimulatory molecules,[57,58] introducing proinflammatory 
cytokines/chemokines to the tumors,[59,60] administration of 
systemic cytokines or signal 2 agonist[61,62] and other means 
to activate/modulate the function of DCs.[63,64] Since HSPs 
are capable of activating DCs to up‑regulate signal 2, in 
addition to delivering signal 1 through cross‑presentation 
of HSP‑chaperoned peptides, it is justified to hypothesize 
that HSPs can break peripheral tolerance against tumor 
associated antigens.

Under the condition of stress or “danger,” HSPs are not 
only increased in expression level  (for the purpose of 
cytoprotection and antigen presentation) but could also 
undergo dynamic redistribution to gain access to the 
extracellular environment. Their cell surface expression 
or secretion might possibly lead to sending an “ON” 
signal to activate the immune system and thus break down 
peripheral tolerance. Liu et al.[65] and previously Zügel and 
Kaufmann[66] have beautifully illustrated the cytokine role 
of these molecules.

Heat shock proteins in disease

Neurodegenerative disorders like Alzheimers, Huntington 
disease, spinocerebellar ataxias, Parkinson’s disease, etc., 
have been linked to the aberrant expression of HSPs.[67] 
Various cell imaging experiments have shown an increase in 
the level of Hsp70 in relation to the huntingtin aggregates.[68] 
This suggests that these chaperone interactions may reflect 
the efforts of Hsp70 to direct the unfolding and dissociation 
of substrates from the aggregate and dampen its damaging 
effects.[69]
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Relation to aging

The HSR has recently been implicated in the regulation of 
longevity in Caenorhabditis elegans. RNA interference 
experiments show that a decrease in sHSPs and other HSPs 
leads to a decrease in longevity.[70,71] Therefore, in addition to 
the prevention of diseases of aging, increased levels of HSPs 
may lead to increase in life span.

Heat shock proteins and cancer

Tumor cells typically express higher levels of HSPs 
compared with nontransformed cells, leading to the 
suggestion that the aberrant expression of chaperones is 
associated with the tumorigenic state.[72] An intriguing 
proposition is that tumor cells are dependent on elevated 
levels of HSPs, perhaps is a generalized mechanism to 
suppress cumulative mutations that would otherwise result 
in the expression of deleterious proteins. The chronic 
upregulation of HSPs could also promote cancer by the 
anti‑apoptotic functions demonstrated by all chaperones. 
Hsp70, Hsp40, Hsp27 and Hsp90 act at multiple points 
in apoptosis, including inhibition of c‑Jun NH2‑terminal 
kinase activation, prevention of cytochrome C release, 
regulation of the apoptosome, prevention of lysosomal 
membrane permeabilization and prevention of caspase 
activation.[73] Therefore, compounds that downregulate 
the HSR and chaperone levels, when given in combination 
with chemotherapy, may prove beneficial for cancer 
treatment.

Therapeutically active small molecules that regulate HSF1 
or modulate chaperone activities could benefit diseases that 
have in common alterations in protein conformation that cause 
an imbalance in protein homeostasis. The classes of small 
molecules that modulate the HSR are represented by a diverse 
set of chemically unrelated compounds consistent with the 
various environmental and physiological signaling pathways 
that induce the HSR [Table 2].[74‑84]

Heat shock proteins as effective cancer vaccine

Tumor‑derived HSPs have been shown to be effective cancer 
vaccines not only for prophylaxis against cancers but also 
for the treatment of existing cancers in many preclinical 
tumor models.[25,85] These have prompted systemic clinical 
testing of tumor‑derived HSPs for the treatment of human 
malignancy.[86,87] The current effort has been focused mainly 
on gp96 and Hsp70. Unlike traditional cancer drugs, 
HSP‑peptide vaccine is individually based and tailored toward 
an individual tumor of an individual patient.[86] This is based 
on two reasons: (a) HSPs chaperone is antigenic fingerprint 
of cells from which they are isolated and (b) tumor‑protective 
antigens are individually distinct. As early as in the 1940s, it 
was appreciated that tumors were antigenically distinct from 
one another, most likely because of the subsequent realization 
of the differences in peptide pools among different tumors, 
as a result of random mutations of DNAs in the transformed 
cell. Depending on the tumor types, grade, differentiation 
stage or genetic background, peptide pools that are associated 
with HSPs should also be individually unique. Therefore, 
to customize the tumor vaccine for the patient, tumor 
antigens  (HSP‑peptide complexes) should be effectively 
derived from autologous tumors of this patient and not from 
those of someone else. More than 300  patients have been 
treated with HSP vaccines thus far.[86] The diseases include 
lymphoma, renal cell carcinoma, melanoma, colorectal cancer, 
gastric cancer, pancreatic cancer, breast cancer and others.

On monitoring clinically and immunologically, no significant 
toxicities including the generation of autoantibodies have 
been reported.

The ability of human melanoma‑derived Hsp70 to stimulate 
autologous melanoma‑specific T‑cells for producing 
interferon‑gamma were demonstrated using peripheral 
monocytes pulsed with Hsp70 as targets.[87,88] This makes us 
ponder further on the prospect of using this modality for next 
phase clinical trials in advanced melanoma.

Table 2: Activators and inhibitors of the HSR
Affecting 
molecule

Subgroups Target Study phase Reference 
number

Activators Protein synthesis inhibitor  HSPs: Mol wgt=110,000, 
87,000, and 70,000

Preclinical: One dimensional geelectrophoresis 
studies

[74]

Proteasome inhibitors HSF‑1, Hsp70 Preclinical: Phosphorylation studies [75]
Serine protease inhibitor HSF1 Preclinical: Enzyme‑linked immunosorbent assay [76]
Hsp90 inhibitors Hsp90 Phase I, II, III clinical trial [77]
Inflammatory mediators HSF1 Preclinical: Electro mobility shift analysis [78,79]

Co‑inducers Sodium salicylate 68‑kDa HSP Preclinical: Two‑dimensional gel electrophoresis [80,81]
Indomethacin HSF1 Preclinical: Gel mobility shift analysis [82]

Inhibitors Flavonoids HSF‑HSE complex Preclinical: Gel electrophoresis study [83]
Benzylidene lactam compounds Hsp90 Preclinical: Immunoblot analysis [84]

HSF: Heat shock transcription factor, HSPs: Heat shock proteins, SDS‑PAGE: Sodium dodecyl sulfate‑polyacrylamide gel electrophoresis, HSE: Heat shock 
element, HSR: Heat shock response
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A detailed account of these findings have been reviewed by 
Jolly and Morimoto.[89]

Heat shock proteins 70 in oral lichen planus: Role in 
pathogenesis and proposal of a therapeutic model…

Oral lichen planus  (OLP) has been the focus of study for 
its proposed potential malignant nature. Sugerman et  al. 
drew comparisons in HSP staining among OLP, dysplastic 
OLP, normal oral mucosa and nonspecific oral ulceration.[90] 
The expression of HSP was prominently noticed in 94% of 
their cases. Hsp70 expression was found throughout the full 
thickness of the epithelium among 26 of the 30 samples of 
clinically and histologically confirmed cases of OLP. These 
were quantitatively and qualitatively analyzed by myself and 
colleagues in a previous study.[91] This finding was justified 
since these molecules are essential protein folding tools in 
the cellular machinery.[91‑93] The normal, nondiseased mucosa 
of the oral cavity shows a faint expression of HSPs in the 
epithelium. This has been previously confirmed in literature 
by various studies conducted by Bramanti et  al.[94] and 
Seoane et  al.[95] The expression of HSPs was found to be 
de‑regulated in OLP.

The basal cell zone in this particular premalignant condition 
is an apparent target for destruction by the sub epithelial 
T‑lymphocytic population  (CD8+).[96,97] The raised index of 
the HSPs here re‑asserts the effect of “stress of dying”. HSPs 
probably represent the antigenic proteins that may potentially 
be involved in both the initiation and the persistence of the 
autoimmune lymphocytic response of lichen planus.[91,94,97]

In contrast, Chaiyarit et al. confirmed the expression of Hsp60 
in the basal layer of OLP, but found no significant difference 
in the expression of Hsp70 between the OLP and oral fibroma 
groups.[98] Bramanti et al.[94] and Seoane et al.[95] reported that 
Hsp70 expression in OLP, when compared to the normal 
mucosa were slight and inconclusive.

There is literature pertaining to anticancer research that suggests 
the usage of inhibitors of the HSPs as a novel tool in cancer therapy. 
The benzoquinoid ansamycin antibiotics, first isolated from the 
actinomycete Streptomyces hygroscopicus var. geldanus var. 
nova, include geldanamycin and its semi‑synthetic derivatives, 
17‑allylamino‑17‑demethoxygeldanamycin(17‑AAG) 
and water‑soluble 17‑ demethylam inoethylamino ‑17 
‑demethoxygeldanamycin. These inhibitors work by 
interacting specifically with a single molecule, Hsp90; cause 
destabilization and eventual degradation of multiple Hsp90 
client proteins. The first‑in‑class Hsp90 inhibitor, 17‑AAG is 
currently in phase II clinical trials. About 20 interventional 
studies are in clinical phase I and II trials, delivered either 
orally or via IV route. However, direct tumor monitoring either 
by biopsy or noninvasive methods is critical to optimal clinical 
efficacy.[99,100]

New alternatives and synthetic analogs based on 
17‑AAG  (17‑amino‑17 demethoxygeldanamycin, in phase 
III clinical trial) backbone have been developed which 
have overcome in  vivo inactivity, are safer and easier to 
produce.[101]

Lately, as there is evolving evidence that HSPs are present 
in the extracellular environment and identification of HSP 
and antibodies directed against it in normal individuals 
has shown that reactivity to these does not necessarily 
reflect adverse, pro‑inflammatory responses and that the 
promotion of reactivity to self‑HSPs can downregulate 
pathogenic processes, all suggesting a potential role for 
HSPs as therapeutic agents, rather than as therapeutic 
targets.[102,103] The potential therapeutic value of HSPs 
purified from appropriate tissues lies in their capacity to 
induce pro‑inflammatory responses at low concentrations 
and induce regulatory immunity at high doses. The key lies 
in delivering the appropriate peptide.[104]

Recent studies

Over the past few years, the research in the field of HSR has 
intensified. Evaluation to establish the relationship between 
Hsp90 and Hsp70 was performed by Nakamoto et al.[105] A 
mutual supportive function, helping each other in protein 
refolding was found between the two chaperones.

Messmer et al. reestablished the in  vivo immunogenic role 
of HSPs.[106] Dysregulation in the intracellular expression of 
these molecules has been linked to functional and pathological 
aggregate formations.[107]

Strong pathological correlations[108] and association between 
autoimmunity and new related autoimmune diseases has been 
resurfacing in more recent literature.[109,110] Extensive database 
has accumulated to justify the role of these molecules in 
carcinogenesis and tumor advancement.[111,112]

CONCLUSION

Surprising immunological features have been linked with 
HSPs. Their functioning in the cells has both a role in 
normal as well as pathological states. In the current context, 
understanding the implications of these wonderful molecules 
is an ardent task, a challenge to be taken up in full swing. 
Using this technology for immunotherapy should involve 
designing well‑planned customized therapies. More clinical 
studies should be conducted to be sure how to use these for 
battling against diseases.
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