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Abstract

Background: High dimensional case control studies are ubiquitous in the biological sciences, particularly genomics.
To maximise power while constraining cost and to minimise type-1 error rates, researchers typically seek to replicate
findings in a second experiment on independent cohorts before proceeding with further analyses. This can be an
expensive procedure, particularly when control samples are difficult to recruit or ascertain; for example in inter-disease
comparisons, or studies on degenerative diseases.

Results: This paper presents a method in which control (or case) samples from the discovery cohort are re-used in a
replication study. The theoretical implications of this method are discussed and simulated genome-wide association
study (GWAS) tests are used to compare performance against the standard approach in a range of circumstances.
Using similar methods, a procedure is proposed for ‘partial replication’ using a new independent cohort consisting of
only controls. This methods can be used to provide some validation of findings when a full replication procedure is
not possible.
The new method has differing sensitivity to confounding in study cohorts compared to the standard procedure,
which must be considered in its application. Type-1 error rates in these scenarios are analytically and empirically
derived, and an online tool for comparing power and error rates is provided.

Conclusions: In several common study designs, a shared-control method allows a substantial improvement in
power while retaining type-1 error rate control. Although careful consideration must be made of all necessary
assumptions, this method can enable more efficient use of data in GWAS and other applications.
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Background
High-dimensional case-control studies have become a
mainstay of investigation of pathophysiology in complex
diseases and traits. An important part of their analysis is
the process of replication [1], in which the results of a
high-dimensional study are used to inform the design of
a second study at a subset of the original variables, with a
joint analysis used to determine overall association.
Replicating studies in this way has the advantage of

increasing the effective study sample sizes without requir-
ing measurement of all variables in all samples. It also
serves to protect against false-positives due to systematic
errors in the original datasets, by re-testing association in
a second nominally independent dataset.
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Replication has a significant cost, and can require large
numbers of samples, especially when associated variables
have small effects (i.e. [2]). There is therefore a need to
minimise the number of additional samples which need
to be analysed. This paper presents a method to perform
replication by combining controls in both the original
‘discovery’ and second ‘replication’ datasets, potentially
reducing the number of new samples required. Shared-
control approaches can improve study efficiency in many
related applications in which studies are compared [3–8].
Results from original and replication datasets for which

some or all controls are shared cannot be directly com-
pared due to the correlation between test statistics
directly resulting from shared controls even under the null
hypothesis [5]; use of the same thresholds in a shared-
control design as used in an independent-controls design
will lead to higher type-1 error rates. This paper demon-
strates a simple adaptation to a standard design to account
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for the changed correlation structure and retain control of
type-1 error rate, only requiring a change to one p-value
threshold.
An important purpose of replication is control

against false-positives arising from variables for which
confounding causes an apparent case-control difference
in one of the discovery- or replication- phase experiments,
but not the other. The action of sharing control samples
results in a different spectrum of sensitivity to variables
of this type. It necessitates a sacrifice of type-1 error
rate control in variables for which confounding affects
the discovery-phase control cohort, but improves type-1
error rate control in variables for which confounding
affects the replication-phase control cohort. The type-1
error rate is largely equivalent to an independent-controls
design in variables affected by confounding in either
case cohort.
The new spectrum of false positive rates can be advan-

tageous in circumstances where control samples in the
replication cohort are less well-ascertained than those in
the discovery cohort. This may be the case in studies on
degenerative disease, where control ascertainment is gen-
erally uncertain, and population-sourced controls may be
used for replication. The shared-control design can reduce
power losses from mis-specified controls in the replica-
tion cohort, as well as reducing false-positive rates caused
by confounding in the cohort.
When used with shared cases instead of controls, this

method can be adapted to a ‘partial replication’ proce-
dure where only a new control set is used. Although
not equivalent to a full replication in an independent
dataset, the procedure enables improvement in type-1
error rates and control over confounding. This is appli-
cable in studies on rare traits, where all available sam-
ples need to be included in the discovery analysis for
adequate power.
Throughout this paper, GWAS terminology will be

used (single-nucleotide polymorphisms (SNPs), allele fre-
quency, variants etc) although the method is applicable
to any high-dimensional case control study. ‘Controls’ will
be considered to generally be samples unaffected by a
disease or trait of interest, although the method can be
applied with case/control labels swapped, or applied to
comparisons between subgroups of a case group.
Differences in power (at fixed type-1 error rate)

between standard (independent-controls) and new
(shared-control) methods are established by considering
hypothesis tests typical of those found in GWAS.
Asymptotic analytical results are established where
possible, but all type 1/type 2 error rates are readily
tractable empirically to good accuracy given study sizes
and proposed p-value thresholds, and a tool is provided
to do this at https://wallacegroup-liley.shinyapps.io/
replication_shared/.

Results
Overview of method
We assume a GWAS dataset of a set of cases C1 and con-
trols C0 used in a ‘discovery’ phase of a GWAS or similar
study, and corresponding sets of cases and controls C′

1, C′
0

in the replication phase. We assume that C0 and C1 are
genotyped at a set of SNPs S and C′

0, C′
1 at a set S′ ⊆ S.

For each SNP we designate μ1, μ0, μ′
1, μ′

0 as the popu-
lation minor allele frequency in the corresponding group,
and m1, m0, m′

1, m′
0 as the observed allele frequency (so

E(mi) = μi). We designate two null hypotheses; H∪
0 :

(μ1 = μ0) ∪ (μ′
1 = μ′

0) and H=
0 : (μ1 = μ0 = μ′

1 = μ′
0),

noting that H∪
0 ⊇ H=

0 . In a typical conservative GWAS
approach, we seek to test against H∪

0 , since μ1 �= μ0 or
μ′
1 �= μ′

0 may hold at non-disease associated SNPs due to
confounding in the original or replication studies respec-
tively. The alternative null hypothesis (μ1 = μ0 ∩ μ′

1 =
μ′
0), which implies H=

0 and is implied by H∪
0 , is more

appropriate than H=
0 in cases where replication is per-

formed in a different population than discovery. However,
this situation is not adaptable to a shared-control design.
A typical two-stage genetic testing procedure [9], which

we will refer to as method A, begins by comparing geno-
types of C1 and C0 at SNPs S generating p-values pd
(discovery). A subset S′ of SNPs reaching putative sig-
nificance level pd < α are genotyped in C′

0 and C′
1,

with genotypes compared to generate p-values pr (repli-
cation stage). Finally, genotypes are compared between
C0 ∪ C′

0 and C1 ∪ C′
1 at SNPs S′ to generate p-values

pm (meta-analytic stage). SNPs are designated as ‘hits’ if
pd < α, pr < β , pm < γ for some β , γ , and all effects
have the same direction. The values α, β , γ may not be
explicitly stated in some study designs, although they are
usually implicitly present. This is discussed further in the
“Choice of thresholds” section below.
The main modification proposed in this paper, denoted

as method B, differs at the replication stage in that C′
1 is

compared withC0∪C′
0 at S′ instead of justC0 (Fig. 1). The

p-values resulting from the modified replication stage are
termed ps, and the criterion to designate a hit changed to
pd < α, ps < β∗, pm < γ , with all effects in the same
direction. The threshold β∗ is chosen to conserve type-
1 error rate between methods (see “Methods” section
and Additional file 1: Appendix 1). This requires estima-
tion of systematic correlation between Z scores, which
may be estimated either empirically or (in some cases)
analytically.
A second modification, denoted method C, combines

C0 and C′
0 at both the discovery and replication phase (see

Fig. 1). This is analogous to a situation in which only a sin-
gle control cohort is available, and a choice must be made
to split it between discovery and replication procedures or
to use it for both. In this case, C0∪C′

0 is compared with C1
at SNPs S in the discovery phase to produce p-values pc,

https://wallacegroup-liley.shinyapps.io/replication_shared/
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A B C
Fig. 1 Diagram of methods a, b, and c. Method b differs by comparing C′

1 to pooled C0 and C′
0 at the replication stage to generate p-value Ps

instead of Pr . Method c also pools controls at the discovery phase, comparing C1 to pooled C0 and C′
0 to generate p-values Pc instead of Pd . A ‘hit’ is

declared in method a if Pd < α, Pr < β , Pm < γ , in method b if Pd < α, Ps < β∗ , Pm < γ and in method c if Pc < α, Ps < β⊥ , Pm < γ

thenC0∪C′
0 is compared withC′

1 at SNPs S′ at the replica-
tion phase and compared withC1∪C′

1 at themeta-analytic
stage to produce p-values ps and pm as before. A hit is
determined by pc < α, ps < β⊥, pm < γ , with all effects
in the same direction. Again, β⊥ is chosen to maintain the
type-1 error rate between methods.

General properties
For SNPs in H=

0 , the overall type-1 error rate is conserved
between methods by the definition of β∗, β⊥ (Eq. 4) at
a level P0. It is shown in Additional file 1: Appendix 2.2
that β > β∗ > β⊥. For SNPs in H∪

0 \ H=
0 the type-

1 error rates differ between methods. Such SNPs may
be characterised by the group(s) amongst C0, C1, C′

0, C′
1

in which their expected minor allele frequency (MAF) is
aberrant from the expected MAF in the population which
the group ostensibly represents. ‘Aberrance’ is taken to
mean an incorrect expected value from systematic mea-
surement error or uncorrected confounding, rather than
random deviance around a correct expected value.
Bounds on type-1 error rates with aberrance in each

group are shown in Table 1. Methods B and C neces-
sitate sacrificing bounds on error rates with aberrance
in C0 and C0,C′

0 respectively. The bound on error with
aberrance in C′

1 improves through methods A-C. In the
“Methods” section, it is shown that the type-1 error with
aberrance in C′

0 decreases from methods A to B, and the

Table 1 Upper bounds on type 1 error rates with aberrance in
cohorts, with β > β∗ > β⊥

Aberrant

None C0 C′
0 C1 C′

1

M. A P0 β α β α

M. B P0 1 α β∗ α

M. C P0 1 1 β⊥ α

error with aberrance in C′
1 increases from A through C,

although the upper bound is the same for both.

Bias in effect size estimates
If a set of variants in a study are selected based on
p-value (either by ordering all p-values and selecting
some number, or by choosing all with a p-value below
some threshold), the observed case-control odds ratios at
those variants are upwards-biased when used as estimates
of the true odds-ratios of these variants between cases
and controls in the population [10]. This bias is highest
amongst variants for which the true log-odds-ratio is 0
(non-associated).
A standard replication procedure can be considered as

enabling an unbiased effect size estimate [11]; for non-
associated variants, this estimate has expectation 0. If con-
trols are reused in the replication procedure, the estimate
of effect size for associated variants from the replication
procedure is no longer unbiased (since the original con-
trol samples are reused), and summary statistics from the
replication procedure cannot be used directly as estimates
of effect size (although estimates can still be made by
considering summary statistics pd, pr if these can be cal-
culated). After sharing controls, the effect size estimate
for null variants in the replication procedure is similarly
biased, and the adjustment β → β∗/β⊥ corresponds to
an adjustment for this effect.

Differences in power betweenmethods
The power difference between methods B and A was
analysed systematically by considering the behaviour of
GWAS data across a range of values of (n0, n1, n′

0, n′
1). In

each calculation, genetic data was considered for a sin-
gle common SNP with average minor allele frequency
across cases and controls equal to 0.1, with a given effect
size between cases and controls quantified by log-odds
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ratio. Varying ratios n1/n′
1, n′

0/n′
1 were considered, with

n0 + n′
0 + n1 + n′

1 held constant at 20,000 samples (Fig. 1).
At large effect sizes (in GWAS terms, large allelic dif-

ferences between case and control cohorts) both methods
have power approaching 1, so the difference is slight. Sim-
ilarly, at very small effect sizes, both methods have power
near zero. Since the only power differences are at moder-
ate effect sizes, the main metric for power difference used
in this paper was the average effect size difference (Fig. 2).
Considering power of A and power of B as functions
PowerA(x), PowerB(x) of an underlying log-odds ratio x,
the average power difference was defined as

∫ ∞

−∞
(PowerB(x) − PowerA(x)) dx (1)

The maximum power difference:

max
x∈(−∞,∞)

(PowerB(x) − PowerA(x)) (2)

was also considered.
Figure 3 shows average power difference at various study

sizes for typical α, β , γ values (α = 5×10−6, β = 5×10−4,
γ = 5×10−8). The difference is typically highest when the
ratio of controls to cases is high in the discovery cohort
and low or equal in the replication cohort, and the number
of cases in the discovery cohort is larger than the number
in the replication cohort. Power to detect SNPs in H1 is
typically highest in method C, second-highest in method
B, and lowest in method A.

Fig. 2 Power of both methods is equivocal at high effect sizes (high
absolute log odds ratios) and at low effect sizes (log odds ratio near
zero). The main region in which power can differ is at moderate effect
sizes. A good metric for difference in power is the average difference
in power (marked ‘i’). The maximum difference in power (marked ‘ii’) is
also considered. This plot shows analytic rather than simulated results

Recommended applications
To demonstrate areas where this approach is applicable,
several examples are constructed or sourced from the
GWAS field in which the procedure of sharing controls
or cases will improve power or type-1 error profile of
the two-stage testing procedure or enable some form of
orthogonal replication to be performed.

Assumptions
In order to use method B or C, it must be assumed that
cohort C0 and C′

0 are sampled from similar enough popu-
lations to be comparable to C1 and C′

1. A reasonable check
on whether the method is appropriate is whether the
cohorts C0 and C′

0 could be interchanged without com-
promising matching between cases and controls in the
discovery or validation studies (possibly with the inclu-
sion of strata or covariates in the genetic risk model). An
important caveat of methods B and C is sacrifice of control
over errors arising from aberrance in C0 (method B) or
C0 ∪C′

0 (method C), so an assumption must be made that
variables affected by confounding or measurement error
in these cohorts are understood to be distinguishable from
true associations by quality-control measures only. Vari-
ants which are aberrant in the same direction in both
discovery and control cohorts - that is, sign(μ1 − μ0) =
sign(μ′

1 − μ′
0) �= 0 - cannot be distinguished from true

associations without the use of external data.
Post-hoc assessment of all putative hits should be

performed to check for genotyping errors [12] and
assess whether the hit could have arisen from aberrance
in C0.

Conventional GWAS
Method B is applicable in several cases in large conven-
tional GWAS, particularly when then ratio of controls
to cases in the discovery cohort is larger than that in
the replication cohort. In a relatively recent GWAS on
rheumatoid arthritis [13] with comparable sample pop-
ulations for discovery and replication cohorts, method
B could be used to attain greater power than method
A for a fixed type-1 error rate. Assuming that summary
statistics are well-approximated by binomial tests of allelic
differences (so covariates and strata used in computa-
tion of summary statistics have only small effects), the
improvement in power is around 4% for SNPs with an
odds-ratio of 1.3, MAF 0.1, and is positive across all odds
ratios. More than 2000 additional controls in C′

0 would be
needed to increase power by this amount (Fig. 4, top left).
Small power advantages such as this may make min-

imal difference in a single study, although since they
require no extra cost, are worth attaining if possible. The
power of method B is generally considerably higher than
method A when n0 > n1 and n′

0 ≈ n′
1. Power advan-

tages may be more substantial in some cases; for example,
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Fig. 3 General power differences (%) between methods A and B. Mean power difference is taken as the integral of power difference between
methods B and A (see above) over R with respect to log-odds ratio. In all cases, 20 000 samples are used overall for a SNP with MAF 0.1, with cutoffs
α = 5 × 10−6, β = 5 × 10−4, γ = 5 × 10−8

a study with (n0, n1, n′
0, n′

1) = (15000, 5000, 5000, 5000),
method B enables a power increase of up to 8% (Fig. 4,
top right panel). To achieve comparable performance with
method A, around 2000 additional controls would be nec-
essary in the replication cohort. Method B with (n0, n′

0) =
(15000, 5000) is also more powerful than method A would
be if controls were divided equally betweenC0 and C′

0 (see
Fig. 4, top right panel).

Difficult control ascertainment
An important application of the method presented in this
paper is in studies for which ‘control’ samples are expen-
sive or difficult to ascertain. This is often the case in

comparative studies between disease subtypes. In such
studies, sharing controls can improve power substantially,
especially if a proportion of samples in the replication
cohort are falsely assigned to the control cohort (see
“Methods” section).
An international GWAS on fronto-temporal dementia

in 2014 [14] is an example in which sharing controls may
be beneficial. The study had sample sizes (n0, n1, n′

0, n′
1) =

(4308, 2154, 5094, 1372). Control samples in the discov-
ery phase were assessed for current neurological disease,
and were used in previous studies on Parkinson’s disease,
indicating a high degree of reliability. Control samples
in the replication phase were collected from the same
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Fig. 4 Examples of comparison of power of methods A and B. In all panels, a positive odds ratio corresponds to a deleterious mutation and average
MAF is 10%. The top two panels show comparisons of method B with n′

0 fixed against method A with varying n′
0. The top left panel has

(n0, n1, n′
0, n

′
1) = (20169, 5539, 8806, 6768) (values from a GWAS on RA [13]), and the top right panel (n0, n1, n′

0, n
′
1) = (15000, 5000, 5000, 5000).

Both panels use (α,β , γ ) = (5 × 10−6, 5 × 10−4, 5 × 10−8). The bottom left panel demonstrates the effect of false-ascertainment (F.A) in C′
0; when

cases are mis-ascertained as controls. In this case, (α,β , γ ) = (1 × 10−4, 1 × 10−3, 5 × 10−8), reflecting values used in the paper [14]. The bottom
right panel demonstrates a prospective scenario with 10000 samples for replication. Method B with (n0, n1) as above, (n′

0, n
′
1) = (4000, 6000) is

more powerful than any design using method A (grey region; n′
0 ∈ (1000, 9000); n′

1 = 10000 − n′
0)

geographic distribution as cases, but were not explicitly
used in previous neurological studies, suggesting better
control ascertainment amongst the discovery cohort.
In this study, sharing controls could allow for a

more strongly-ascertained control cohort, and reduce
the effects of confounders affecting C′

1 (see Fig. 4, bot-
tom left panel). At typical values α = 1 × 10−4,
β = 1 × 10−3, γ = 5 × 10−8, power is nearly
equivalent between the two methods assuming all con-
trols are genuine. However, with 10% misascertainment
in C′

1, the power advantage of method B is up to
5%. Given the near-identical distribution of cases in
the discovery and validation cohort, cases could alter-
natively be shared, leading to a power increase of
up to 6%.

Prospective study design
Studies may be planned and powered with the assump-
tion that samples may be shared. For certain restrictions
on sample numbers, this can provide the potential for
greater power than would be attainable by restricting to
an independent-controls design. For instance, if we seek
to validate hits on a GWAS with 10,000 controls and
5000 cases, and can afford to genotype a further 10,000
samples, power is higher after recruiting 4000 additional
controls and 6000 additional cases and sharing controls
than can be achieved from any independent-control study
design (Fig. 4, bottom right panel).
This may be a common scenario if controls are sourced

from a known database rather than specifically recruited
for the study.
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Partial replication
In circumstances where case recruitment is difficult, as in
studies of rare diseases, an assessment of replicability may
be made by re-testing results from a discovery phase with
a new control set only. This can enable the use of control
cohorts which only partially match the case cohort.
In a GWAS on pemphigus vulgaris [15], a rare dis-

ease primarily affecting individuals of Ashkenazi Jew-
ish ethnicity, the discovery cohorts were sampled from
Jewish populations, with age- and population- matched
controls. Control cohorts were small ((n0, n1, n′

0, n′
1) =

(100, 400, 59, 285)), potentially due to difficulty recruiting
both ethnically- and geographically-matched controls.
Method C could be used in this instance to enable a

larger control set and greater power. If a control cohort of
Ashkenazi individuals could be assembled without requir-
ing geographic matching with the case set, it would be
inappropriate to use as a sole control cohort against the
existing case cohort, due to the potential for geographic
confounding. However, such a cohort could be used as
either C0 or C′

0 in method C, with the existing ethnically-
and geographically- matched controls serving as the other
cohort. In this way, the power advantage of the larger
cohort could be used while maintaining control over
potential aberrance in the larger control group.
Method C enables computation of power and type-1

error rates, and comparison to alternative designs with
cases split into smaller independent discovery and valida-
tion cohorts (method A). Testing a case cohort against two
separate control cohorts is almost always more powerful
for a fixed type-1 error rate than splitting the case cohort
in two and performing method A (see Additional file 1:
Figures S1 and S2).

Choice of thresholds
The designation of explicit thresholds α, β , γ in a two-
stage study may not appear to reflect many real-life
designs, but in general most studies will use it in some
form, even if the thresholds are not directly stated. Heuris-
tically, α is used as an initial ‘triage’ step, to reduce data
dimensionality, β (which is usually less stringent than α

to allow for some regression to the mean in true associa-
tions) is used as a check, and γ is used as a definitive test
for association amongst candidate variants.
Because studies are usually limited by cost or resources,

a given number of variants are selected to pass through to
the replication step, rather than following up all variants
passing a predetermined threshold, which complicates
assessment of summary statistics [11]. However, in prac-
tice, researchers will have an implicit or explicit maximum
allowable p-value for a variant to proceed to replication.
If, for example, resources were available to follow-up 100
variants, but the 100th smallest Bonferroni-corrected pd
value was> 1, the variant would not generally be followed

up. It is this implicit threshold - representing the max-
imum allowable pd value which would be be deemed
acceptable - which is considered to be α. A similar implicit
threshold at the replication stage is the effective value of β .
If no thresholds α, β are used (that is, α = β = 1), then the
procedure can be considered as a standard meta-analysis
of the discovery and replication studies, and cannot be
improved upon by combining controls at the replication
stage.
If the method proposed in this paper is to be consid-

ered in a study, the values α, β , γ should be determined
by the values which would otherwise have been used in a
standard replication procedure. In the context of GWAS
analysis, the threshold γ = 5 × 10−8 should be retained,
and the values α, β should reflect the implicit maximum
allowable level above. The corresponding β∗/β⊥ values
can then be determined. As in any statistical procedure,
the overall false-positive rate should be considered along
with the cost of following up false-positives.

Discussion
This paper proposes a method to improve efficiency
of data use in a replication procedure, adding to the
body of methods for comparison of high-dimensional
case-control studies. For many common study sizes, the
method can reduce the cost of replication, or increase
power of discovery. The adapted method is simple to
apply, only requiring modification of a single association
threshold.
A standard replication procedure (or more general com-

parison of case-control studies) with independent con-
trol datasets does not make use of the information that
the unconditional expected values of variables in con-
trol datasets are, in principle, the same. Conditional on
pd ≤ α, m0 is biased away from m1 (since the effect
size is biased upwards), and this bias is greatest for non-
associated variants. If the observed difference m1 − m0
is large even accounting for this bias, and the observed
difference m′

1 − m′
0 is small but consistent in direction

withm1 −m0, we intuitively expect that the variant is dis-
ease associated, with the observed m1 − m0 value being
larger than its unconditional expectation, and them′

1−m′
0

value being smaller. In a standard replication procedure,
the variant would be declared null on the basis ofm′

1 −m′
0

being small, but in the shared controls procedure, some
information from the first study is allowed to propagate
through to the second. A meta-analysis in which observed
values of both m1 and m0 are allowed to propagate infor-
mation is stronger still, but this cannot in itself detect
aberrance in C′

1.
Correspondingly, a more stringent threshold β∗/β⊥ is

needed to account for the bias in m′
1 conditioning on

pd < α, and the differential in power between the stan-
dard replication procedure and the two proposed here
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relates to the trade-off between these two effects. By con-
sidering which method has the highest power in a given
circumstance, the same dataset can in theory yield more
information when controls are shared, while retaining
some of the systematic error-detecting properties of the
standard replication procedure.
The most important caveat of these methods is the loss

of systematic type-1 error rate control for null SNPs which
are aberrant in C0. Control of such errors must not be
sacrificed entirely, but in some circumstances it may be
satisfactory to assess such errors on a SNP-by-SNP basis.
Such assessment is important and standard for all pro-
posed GWAS hits under any method [16] in the interests
of quality control. In method C, control over aberrance
in C′

0 is additionally lost; however, since this method is
largely applicable when C0 ∪ C′

0 is a single homogeneous
control (or case) cohort, there is no way that aberrance in
the cohort can be systematically identified by comparison
with other cohorts.
Somewhat better control of the type-1 error rate can

often be achieved for SNPs with aberrance in C1 or C′
0.

This may incentivise the use of this method when con-
fidence in the representativeness of these cohorts is low
compared to that of C0. The type 1 error rate is some-
what increased for SNPs with aberrance in C′

1, although
as it remains bounded by α, this increase is not a major
problem.
The two-stage validation procedure is similar to a

meta-analysis of the discovery and validation experi-
ments, for which several adaptations to shared-control
designs have been proposed [3, 4]. However, there are
several important distinctions which necessitate an alter-
native approach in this case. Firstly, not all variables
are measured in the second (replication) study; we
are restricted to analysis of variables reaching a given
observed effect size. Secondly, the studies to be ‘meta-
analysed’ are not complete, in the sense that there may
be residual confounding; a strong effect size in the
meta-analysis alone is not adequate evidence for asso-
ciation and some level of association (with consistent
direction) is additionally required in both constituent
studies.
The method is inapplicable when replication is per-

formed on cohorts from completely distinct geographic
groups, although there can be some difference in geo-
graphic distribution between control sets if this is con-
trolled for in computing summary statistics. The method
is most applicable when control groups are sampled from
similar populations and genotyped on similar platforms.
The method proposed in this paper is not universally
applicable, and may only yield a modest increase in power,
at the cost of changing sensitivity to different types of
errors. However, it is in the interest of all researchers to
use data as efficiently as possible, andmethods such as this

which may provide improvements without additional cost
in resources should be considered as analytical options.
The widespread discoveries of the GWAS field have led

to corresponding increases in complexity of phenotypic
definitions, with ever-finer delineations of disease types of
ever-rarer prevalence. The genetic analysis of such com-
plex phenotypes is necessarily comparative; there is little
use understanding the genetics of a rare disease sub-
type except in the context of the genetics of the disease
in general. Such analyses necessitate GWAS and other
comparative studies between rare phenotypic types [17],
with ‘controls’ meaning the better-characterised disease
subphenotype in this sense, as well as between cases
and controls. Rare disease subtypes are often afflicted
with ascertainment difficulties, leading to varying degrees
of expected aberrance in disease cohorts. Within this
paradigm, the applicability of this method is likely to
expand.

Conclusions
This paper details a method in which controls are shared
in the replication phase of a two-stage association study.
Sharing controls can improve the power of the two-stage
procedure at a fixed type-1 error rate. The action of
sharing controls changes the spectrum of sensitivity to
systematic errors caused by confounders affecting one
of the study cohorts, and this should be accounted for
if the shared-control design is used. Adaptations of the
method can enable a partial replication to be performed
with only a new control cohort, or to enable robustness
to mis-ascertainment of control samples in the replication
cohort.

Methods
Definitions
Denote zd, zr , zs, zm, zc as the signed z-scores correspond-
ing to pd, pr , ps, pm and pc respectively (where subscripts
d, r, s, m, c are as defined in the “Results” section), so
zd = ±�−1(pd/2) and so on (where �, �−1 are the stan-
dard normal CDF and quantile functions). Define zα , zβ ,
zβ∗ , zβ⊥ , zγ as the positive corresponding thresholds for α,
β , β∗, β⊥, γ respectively, so zα = −�−1(x/2) etc. Other
than (zd, zr), all pairs of z-scores are correlated under H=

0 ,
with correlation estimable from sample sizes or empiri-
cally if covariates are used (Additional file 1: Appendix 1).
Denote ρij as the correlation between zi and zj, (i, j) ∈
{d, r, s,m, c}2, and set

�A = var
(
(zd zr zm)t

)
�B = var

(
(zd zs zm)t

)
�C = var

(
(zc zs zm)t

) (3)

For i ∈ {d, r, s,m, c} define ζi = E(zi), where the expec-
tation is conditional on the SNP in question. For SNPs
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in H=
0 , ζi ≡ 0 for all i, but this may not hold for SNPs

in H∪
0 \ H=

0 . In theoretical working, aberrance in groups
is characterised by values ζ rather than log-odds ratios.
Define RA, RB, RC as the false-positive rates for a SNP of
interest in methods A, B and C respectively.

General type 1 error rate
The values β∗, β⊥ are chosen to satisfy

2
∫ ∞
zα

∫ ∞
zβ∗

∫ ∞
zγ

N�B

⎛
⎜⎜⎝

zd
zs
zm

⎞
⎟⎟⎠dzmdzsdzd =2

∫ ∞
zα

∫ ∞
z
β⊥

∫ ∞
zγ

N�C

⎛
⎜⎜⎝

zc
zs
zm

⎞
⎟⎟⎠ dzmdzsdzc

= 2
∫ ∞
zα

∫ ∞
zβ

∫ ∞
zγ

N�A

⎛
⎜⎜⎝

zd
zr
zm

⎞
⎟⎟⎠dzmdzrdzd

= Pr
(
pd < α, pr < β , pm < γ |H=

0
)

(4)

thus conserving the type 1 error rate (denoted P0) against
H=
0 between methods (Fig. 5). If no threshold is used on

pm (ie, γ = 1), then β∗, β⊥ satisfy

Pr(pd < α, ps < β∗|H=
0 ) = Pr

(
pc < α, ps < β⊥|H=

0

)

= Pr
(
pd < α, pr < β|H=

0
)

= αβ (5)

since zd ⊥⊥ zr|H=
0 . Definition Eq. (4) will be considered

a generalisation of definition Eq. (5), with results estab-
lished first for β∗ as per definition Eq. (5) and extending
where possible to definition Eq. (4).
For β∗ defined as per definition Eq. (5) we have (see

Additional file 1: Appendix 2)

lim
zα→∞

zβ∗√
1 − ρ2

dszβ + ρdszα
= 1

lim
zα→∞

zβ⊥√
1 − ρ2

cszβ + ρcszα
= 1

(6)

approaching from above, so zβ∗ > max
(
zβ ,

√
1 − ρ2

dszβ

+ρdszα
)
and zβ⊥ > max

(
zβ ,

√
1 − ρ2

cszβ + ρcszα
)
. As

defined by Eq. 5, zβ∗ , zβ⊥ are also asymptotically linear
in zα , zγ , zβ as the former two tend to ∞, with some
constraints (Additional file 1: Appendix 2.1), although
the limit does not necessarily approach from above. For
both definitions, β⊥ < β∗ < β (Additional file 1:
Appendix 2.2).

Empirical computations
Define N�(z) as the pdf of the multivariate normal with
mean 0 and variance � at z. Determination of covariance
is described in Additional file 1: Appendix 1. Given ζd, ζr ,

Fig. 5 Replication with shared controls. Red and blue shaded areas are regions where a pair of observed Z scores are deemed a ‘hit’ in the (+,+)

quadrant under method A/B respectively. The value zm is almost linearly dependent on (zd , zr) and on (zd , zs) (Additional file 1: Appendix 1). Solid
red/blue ellipses indicate contours of the distribution of observed Z scores for a typical non-null SNP under methods A and B, and dashed ellipses
indicate contours for a null SNP
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ζs, ζm, the probability of rejecting the null for a given SNP
using method A is∫ ∞

zα−ζd

∫ ∞

zβ−ζr

∫ ∞

zγ −ζm
N�A

(
(zd zr zm)t

)
dzmdzrdzd

+
∫ ∞

zα+ζd

∫ ∞

zβ+ζr

∫ ∞

zγ +ζm
N�A

(
(zd zr zm)t

)
dzmdzrdzd

(7)

and using method B∫ ∞

zα−ζd

∫ ∞

zβ−ζs

∫ ∞

zγ −ζm
N�B

(
(zd zs zm)t

)
dzmdzsdzd

+
∫ ∞

zα+ζd

∫ ∞

zβ+ζs

∫ ∞

zγ +ζm
N�B

(
(zd zs zm)t

)
dzmdzsdzd

(8)

If n0
n1 = n′

0
n′
1
, matrix �A is singular (Additional file 1:

Appendix 1), in which case zm = ρdmzd + ρvmzv and the
expression above may be reduced to a two-dimensional
integral over a more complex region (Fig. 5). Matrix �C
is generally singular, so the formula zm = ρcsρsm−ρcm

ρ2
cs−1 zd +

ρcsρcm−ρsm
ρ2
cs−1 zs is used to reduce the integral in a similar way.

A similar formula may be used if �B is nearly singular.
In Fig. 3, mean power difference is determined as

the integral of the power difference with respect to the
log-odds ratio over the real line, as discussed in the
“Results” section.

Study sizes, odds ratios and allele frequencies
Consider a study with n0 controls and n1 cases, with
underlying allele frequencies μ0 and μ1 in cases and
observed allele frequencies m0, m1. Let Z be a signed
Z-score derived from a GWAS p-value against the null
hypothesis μ0 = μ1. Considering Z to be proportional to
the log-odds-ratio divided by its standard error, we have:

E(Z) ≈ E

⎛
⎝ log

(
m1(1−m0)
m0(1−m1)

)

SE
(
log

(
m1(1−m0)
m0(1−m1)

))
⎞
⎠

≈ E

⎛
⎜⎝

log
(

m1
1−m1

)
− log

(
m0

1−m0

)
√

2
m1(1−m1)n1 + 2

m0(1−m0)n0

⎞
⎟⎠ (9)

Setting δ = m1 − m0, m̄ = n0m0+n1m1
n0+n1 m0 = m̄ − kδ,

m1 = m̄ + kδ for some k, we have

log
(

m1
1 − m1

)
− log

(
m0

1 − m0

)
= δ

m̄(1 − m̄)
+ O

(
δ2

)
√

2
m1(1 − m1)n1

+ 2
m0(1 − m0)n0

=
√

2(n0 + n1)
m̄(1 − m̄)n0n1

+ O(δ)

(10)

so

E(Z) ≈
√

2n0n1
n0 + n1

E
(

δ√
m̄(1 − m̄)

+ O(δ2)

)

≈
√

2n0n1
n0 + n1

μ1 − μ0√
μ̄(1 − μ̄)

(11)

where μ̄ = n0μ0+n1μ1
n0+n1 . Hence

ζd =
√

2n0n1
n0 + n1

μ1 − μ0√
μ̄(1 − μ̄)

ζr =
√√√√ 2n′

0n
′
1

n′
0 + n′

1

μ′
1 − μ′

0√
μ̄(1 − μ̄)

ζs=
√√√√ 2(n0 + n′

0)n
′
1

n0 + n′
0 + n′

1

μ′
1 − μ0n0+μ′

0n
′
0

n0+n′
0√

μ̄(1 − μ̄)
ζc =

√√√√ 2(n0 + n′
0)n1

n0 + n′
0 + n1

μ1 − μ0n0+μ′
0n

′
0

n0+n′
0√

μ̄(1 − μ̄)

ζm =
√√√√ 2(n0 + n′

0)(n1 + n′
1)

n0 + n′
0 + n1 + n′

1

μ1n1+μ′
1n

′
1

n1+n′
1

− μ0n0+μ′
0n

′
0

n0+n′
0√

μ̄(1 − μ̄)

(12)

where μ̄ varies between definitions (though it is taken to
be approximately equal).

Estimation of covariance between Z scores
Correlation between Z-scores under H0 can be computed
analytically with the following formulas (with ρdr = 0):

ρdm =
√n0n1

(
n0 + n′

0 + n1 + n′
1
)

√(
n0 + n′

0
) (
n1 + n′

1
) (
2n0 + n′

0
) (
2n1 + n′

1
)

ρrm =
√
n′
0n′

1
(
n0 + n′

0 + n1 + n′
1
)

√(
n0 + n′

0
) (
n1 + n′

1
) (
n′
0 + 2n′

0
) (
n1 + 2n′

1
)

ρds =
√

n0n1n′
1(

n0 + n′
0
)
(n0 + n1)

(
n0 + n′

0 + n′
1
)

ρsm =
√
n′
1
(
n0 + n′

0 + n1 + n′
1
)

√
2

(
n0 + n′

0
) (
n1 + n′

1
) (
n1 + 2n′

1
)

ρcs =
√
n1n′

1
(
n0 + n′

0
)

√(
2n0 + n′

0
) (
2n1 + n′

1
)

ρcm =
√n1

(
n0 + n′

0 + n1 + n′
1
)

√
2

(
n0 + n′

0
) (
n1 + n′

1
) (
2n1 + n′

1
)

(13)

More general formulae are given in Additional file 1:
Appendix 1.

Empirical estimation of covariance and ζ values
The above formulae allow ζ and ρ to be estimated in
empirical computations. The estimates may be poor if
covariates or strata are used in the computation of zi.
Correlation may be estimated in several ways:

1. If strata alone are used, or covariates are adjusted for
in an analogous way to strata, correlations ρij
between z-scores is estimable using analytic formulas
(see Additional file 1: Appendix 1).
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2. If a set of variants known to be in H=
0 is available, the

sample correlation between observed z-scores at
these variants can be used as an estimator for values
ρij,

3. A set of genotypes can be simulated for each sample
for a set of variants in H=

0 . Z-scores corresponding to
these variants can then be computed under the same
correlation structure, and the sample correlation
between these Z-scores.

Estimates of values ζ corresponding to given log-odds
ratios and minor allele frequencies can be estimated in
a similar way to method 1; that is, by simulating vari-
ants with given underlying odds-ratios between cases and
controls, computing z scores using the same method and
covariance structure as used in the main study, and setting
the relevant value of ζ to the observed mean z score.

False ascertainment
In general, for a true association, μ0 = μ′

0 and μ1 = μ′
1.

If some proportion κ of samples in C′
0 are incorrectly

assigned and come from the case population, then μ′
0 =

(1 − κ)μ0 + κμ1. This lowers the absolute values of ζr , ζs
and ζm, reducing the probability that the zr score for the
SNP will reach the requisite threshold β and hence reduc-
ing the power to detect the SNP using method A. This loss
of power is lowered when using methods B or C.

Type 1 error rates
Aberrance in C1
For SNPs aberrant in only C1 we have ζd �= 0, ζc �= 0,
ζm �= 0, and ζr = ζs = 0.
RA, RB, RC can be considered as functions of ζd . As

ζd → 0, RA,RB,RC → P0 (Eq. 4). As ζd → ±∞, RA → β
2 ,

RB = β∗
2 and RC = β⊥

2 . For positive ζd both RA and RB
are increasing (and both are symmetric in ζd) so RA <

β
2 ,

RB <
β∗
2 , RC <

β⊥
2 for all ζd .

Since β⊥ < β∗ < β (often substantially), methods B
and C are generally better at rejecting H=

0 for such SNPs.
In the simplified case where zγ = 1, RA ≥ RB universally
(Additional file 1: Appendix 3.1). This typically holds for
all zγ , except for small deviations in pathological cases.
In general, we consider aberrance which is only still

present after any strata or covariates have been accounted
for in the computation of z scores. If strata or covari-
ates remove the effective aberrance between groups, the
type-1 error rate is equivalent to that under H=

0 .

Aberrance in C′
1

For SNPs aberrant in C′
1, we have ζd = 0, ζc = 0, ζr �= 0,

ζs �= 0 and ζm �= 0.
Again, RA,RB,RC → P0 as ζr → 0. As ζr → ±∞,

RA,RB,RC → α
2 , and both are bounded by α

2 . Although

RB and RC are typically higher than RA in this case, since
both have the same (typically conservative) upper bound,
this is not typically a large sacrifice in type 1 error.
In the simplified case where γ = 1, an approximate

upper bound on RB − RA is given by (Additional file 1:
Appendix 4)

α

2
√
2π

(
k√

1 − ρ2
− 1

)
zβ � α

2
(14)

where

k = ζs
ζr

≈
√

(n0 + n′
0)(n′

0 + n′
1)

n′
0(n0 + n′

0 + n′
1)

(15)

In practice, there is typically a similarly small difference
between RC , RB and RA in the general case.

Aberrance in C′
0

For SNPs aberrant inC′
0, ζd = 0, ζr �= 0, ζc �= 0, ζs �= 0 and

ζm �= 0. As for SNPs with aberrance in C′
1, RA,RB,RC →

P0 as ζr → 0 and as ζr → ±∞, RA,RB → α
2 , both

bounded above by α
2 . RC , however, tends to 1 as ζd → ∞.

In method B the cohort C0 has a correcting effect on the
replication study, meaning |ζs| < |ζr| and RB < RA.
For the simplified case where γ = 1, a similar bound

to 14 holds for the difference RA − RB (note signs are
reversed) with

k′ = ζs
ζr

≈
√

n′
0(n′

0 + n′
1)

(n0 + n′
0)(n0 + n′

0 + n′
1)

(16)

in the place of k. The improvement in type-1 error rate
for a SNP with aberrance in C′

0 is generally larger than the
loss with the same aberrance in C′

1 (see methods), mean-
ing that if aberrances are of similar prevalence and size
in C′

1 and C′
0, method B will typically have a lower type-1

error rate than method A.

Aberrance in C0
Aberrance in C0 represents a serious problem in case-
control study comparison. False-positive rates are gener-
ally worse under method B, and tend to 1 as E(z) → ∞.
If aberrances of this type are expected to be very frequent,
this may preclude use of methods B or C.
However, aberrances of this type may be best detected

retrospectively by examining aberrances between control
groups at SNPs declared ‘hits’. This procedure is already a
necessary quality-control procedure in method A [12, 16],
as method A does not provide any control over differences
between C0 and C′

0. The number of SNPs reaching signif-
icance in the two-stage procedure is usually small enough
that this examination is readily tractable.

Aberrance in two ormore cohorts
If SNPs are aberrant in both C1 and C′

1, or in both C0 and
C′
0, the effect on RA and RB is similar. If both cohorts are
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aberrant in the same direction, there is no way to differ-
entiate the SNP from a genuine association on the basis of
the genotype data alone. If cohorts are aberrant in differ-
ent directions, then in both methods, the type-1 error rate
is lower than for a null SNP with no aberration or aber-
ration in only one cohort, as effect sizes for the discovery
and replication cohorts are biased in opposite directions.
The same typically holds if C′

0 and C1, or C0 and C′
1, are

biased in the same direction.
If C′

0 and C′
1 or C0 and C1 are both biased in the same

direction, RA is generally lower than RB, as ζs �= 0. Both
RA and RB are bounded by α

2 in this case. In addition, a
systematic bias in both replication groups (or both discov-
ery groups) is likely to be due to a known confounder, the
effect of which can be removed by performing a stratified
test (as is typically good practice when confounders are
known). Aberrance in opposite directions leads to RB >

RA in the first case, and a scenario similar to aberrance in
C0 in the second case.
Aberrance in three or more cohorts corresponds to a

chaotic scenario in which neither methods A,B, or C will
reliably provide FPR control. Aberrance of this extent is
typically detectable and removable using quality control
procedures.

Additional file

Additional file 1: Supplementary figures and appendices. Supplementary
figures showing additional power comparisons, and appendices pertaining
to the method. (PDF 941 kb)
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