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Abstract
In recent years, there is an increasing demand for sharing and integration of medical data in

biomedical research. In order to improve a health care system, it is required to support the

integration of data by facilitating semantic interoperability systems and practices. Semantic

interoperability is difficult to achieve in these systems as the conceptual models underlying

datasets are not fully exploited. In this paper, we propose a semantic framework, called

Medical Knowledge Discovery and Data Mining (MedKDD), that aims to build a topic hierar-

chy and serve the semantic interoperability between different ontologies. For the purpose,

we fully focus on the discovery of semantic patterns about the association of relations in the

heterogeneous information network representing different types of objects and relationships

in multiple biological ontologies and the creation of a topic hierarchy through the analysis of

the discovered patterns. These patterns are used to cluster heterogeneous information net-

works into a set of smaller topic graphs in a hierarchical manner and then to conduct cross

domain knowledge discovery from the multiple biological ontologies. Thus, patterns made a

greater contribution in the knowledge discovery across multiple ontologies. We have dem-

onstrated the cross domain knowledge discovery in the MedKDD framework using a case

study with 9 primary biological ontologies from Bio2RDF and compared it with the cross

domain query processing approach, namely SLAP. We have confirmed the effectiveness of

the MedKDD framework in knowledge discovery from multiple medical ontologies.

Introduction
There is an increasing demand for sharing and integration of medical data in biomedical
research. Heterogeneous information networking on the cloud are designed to enable compli-
ant sharing of data based on the relationships across domains [1]. The Linked Open Data proj-
ect is a notable effort for creating a knowledge space of RDF documents linked together and
sharing a common ontology [2]. RDF is a metadata data model designed by the World Wide
Web for conceptual modeling of information on the Web [3]. SPARQL Protocol and RDF
Query Language is an RDF query language for semantic query language to retrieve data stored
in RDF format [4]. According to the Linked Open Data project, the Web of Data currently
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consists of 4.7 billion RDF triples, which are interlinked by around 142 million RDF links (May
2009) [5]. Bio2RDF (Linked Data for the Life Sciences) [6] is one of the Linked Open Data
projects in life science domains and has successfully converted bioinformatics databases such
as KEGG, DrugBank,MGI,HGNC and several of NCBI databases into ontologies using Seman-
tic Web technologies. Bio2RDF contains over 2.5 million triples and 0.19 million outlinks and
0.19 million inlinks [7].

In order to improve a health care system, it is required to conduct the integration of knowl-
edge and data by facilitating medical ontologies and to support semantic interoperability sys-
tems and practices [8]. For the purpose, semantic interoperability is essential between
heterogeneous ontologies and datasets [9]. The benefits of semantic interoperability are clear
for improving accuracy and efficiency of diagnoses and treatment by sharing patient data and
providing semantic-based criteria. However, integration and analysis of heterogeneous ontolo-
gies and datasets are a huge challenge in biomedical research since the mapping between data-
sets from different sources is not trivial [10]. For example, drug discovery research heavily
relies on multiple information sources to validate potential drug candidates as shown in the
Open PHACTS project [11].

In complicated domains, it not only takes time to develop and maintain ontologies [12], but
it is also difficult to integrate relevant data that would be both practical and useful for biomedi-
cal research [13]. There have been various studies on using semantic techniques to improve
data integration and share biomedical ontologies and datasets such as BioPortal [14], Bio2RDF
[6] and OBO [15]. However, these efforts merely support physical integration of multiple bio-
medical ontologies without considering latent semantic relations of data. Furthermore, none of
them has the ability to discover those semantic patterns in a systematic way. Semantic interop-
erability is difficult to achieve in these systems as the conceptual models underlying datasets
are not fully exploited. In particular, human intervention is strongly required so that these are
not suitable for comprehensive and accurate knowledge discovery especially from a large
amount of data.

We need a systematic approach for more effective integration and analysis of ontologies
[12]. In particular, we need innovative methodologies and applications for data integration and
sharing [10]. This may be feasible through analysis of the heterogeneous information networks
that represent different types of objects and links in cross domains [1]. In order to support
dynamic processing of integrated cross domain data, a network-based data model such as
resource description framework standards (RDF) and RDF Query Language (SPARQL) can be
used for knowledge discovery from complex biomedical systems [16].

In this paper, we propose a semantic framework, called the Medical Knowledge Discovery
and Data Mining (MedKDD), that aims to build a topic hierarchy and serve the semantic inter-
operability between different domains. In MedKDD, we fully focus on the analysis of semantic
patterns in heterogeneous information networks for knowledge discovery across multiple
domains. In our study, we consider an ontology as a domain and information retrieval across
multiple ontologies in highly specialized medical domains as cross domain knowledge discov-
ery. Any relationships across multiple domains (ontologies) are defined as cross domain rela-
tionships. Our model would be applicable to domains that have any common concepts,
individuals or predicates (relationships) of ontologies. The building blocks that make up the
best system of knowledge discovery with multiple domains are (i) a pattern based approach for
predicate neighborhood defined for the heterogeneous information network, (ii) integrating
the cross domain relations by evidences gathering from these patterns, (iii) graph partition and
quantitative analysis using data mining algorithms, and (iv) exploration and discovery through
query processing.
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We demonstrate the cross domain knowledge discovery in the MedKDD framework using a
case study with nine primary biological ontologies of Bio2RDF [17] including ClinicalTrials
[18], DrugBank [19], OMIM [20], PharmGKB [21], SIDER [22], KEGG [23], CTD [24],HGNC
[25],MGI [26]. We have implemented the MedKDD system and the experimental results
clearly showed the validity of the MedKDD framework that was designed for Knowledge dis-
covery from heterogeneous information networks across a medical domain.

The major content of this paper is organized as follows: We first present the MedKDD
framework in Section Materials and Methods. We then describe the implementation of the
MedKDD system and the experimental results in Section Results. We present discussion in
Section Discussion. The conclusion and future work is discussed in Section Conclusion.

Materials and Methods
We now present the MedKDD framework that aims to support knowledge discovery from
cross domains by the construction of a hierarchy of topics in biomedical research. In the topic
hierarchy, topics are analyzed for preserving neighboring information of relationships that are
relevant in a given context (topic) in a heterogeneous information network. The topic models
based on the predicates (relations) and their neighborhood patterns are defined as a graph in
different levels of abstraction. We first rationalize a predicate-centric model Cross Domain
Neighborhood Patterns (CDNP) that specifies high connectivity on the RDF/OWL graph for
information sharing and integration. Second, we define the association measurement between
predicates used in the CDNP patterns in the network. Third, we present the Predicate-based
Hierarchical Agglomerative Clustering (PHAL) algorithm to cluster the heterogeneous infor-
mation network based on the CDNP patterns.

Cross Domain Neighborhood Patterns (CDNP)
In the MedKDD framework, the knowledge model is defined by levels of abstraction: (i) the
smallest component is a predicate (relation) from a heterogeneous information network (RDF/
OWL graphs), (ii) the intermediate component is a pattern that is defined by groups of predi-
cates, (iii) at a higher abstraction level, a topic can be discovered from groups of patterns, and
(iv) the highest level of abstraction that can be presented as an analytical view of multiple
ontologies (cross domains). The relationships of domains can be determined from a compre-
hensive analysis of the discovered topics and patterns of predicates.

As the predicates define the relationships between subjects and objects, it is interesting to
see that the relationships among subjects and objects are nicely defined through patterns and
topics. In this paper, we define the Cross Domain Neighborhood Patterns (CDNP) that
describe the association and collaboration among different predicates (relations) and concepts
in heterogeneous information networks. In this analysis, only domain specific predicates are
considered without considering OWL built-in predicates. There are two types of the CDNP
patterns: Cross-Domain Share and Cross-Domain Connectivity.

Definition 1: Cross-Domain Share Pattern This pattern describes the resources sharing
relationships between predicates where the resources are concepts from a heterogeneous infor-
mation network (RDF graphs). Given two triples hSi, Pi, Oii, hSj, Pj, Oji, the conditions of the
share pattern were defined as follows:

8Si 2 Di; 8Pi 2 Di; 8Oi 2 Di and 8Sj 2 Dj; 8Pj 2 Dj; 8Oj 2 Dj

ðPi 6¼ PjÞ&&ðSi ¼¼ SjjjOi ¼¼ OjÞ&&ðDi 6¼ DjÞ:

where the logical OR operator (||) returns the Boolean value true if either or both operands is
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true and returns false otherwise, the logical AND operator (&&) returns the Boolean value true
if both operands are true and returns false otherwise. For all (denoted by 8) Si, for all Pi and for
all Oi are in a domain Di and for all Sj, for all Pj, and for all Oj are in a domain Dj, but these two
domains Di and Dj are different.

There are three types of Share patterns are defined as follows:

• The Provider pattern describes the relationship with a pair of predicates sharing a common
object, describes the provider role of entity giving information to Consumers. This role has
more out-degree edges than in-degree edges.

• The Consumer pattern describes the relationship with a pair of predicates sharing a common
subject, describes the role of entity receiving information from Providers. Consumer has
more in-degree edges than out-degree edges.

• The Reacher pattern describes the relationship with a pair of predicates having a same con-
cept as a subject and object, describes the role connecting the Provider role with the Con-
sumer role.

Fig 1 shows the share patterns such that (a) Provider pattern: the object hv:resource is shared
through two predicates pv:x-hgnc and kv:x-hgnc (b) Consumer pattern: the subject
SIO_001077:Gene is shared with two predicatesmgv:x-ensembl-protein and kv:x-uniprot (c)
Reacher pattern: a concept kv:Resource is shared by two predicates dv:x-kegg and kv:pathway.

Definition 2: Cross-Domain Connectivity Pattern This pattern describes the connectivity
relationships at least three predicates in a heterogeneous information network from different
domains. This Connectivity pattern is defined using the Reacher pattern from Definition 1. A

Fig 1. Cross Domain Share Patterns. Examples of three share patterns (a) Provider, (b) Consumer, (c) Reacher are shown in this figure. In this diagram,
the circle represents a concept and the triangle represents a predicate.

doi:10.1371/journal.pone.0160005.g001
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subject (Si) in a source domain (Di) is connected to an object (Oi) in a target domain (Dj)
through cross-domain connectivity predicates (Pi, Pj 2 Pc and Di 6¼ Dj). The pattern of the
source domain or the target domain is defined as a Reacher pattern. There are two types of the
Connectivity pattern: Directional Connector (DC) and Non-Directional Connector (NDC).

• The DC pattern describes the connectivity pattern considering the direction of the edges
between predicates whose distance is higher than equal to 2.

• The NDC pattern is same with the DC pattern in terms of the predicate collaboration for
indirect connectivity, however, the edge directions are not considered in this NDC pattern.

This Connectivity pattern is formally defined as follows: Given a Reacher pattern hSs, Ps, Osi
and a new triple hSi, Pi, Oii, the conditions of the connectivity pattern were as follows:

8Ss 2 Ds; 8Ps 2 Ds; 8Os 2 Ds and 8Si 2 Di; 8Pi 2 Di; 8Oi 2 Di

ðPs 6¼ PiÞ&&ðOs ¼¼ SiÞ&&ðDs 6¼ DiÞ:

where the logical AND operator (&&) returns the Boolean value true if both operands are true
and returns false otherwise. For all (denoted by 8) Ss, for all Ps and for all Os are in a domain Ds

and for all Si, for all Pi, and for all Oi are in a domain Di, but these two domains Ds and Di are
different.

Fig 2 shows the Connectivity patterns such that the subject and object are connected
through three predicates: (a) Directional Connector (DC) among three predicates dv:x-hgnc,
hv:x-omim, ommimv:x-mgi (b) Non-Directional Connector (NDC) among three predicates
mgv:x-refseq-transcript, ctdv:pathway, and ctdv:disease.

Definition 3: Topic The topic describes bounded contexts through association patterns of
both shared and connected predicates in a heterogeneous information network. Different top-
ics may have completely different associations among any common predicates or concepts in
heterogeneous domains. In a graph to represent the topic (called the topic graph), a group of
predicates collaborate each other to share and connect information through the predicates of
the CDNP patterns.

Definition 4: Topic Boundary The topic boundary (denoted as B) defines the scope of con-
text in which the information can be associated and shared, and connected in a heterogeneous
information network. The association and collaboration of information is described in terms of
sets of concepts and relations within the given boundary on the heterogeneous information
network.

Boundaries between contexts (topics) can be determined by various factors. Usually the
dominant one is strongly associated with others so that this can be measured by high in-
degree/out-degree and distance in a heterogeneous information network. This boundary can
be set differently depending on the domains of interest. Multiple contexts can be found within
the same domain context and similarly a single context can be founded across multiple
domains. This paper focuses on the second kind of association.

The cross domain patterns are discovered with the bounded contexts which are a central
concept in the knowledge discovery. The clustering technique is applied to partition a large
and complex network into multiple smaller topics in the same context in an optimal manner.
The bounded contexts are specifically tailored for a set of cross domain patterns. The boundary
B is determined based on the distance L (without considering direction) between any two
predicates.

Definition 5: Degree of Diversity The degree of diversity is defined to measure the degree
of the association between predicates from different ontologies (domains) in a heterogeneous
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information network. The diversity degree is defined with an optimal weight assigned to links
between predicates from different domains.

The weight will be computed to measure the degree of the association between predicates
from different domains using the formula in Definition 6. The rationale is to capture diverse
relations between predicates from multiple domains by giving a higher weight to the links
across domains while giving a lower weight to links in a single domain.

Definition 6: Cross Domain Diversity Weight The weight represents the cross domain
connectivity linking between predicates from different domains. This weight is computed
based on the neighborhood predicates that are cross domains. For a given topic Ti with an aver-

age similarity association scoreWi, if a predicate pair {pi, pj} forms a cross domain relationship,
i.e., pi 2 Di pj 2 Dj; Di 6¼ Dj, pi, pj 2 P with an association score wij, we define w0

ij as a cross

domain association weight between predicates pi and pj, such that
Let DW(pi, pj) be the diversity weight between two cross domain predicates pi, pj. Let SW(pi,

pj) be the similarity weight between two predicates pi, pj (without considering cross domain)

Fig 2. Cross Domain Connectivity Patterns. Two connectivity patterns (a) Directional Connector (DC) and (b) Non-Directional Connector (NDC) are
shown in this figure. In this diagram, the circle represents a concept and the triangle represents a predicate. A color is assigned to each dataset as follows:
DrugBank: Red; HGNC: Pink; MGI: Green; PharmGKB: Cyan; ClinicalTrials: Yellow; OMIM: Sky Blue; SIDER: Gray; KEGG: Orange; CTD: Magenta. The
prefixes describe the domain of the concepts and predicates. ctdv:http://bio2rdf.org.ctd_vocabulary dv: http://bio2rdf.org/drugbank_vocabulary ensev: http://
bio2rdf.org/ensembl_vocabulary hv: http://bio2rdf.org/hgnc_vocabulary kv: http://bio2rdf.org/kegg_vocabulary mgv: http://bio2rdf.org/mgi_vocabulary phv:
http://bio2rdf.org/pharmgkb_vocabulary refv: http://bio2rdf.org/refseq_vocabulary unv: http://bio2rdf.org/uniprot_vocabulary.

doi:10.1371/journal.pone.0160005.g002
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LetWpi
be the neighborhood association weight for a given predicate pi (an average association

weight with its neighborhood)

DWðpi; pjÞ ¼
max

SWðpi; pjÞ þWpi

2
;
SWðpi; pjÞ þWpj

2

 !
SWðpi; pjÞ <

SWðpi; pjÞ þWpi

2

SWðpi; pjÞ SWðpi; pjÞ >=

SWðpi; pjÞ þWpi

2

ð1Þ

8>>>>><
>>>>>:

In this paper, a threshold heuristic is employed to compute a topic boundary B for given
datasets. We are encouraged by results on determining a topic boundary, where a heuristic has
been devised increasing diverse association within a single topic on the topic boundary B as 3.
The maximum distance between predicates (without considering the direction) in a topic is 3.
For the given topic boundary B = 3, as shown in Fig 3, the cross domain diversity weight was
computed for predicates P3 and P4 using Eq (1).

In this paper, we now present the relationships between domains that have been discovered
by modeling the predicate neighborhood pattern and conducting the pattern-based topic dis-
covery. Our work is related to the Ontology Alignment defined in [27] as a set of correspon-
dences between two or more ontologies, corresponding relation holding according to a
particular matching algorithm with classes, individuals, properties of ontologies.

Definition 7: Domain Association The Domain Association defines the association among
domains that depicts a high level of views on cross domain collaboration. Based on the predi-
cate collaboration in the CDNP patterns, the domain association and collaboration model can
be defined. For each pattern, the top K predicates are considered to build the domain associa-
tion model that represents the abstract relationships between these topics.

To describe the relationships between domains, three additional roles such as Bridger, Bal-
ancer, and Hub are defined.

Fig 3. Cross Domain DiversityWeighting (Before/After). The cross domain diversity weight (DW) for the edge between predicate P3 and predicate P4 is

computed as 0.35 using Eq (1). SW(P3, P4) = 0.2 andWp3
= 0:2þ0:5þ0:8

3
= 0.5 andWp3

= 0:2þ0:2þ0:3
3

= 0.23. DW(P3, P4) =Max
SWðP3 ;P4ÞþWp3

2
;
SWðP3 ;P4ÞþWp4

2

� �
=

Max 0:2þ0:2þ0:5þ0:8
3

2
;
0:2þ0:2þ0:2þ0:3

3

2

� �
=Max(0.35,0.21) = 0.35.

doi:10.1371/journal.pone.0160005.g003
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• The Bridger role describes a collaborative relationship among domains in multiple domains
and passes along information between them. This role plays a very important role to link two
or more domains.

• The Hub role describes about a center of the domain, called the influential domains, that are
strongly connected to other domains.

• The Balancer role describes the balanced collaboration in terms of receiving and producing
information. The pattern can be identified based on the similar in-degree and out-degree
edges of domain graphs.

CDNP Association Measurements
We now define the measurement for the Cross Domain Neighborhood Patterns (CDNP) in
terms of sets of concepts and relations (predicates) across the multiple domains. For this pur-
pose, we describe how to quantify associations between different predicates across domains. It
is based on the CDNP pattern describing the relationships between predicates Pi and Pj
through a concept C across domains. The association measurement for the CDNP patterns var-
ies based on different neighboring levels for each pair of predicates. Basically, we give a higher
shared score to predicates with more shared concepts and lower scores to predicates with less
shared concepts. Similarly, we give a higher connection score to closer predicates and lower
scores to further predicates. We formally define the association measurement between predi-
cates for the Cross-Domain Share patterns and Cross-Domain Connectivity patterns.

Definition 8: Association Distance The association distance defines the distance between
associated predicates in a heterogeneous information network. Given a directed graph G(C, P),
concepts C denote subject S and object O and P predicate in a RDF schema graph, respectively.
Let d(Pi, Pj) represent the number of concepts C between Pi and Pj. r(Pi, Pj) determines if a
predicate Pi is reachable from another predicate Pj where the domain Di of Pi is not the same
from the domain Dj of Pj, i.e., Di 6¼ Dj, without considering the direction of links). l(Pi, Pj) indi-
cates the shortest distance between Pi and Pj.

lðPi; PjÞ ¼

0 Pi ¼ Pj

1 dðPi; PjÞ ¼ 1

L1 þ L2 L1 ¼ dðPi; PkÞ; L2 ¼ dðPk; PjÞ

rðPi; PkÞ ¼ true; rðPk; PjÞ ¼ true; rðPi; PjÞ ¼ true

ð2Þ

8>>>>>>><
>>>>>>>:

The direct association describes the direct relationship between Pi and Pj in the distance
L = 1 (without considering a direction) that is within the boundary B. The indirect association
describes any relationship between Pi and Pj in distance L computed by Eq (2) within the
boundary B, i.e., 1< L� B. The share pattern is the directed association while the Connectivity
pattern is the indirect association. We now define these two probability based similarity scores:
i) [SA](Pi, Pj) is defined a share pattern of any two predicates Pi and Pj ii) [CA](Pi, Pj) for a
Connectivity pattern of any two predicates.

Definition 9: Share Association Given predicates Pi and Pj in a directed RDF schema
graph G(C, P). Let C(Pi) and C(Pj) denote the entities (subjects or objects) that are directly con-
nected to Pi and Pj regardless of the direction. l(Pi, Pj) is the reachability test for the given pred-
icates Pi, Pj. SA(Pi, Pj) indicates the probability-based association matrix for a share pattern
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between Pi and Pj.

SAðPi; PjÞ ¼

1 lðPi; PjÞ ¼ 0

0 lðPi; PjÞ ! 1ðnolinkÞ
ðjCðPiÞ\CðPjÞjÞ2
jCðPiÞj�jCðPjÞj otherwise

ð3Þ

8>>>><
>>>>:

Definition 10: Connectivity Association For a Connectivity pattern of any two predicates
Pi and Pj, CA(Pi, Pj) defines the probability-based association for a Connectivity pattern
between Pi and Pj based on the Share Pattern. For the given Share Associations SA(Pi, Pk) and
SA(Pk, Pj) and the distance between the predicates l(Pi, Pj), the connectivity association can be
computed as follows:

CAðPi; PjÞ ¼
SAðPi; PkÞ:SAðPk; PjÞ lðPi; PjÞ ¼ 2

max1�k<jCAðPi; PkÞ:CAðPk; PjÞ lðPi; PjÞ > 2
ð4Þ

8<
:

The definition is influenced by the chain matrix multiplication problem (a kind of dynamic
programming) of determining the optimal sequence for performing a series of operations.
After we get the similarity score for all pairs of predicates, we use the formula in Eqs (3) and (4)
to generate a predicate association matrix for clustering.

Definition 11: Predicate Association Matrix Given the total number of predicates n and
the probability-based association score for cross domain share patterns SA(Pi, Pj) and Cross
Domain Connectivity Patterns CA(Pi, Pj) between predicates Pi and Pj, PA[Pi, Pj] indicates an
association matrix for all pairs of predicates Pi and Pj

PA½Pi; Pj� ¼
CAðPi; PjÞ lðPi; PjÞ >¼ 2

SAðPi; PjÞ Otherwise
ð5Þ

8<
:

Predicate-based Hierarchical Agglomerative Clustering
There are various different approaches in clustering heterogeneous information networks. In
[28], we designed the Hierarchical Predicate-based K-Means clustering (HPKM) algorithm for
discovery of relevant topics from integrated multiple sources and forms a topic hierarchy. The
HPKM algorithm is an excellent way to summarize an integrated view of multiple ontologies
as shown in Fig 4. However, we observe that HPKM is not suitable for cross domain knowledge
discovery from heterogeneous information network. The reason is that the HPKM’s top-down
approach focuses on global clustering based on homogeneous perspectives, however, ignoring
the diverse and local perspectives of the network.

In this paper, we designed a new algorithm, called the Predicate-based Hierarchical
Agglomerative Clustering (PHAL), for topic discovery from the heterogeneous information
network of the multiple domains. PHAL is a hierarchical bottom-up clustering algorithm by
applying Hierarchical Agglomerative clustering (HAC) [29] to the heterogeneous information
network of cross domain ontologies. PHAL is creating a topic hierarchy through the analysis of
the patterns quantified by the CDNP association measurement. PHAL starts with each predi-
cate as a singleton cluster and then successively merges pairs of clusters while traversing up
through its ancestors in the hierarchy.

Fig 5 shows a topic hierarchy generated from the PHAL algorithm. The PHAL algorithm
has four phases as shown below and the pseudo codes are shown in Algorithms 1 and 2.
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Phase 1: Hierarchical Agglomerative Clustering This phase focuses on clustering predi-
cates from the heterogeneous information network of the given datasets using Hierarchical
Agglomerative Clustering [29]. This algorithm is a bottom-up approach to build a hierarchy of
topics based on the CDNP patterns until all predicates in the network belong to a topic group.
The results from this learning process are a set of topics (InitialMap) in a hierarchical structure
similar to the topics shown in Fig 5.

Phase 2: Construction of Topics Starting at Level Mid Given the tree from Phase 1, we
first compute the mid-level of the tree (i.e.,Mid =H/2, where H is the height of the hierarchy
generated from Phase 1). The topics at the mid-levelMid are assigned to FinalTopicSet. If there
is no topic at the levelMid, then go upward until find any topic groups on the subsequent level
of theMid (i.e.,Mid-1) in the hierarchy. Among 43 topics shown in Fig 5, Topics 2-11 are the
topic groups captured at the levelMid.

Fig 4. Top Down Topic Hierarchy Constructed by the Hierarchical Predicate-based K-Means clustering Algorithm. The top down topic hierarchy with
three levels has seven topics at the third level. The number assigned to the edges indicates the distribution of predicates to its child node. The sum of the
numbers should be one (e.g., 0.17 + 0.83 at the top level). A color is assigned to each domain as follows: DrugBank: Red; HGNC: Pink; MGI: Green;
PharmGKB: Cyan; ClinicalTrials: Yellow; OMIM: Sky Blue; SIDER: Gray; KEGG: Orange; CTD: Magenta.

doi:10.1371/journal.pone.0160005.g004
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This phase illustrates the constructing process of topics for the remaining topics, which do
not belong to the topic groups InitialMap. Starting from the levelMid—1, we start traversing
the tree upward to construct topic groups with each topic at the the subsequent level of theMid
level (i.e.,Mid—1) and assign it to FinalTopicSet. Repeat this step atMid—2 until reaching the
tree root. In addition, we have made a special topic group (i.e., Topic1) that is a collection of the
singleton topics whose size is 1. Topics 12-43 in Fig 5 are newly constructed during this phase.

Phase 3: Hierarchical Topic Refinement There are some cases such that relevant concepts
are disconnected. This is due to the hard partition in which a predicate was not allowed to join
more than one topic. To handle the issue, a refinement process is conducted to construct a
more complete topic model with the respective predicates and their neighborhood. More pre-
cisely, for any two pairs of predicates, if they form a Connectivity pattern and then we include
their intermediate predicates to the topic and update those topics in FinalTopicSet. From this
refinement process, a predicate may join more than one topic group that results into fuzzy
clustering.

Algorithm 1Hierarchical Heterogeneous Clustering

Input: X = {x1, . . .xn}
Output: Topic Set T = {t1, . . ., tk}
/� Phase 1: Hierarchical agglomerative clustering
Define level L = 0
Consider each element in X as a topic, save them in InitialMap with level
L = 0

Fig 5. BottomUp Topic Hierarchy Constructed by the Predicate-based Hierarchical Agglomerative Clustering Algorithm. Bottom up topic hierarchy
with 43 topics. Topic ID is assigned to each cluster in this hierarchy. A color is assigned to each domain as follows: DrugBank: Red; HGNC: Pink; MGI:
Green; PharmGKB: Cyan; ClinicalTrials: Yellow; OMIM: Sky Blue; SIDER: Gray; KEGG: Orange; CTD: Magenta.

doi:10.1371/journal.pone.0160005.g005
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Put pair hL, Xi to InitialMap
While true do

if The active set InitialMap only has one item then
break

else
Extract all topics at current level L from InitialMap
Choose pair p and q 2 X with the best distance computed using formula

1
jpj�jqj

P
m2p
P

n2qdðm; nÞ
M = M [ {p, q} //Save all pairs to set M
L = L + 1 //Update the level
for each pair of elements p and q in set M do

Merge p and q into a new topic u
Add u to set X
Update InitialMap with hL, Xi

end
end

end

/� Phase 2: Construction of Topics Starting at Mid Level
Get the tree height L determined from Phase 1
Compute the middle level of the tree Mid = Roundup (L/2)
//Construct the topics while traversing the tree upward until it reaches
the tree root
while Mid > 0 do

if There is at least one topic at level Mid of InitialMap then
Extract topics T = {T1, . . ., Ti} at level Mid by checking hMid, Ti from
InitialMap
Define set Z containing all the remaining topics
//Initializing the topic index
index = |T| + 2 // Excluding T1 and the initial topics T = {T1, . . ., Ti}
FinalTopicSet = FinalTopicSet + T
for each topic zi in Z do

if zi.size = 1 then
Add zi to the special topic Topic1

Update FinalTopicSet with the special topic Topic1

else
Add zi to Topicindex

Update FinalTopicSet with Topicindex

index++
end

end
break

else
Mid = Mid-1

end
end
return FinalTopicSet

Algorithm 2Hierarchical Topic Refinement

Input: FinalTopicSet = {t1, . . ., tk}
Output: FinalTopicSet =ft01; . . . ; t0kg //refined topics with new predicates

/� Phase 3: Hierarchical Topic Refinement
for each topic t in FinalTopicSet do

for any two predicates pi and pj in topic t do
if pi and pj are connected through a Connectivity pattern & d(pi, pj) = 2 then

find the intermediate predicate pt between pi and pj

Knowledge Discovery from Biomedical Ontologies in Cross Domains
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add predicate pt to topic t
end
if pi and pj are connected through a Connectivity pattern & d(pi, pj) = 3 then

find the two intermediate predicates pm and pn between pi and pj
add predicate pm to topic t
add predicate pn to topic t

end
end

end

Results

Implementation
The MedKDD system was implemented using Java in Eclipse Juno Integrated Development
Environment [30]. Apache Jena API [31] was used to analyze multiple ontologies in OWL. We
used R computing environment [32] for our experimental validation and implemented a soft-
ware plugin for query and schema graph visualization using CytoScape 3.0.2 [33]. In addition,
we have built a SPARQL query endpoint on a single machine that is hosted at the UMKC Dis-
tributed Intelligent Computing (UDIC) lab. The OPEN LINK Virtuoso server version 6.1.3
was installed and the nine domains (ClinicalTrials [18], DrugBank [19], OMIM [20],
PharmGKB [21], SIDER [22], KEGG [23], CTD [24],HGNC [25],MGI [26]) were imported
into the graph domain http://Bio2RDF.com#. The endpoint for SPARQL query services is
http://134.193.129.248:8890/isparql/.

Fig 6 shows the MedKDD tool that are designed for browsing the generated topics and per-
forming the interactive query design and processing. The tool shows the list of topics generated
from the nine ontologies in OWL. For a selected topic, questions both in free text and SPARQL
query format will be automatically generated. The topic graph and query graph can be visual-
ized for the selected query. When the query button is clicked, the SPARQL query will be exe-
cuted and the query output will be shown in the bottom right box. Then, the corresponding
topic graph will be displayed on the canvas in the right panel. Moreover, by clicking the query
graph button, the relevant concepts and predicates in the SPARQL query will also be
highlighted as seen in Fig 6.

Topic Discovery in Cross Domains
For the given nine ontologies in OWL shown in Table 1, we have conducted the pattern analy-
sis for topic discovery. We have computed the rankings of predicates, patterns, and topics dis-
covered from our knowledge discovery process and also summarized the relationships among
domains based on the discovered patterns and topics.

• CDNP Patterns in Topic Discovery An analysis is conducted to gain a better understanding
of the CDNP patterns in cross domain topic discovery. Table 2 shows the Cross Domain
Neighborhood Patterns (CDNP) discovered from 43 topics: 1676 Provider Patterns, 5953
Consumer Patterns, 3572 Reacher Patterns, 1990 Directional Connector patterns and 14434
Non-Directional Connector patterns. Interestingly, 77% of the CDNP patterns we discovered
are cross domain (50% of the Provider patterns, 45% of the Consumer Patterns, 40% of the
Reacher Patterns, 100% of the Directional Connector patterns, and 100% of the Non-Direc-
tional Connector patterns). The share patterns in the lower level are part of the Connectivity
patterns in the higher level. From these results, we confirm that the CDNP patterns play a
significant role in integrating data and finding cross domain topics from heterogeneous
information networks.
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• Predicate and Concept Ranking: The predicates (the primary component in MedKDD) and
their associated concepts are ranked based on their in-degree and out-degree. From this anal-
ysis, we found out the roles of ontologies for cross domain collaboration in heterogeneous
information networks. Among 374 concepts, top concepts such as clinv:Resource, kv:
Resource, dv:Resource, phv:Resource are shown in Fig 7(a). As shown in Fig 7(b), among 330
predicates, top 10 predicates such as dv:source and dv:calculated.properties are from three
ontologies such as DrugBank, ClinicalTrials, and PharmGKB. These predicates and concepts
are mainly from the primary ontologies including ClinicalTrials, KEGG, DrugBank, and
PharmGKB.

• Cross Domain Predicate and Concept Ranking: The contents of cross domains were ranked
based on the in-degree/out-degree of cross domain concepts and predicates. We observed
the cross domain rankings with predicates and concepts were different from the non-cross
domain rankings. However, the ontologies playing important roles are similar. Fig 8 shows
40 cross domain concepts and predicates. Among them, SIO:Drug, kv:Resource and SIO:
Gene are top three cross domain concepts of PharmGKB (SIO normalized), KEGG, and
DrugBank (SIO normalized). kv:pathway, clinv:arm.group and dv:x.kegg are top three cross
domain predicates of KEGG, ClinicalTrials, and DrugBank, respectively.

Fig 6. MedKDD Tool: Cross Domain Knowledge Discovery. The top left panel shows the list of topics in Bio2RDF Topic 15. The right panel shows the
visualization of one of the topics discovered from this dataset. The bottom left panel show the SPARQL query for a selected topic and the query results from
the execution of the selected query.

doi:10.1371/journal.pone.0160005.g006
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• Topic Ranking with Cross Domain Features: These patterns are ranked according to pri-
mary features such as cross domain predicates, predicate popularity (in-degree/out-degree of
the predicates), and domain verity (the number of domains in which the patterns are cap-
tured). Fig 9(a) shows top 5 topics (Topic 16, Topic 25, Topic 23, Topic 22 and Topic 26)
computed by the cross domain features. Table 3 shows the top 3 predicates and top 2 unique
predicates of these topics.

• Topic Ranking with Cross Domain Neighborhood Patterns: Topics are ranked based on
the CDNP patterns. Fig 9(b) shows top five topics (Topic 16, Topic 25, Topic 23, Topic 22

Table 1. Case Study Datasets: Ontologies.

Framework Dataset P# C# T# Description

MedKDD ClinicalTrials
(Yellow)

56 62 486 database of publicly and privately supported clinical studies of human participants conducted around
the world. http://download.bio2rdf.org/release/3/clinicaltrials/clinicaltrials.html

MedKDD/
SLAP

CTD (Magenta) 14 19 74 cross-species chemical-gene/protein interactions and chemical- and gene-disease relationships to
illuminate molecular mechanisms underlying variable susceptibility and environmentally influenced
diseases. http://download.bio2rdf.org/release/3/ctd/ctd.html

MedKDD/
SLAP

DrugBank (Red) 63 92 401 bioinformatics and chemoinformatics resource that combines detailed drug (i.e. chemical,
pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure,
and pathway) information. http://download.bio2rdf.org/release/3/drugbank/drugbank.html

MedKDD/
SLAP

HGNC (Pink) 14 16 34 unique and meaningful names to every human gene. http://download.bio2rdf.org/release/3/hgnc/
hgnc.html

MedKDD/
SLAP

KEGG (Orange) 72 61 299 an integrated database resource consisting of 16 main databases, broadly categorized into
biological systems information, genomic information, and chemical information. http://download.
bio2rdf.org/release/3/kegg/kegg.html

MedKDD MGI (Green) 14 20 68 data on gene characterization, nomenclature, mapping, gene homologies, among mammals
sequence links, phenotypes, allelic variants and mutants, and strain data. http://download.bio2rdf.
org/release/3/mgi/mgi.html

MedKDD/
SLAP

OMIM (Light
Green)

35 30 175 a comprehensive, authoritative, and timely compendium of human genes and genetic phenotypes.
The full-text, referenced overviews in OMIM contain information on mendelian disorders and over
12,000 genes. OMIM focuses on the relationship between phenotype and genotype. http://
download.bio2rdf.org/release/3/omim/omim.html

MedKDD PharmGKB
(Cyan)

47 60 218 PharmGKB curates primary genotype and phenotype data, annotates gene variants and gene-drug-
disease relationships via literature review, and summarizes important PGx genes and drug
pathways. http://download.bio2rdf.org/release/3/pharmgkb/pharmgkb.html

MedKDD/
SLAP

SIDER (Gray) 15 14 82 SIDER contains information on marketed medicines and their recorded adverse drug reactions. The
information include side effect frequency, drug and side effect classifications and links to further
information (e.g., drug-target relations). http://download.bio2rdf.org/release/3/sider/sider.html

Total 330 374 1837 Cross domain data model based on these 9 datasets

In this table, each ontology is assigned with a color (for example, the color of CriticalTrials is yellow) that is used in a topic/patten graph. There are six

common datasets (DrugBank, HGNC, SIDER, OMIM, KEGG, CTD) between MedKDD and SLAP. P: Predicates, C: Concepts, T: Triples. Some of the built-

in OWL/RDF concepts and predicates are omitted in our research. The information in this table is extracted from the Bio2RDF project http://download.

openbiocloud.org/release/3/release.html

doi:10.1371/journal.pone.0160005.t001

Table 2. Cross Domain Neighborhood Patterns.

Patterns Share Pattern Connection Pattern

Provider Consumer Reacher DC NDC Total

Total Patterns 1676 5953 3572 1990 14434 27625

Cross Domain Patterns 842 (50%) 2690 (45%) 1432 (40%) 1990 (100%) 14434 (100%) 21388 (77%)

Cross Domain Patterns per type of the CDNP patterns (Provider, Consumer, Reacher, Directional Connector and Non-Directional Connector)

doi:10.1371/journal.pone.0160005.t002
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and Topic 26). The ranking based on the counts of the CDNP patterns (Provider, Consumer,
Reacher, CD and NCD patterns) is very similar to the ranking computed by the predicate
popularity, cross domain predicate, and variety shown in Fig 9(a). This confirms that the
proposed pattern-based approach reflects an excellent understanding of the important fea-
tures of the network such as density, verity, and popularity.

Comparative Analysis for Cross Domain Knowledge Discovery
The comparative analysis will provide valuable insight into the effectiveness of the Cross
Domain Neighborhood Patterns (CDNP) and the CDNP-based topic discovery model. The

Fig 7. Top Concepts and Predicates. (a) Top 10 Concepts (b) Top 25 Predicates.

doi:10.1371/journal.pone.0160005.g007
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evaluation of the proposed model has been conducted using practical examples of the cross
domain predicate patterns and topic discovery. We show the patterns are useful in knowledge
discovery from multiple ontologies through evaluation and validation of the proposed model
compared to other approaches in knowledge discovery from diverse domains.

Comparative Analysis: Top Down Clustering vs. Bottom Up Clustering. The case stud-
ies involve the comparative analysis with the HPKM and PHAL algorithms and experiments
with the both algorithms to confirm the effectiveness of the proposed method. For the given
nine ontologies shown in Table 1, we have conducted the topic discovery by applying the pro-
posed PHAL algorithm and the HPKM algorithm. As mentioned previously, HPKM is an
excellent way to summarize an integrated cross-domain ontologies, as shown in Fig 4. How-
ever, HPKM could not capture interesting patterns from heterogeneous information networks
of cross domains. From the HPKM analysis in Table 4, only seven coarse grained topics were
discovered and two of them are cross domain. It is because predicates from a single domain are
strongly related compared to ones from cross domain. From the PHAL analysis in Table 4, we

Fig 8. Cross Domain Topic Ranking. (a) Feature-based Ranking (b) Pattern-Based Ranking. Popularity is measured by In-degree/Out-degree of
predicates. Verity is measured by the number of domains involved. The numbers in the bar graph are the topic ID (ranged: 1—43).

doi:10.1371/journal.pone.0160005.g008
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Fig 9. Cross Domain Concept and Predicate Ranking. (a) Top 40 Concepts (b) Top 40 Predicates. The prefixes describe the domain of the concepts and
predicates. clinv: http://bio2rdf.org/clinicaltrials_vocabulary ctdv:http. . .bio2rdf.org.ctd_vocabulary dv: http://bio2rdf.org/drugbank_vocabulary hv: http://
bio2rdf.org/hgnc_vocabulary kv: http://bio2rdf.org/kegg_vocabulary mgv: http://bio2rdf.org/mgi_vocabulary omimv: http://bio2rdf.org/omim_vocabulary phv:
http://bio2rdf.org/pharmgkb_vocabulary sider: http://bio2rdf.org/sider_vocabulary.

doi:10.1371/journal.pone.0160005.g009

Table 3. Top 5 Cross Domain Topics.

Topic# Predicate# Top 3 Predicates Top 2 Unique Predicates

Topic 16 119 dv:source; dv:calculated.properties; clinv:arm.group phv:drug; phv:disease

Topic 25 72 dv:calculated.properties; clinv:arm.group; phv:annotation.type phv:association; phv:article

Topic 23 39 dv:calculated.properties; clinv:arm.group; kv:pathway clinv:group; kv:module

Topic 22 36 dv:calculated.properties; clinv:arm.group; kv:pathway pathway; dv:x.uniprot

Topic 26 24 clinv:arm.group; kv:pathway; mgv:x.genbank dv:transporter; dv:target

For top five topics (Topic 16, Topic 25, Topic 23, Topic 22 and Topic 26), #predicates, top three predicates and top two unique predicates were specified.

The top predicates were computed based on the in-degree/out-degree of these predicates.

doi:10.1371/journal.pone.0160005.t003
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found 43 topics from the heterogeneous information networks of the given cross domains and
93% of the discovered patterns (40 topics are cross domains and 3 topics are single domain)
are cross domains. In addition, we computed the average predicate number per topic, the aver-
age in-degree and output-degree per topic, the average density per topic and the association
score per topic. The density was computed using D ¼ 2E

NðN�1Þ where N is the number of nodes

(concepts and predicates) and E is the number of edges (links between nodes). The association
score were computed by the Predicate Association formula Eq (5). Zero is defined as the small-
est number. The closer to zero, the smaller it is. The results demonstrate the PHAL algorithm
provides superior outcomes compared with HPKM in topic discovery from heterogeneous
information networks.

Table 5 shows that there are 330 unique predicates and 275 unique concepts. Interestingly,
about 88% of the predicates and 65% of the concepts are cross domain. Fig 7(a) and 7(b) show
top 10 concepts and top 25 predicates, respectively. Fig 8(a) and 8(b) show the top 40 cross
domain concepts and predicates, respectively. The nine ontologies used in our case study show
high potentials to be used for cross-domain analysis and linking for semantic interoperability.

As seen in Table 5, about 26% of concepts (99 out of 374) appear in more than one domain
even before the clustering while all 330 predicates are unique (this means each predicate
appears in only one domain among 9 domains). Specifically, a generic concept like Resource
appears 92 times and pubmed_vocabulary:Resource appears in all 9 domains. This indicates
that concepts like Resource are mainly used for a high level mapping between different
domains. Thus, these concepts are too abstract to be of practical use of such data. For the data
integration, data normalization was performed to map 30 Semanticscience Integrated Ontol-
ogy (SIO) concepts to domain concepts. In addition, about 45% (149 of 330 predicates) are
named with a prefix x. This indicates that the predicates are also too abstract to provide mean-
ingful relationships between concepts. After clustering, the size of predicates became doubled
and the concepts quintupled. All the predicates except sider_vocabulary:reported.frequency are
fully contributed to the integration of cross domains and discovery of relevant patterns.
Through the normalization and clustering, relevant concepts and predicates were integrated
and clustered according to their contexts.

Table 4. Cross Domain Clustering: PHAL vs. HPKM.

Features PHAL HPKM

Topic # 43 7

Cross Domain Topic # 40 2

Average Diversity (Domain#) 4.14 2.28

Total Predicate Size 539 330

Average Predicate Size per Topic 12.5 47.14

Average In-degree and Out-degree per Topic 45(I) 30(O) 142(I) 89(O)

Average Density per Topic 252 490

Average Predicate Association Score 0.42 0.70

Comparison between Top-down Clustering (HPKM—Hierarchical Predicate-based K-Means Clustering) and

Bottom-up Clustering (PHAL—Predicate-based Hierarchical Agglomerative Clustering). In PHAL, the fuzzy

clustering is allowed for predicates so that the predicates may appear in more than one topic. The density

was computed using D ¼ 2E
NðN�1Þ where N is the number of nodes (concepts and predicates) and E is the

number of edges (links between nodes). The association score were computed by the Predicate Association

formula Eq (5). Zero is defined as the smallest number. The closer to zero, the smaller it is.

doi:10.1371/journal.pone.0160005.t004
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Comparative Analysis: MedKDD vs. SLAP. We have conducted a comparative analysis
with the Semantic Link Association Prediction (SLAP) [34] that was designed for detecting
drug target association. This experiment was designed to compare between SLAP and
MedKDD in terms of their capacity in handling cross topic and cross domain knowledge dis-
covery using the six common datasets of MedKDD and SLAP shown in Table 1. MedKDD has
an advanced capability on information retrieval for the relationships between two concepts,
e.g., hDrug! Genei, the relationships among multiple concepts across topics, e.g., hDrug!
Target! Genei, and the relationships across domains (DrugBank and OMIM), e.g.,
fDrugBank:hDrug! Targeti ) OMIM:Uniprot}, where the symbol! represents a path from
one concept to another within a single domain and the symbol) represents a path from one
concept to anther across domain. Similarly, SLAP also has the ability to retrieve the informa-
tion on the association between drugs and targets. However, SLAP does not support the infor-
mation retrieval for any other association besides the drug and target association.

First, we have conducted several queries that are designed to retrieve the association among
the key concepts in DrugBank (i.e., drug, target, gene). In order to demonstrate the knowledge
discovery process with multiple datasets, the top five drug instances such as NADH, Beta-
D-Glucose, Flavin adenine dinucleotide, Pyridoxal Phosphate, and Citric Acid shown in Table 6
were selected among 6071 possible drug instances in terms of the number of targets and their
associated genes. As seen from Table 6, one drug may havem targets and thenm targets relate
to n genes, wherem > n > 0.

Table 5. Cross Domain Concepts and Predicates before/after Clustering.

Feature Before Clustering After Clustering CDNP Pattern Count per Topic

Unique Total Cross Domain Total Share Connectivity Average Max Min

Predicates 330 330 291 539 329 330 12.5 119 2

Concepts 275 374 243 1745 275 374 40.6 181 2

The predicate/concept count before and after clustering. Many of them are cross domain that can be easily associated with concepts/predicates from other

domains. After the clustering, both concepts and predicates are duplicated (fuzzy clustering). The concepts/predicate counts for share and connectivity

patterns are reported. In addition, average, min and max of concepts and predicates per topic are reported.

doi:10.1371/journal.pone.0160005.t005

Table 6. Top 5 Drug Instances & Cross Topic Query Results of MedKDD & SLAP.

Drug Name MedKDD SLAP

#Targets #Genes #Targets #Genes

NADH [drugbank:DB00157] 143 141 0 0

Beta-D-Glucose [drugbank:DB02379] 90 11 0 0

Flavin adenine dinucleotide [drugbank:DB03147] 80 15 0 3

Pyridoxal Phosphate [drugbank:DB00114] 66 54 0 56

Citric Acid [drugbank:DB04272] 64 12 0 0

This table shows the cross topic query performance for MedKDD and SLAP. #Targets indicates the results from the query like dv:Drug (SIO_010038)! dv:

target! dv:Target(SIO_010423). #Genes indicates the results from the query like dv:Drug (SIO_010038)! dv:target! dv:Target(SIO_010423)! dv:x-
genecards! dv:Gene(SIO_001121). The query about the drug and target association is from a single topic, Bio2RDF Topic 27. However, the query about

the drug, target and gene association is a query across topics between Bio2RDF Topic 16 (Gene) and Bio2RDF Topic 27 (Drug and Target). MedKDD

retrieved all the relevant information for both queries while SLAP retrieved partial information about drug and gene association.

doi:10.1371/journal.pone.0160005.t006
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In MedKDD, among 43 topics discovered from the Bio2RDF ontologies, there is a path
between Topic 16 and Topic 27 through the common concepts such as dv:Drug(SIO_010038),
dv:Target(SIO_010423) and dv:Gene(SIO_001121) as shown in Fig 10. Specifically, the path
includes dv:Drug (SIO_010038)! dv:target! dv:Target(SIO_010423)! dv:x-genecards!
dv:Gene(SIO_001121) across these two topics. Table 6 shows the comparative analysis between
the MedKDD and the SLAP frameworks in terms of the number of genes detected for top five
drug instances. MedKDD could retrieve all the information for the given queries while SLAP
retrieved either only partial information or no information at all. We have found that SLAP
does not perform well in this experiment. It is because SLAP mainly focuses on the prediction
on links between chemical compounds and targets with specific predicates including bind,
hasGo, hasSubstructure, hasPathway, hasTissue, and PPI. Thus, some of information could not
be retrieved from the query processing. However, the GraphKDD framework does not put any
restriction on this query processing so that it has a capability to find any associations for a
given query on drug, target, and gene.

Second, for cross domain knowledge discovery, top five drug instances (i.e., NADH, L-Glu-
tamic Acid, Pyridoxal Phosphate, Ethanol, and Zonisamide) were also selected according to the
number of the instances associated with target, gene and OMIM resource. A cross domain
query was designed with the following paths such as i) {dv:Drug (SIO_010038)! dv:target!

Fig 10. The Cross Domain Query Graphs for Topic 16 and Topic 27. In the cross domain query graph, the circle represents a concept and the triangle
represents a predicate. A color is assigned to each domain as follows: DrugBank: Red; HGNC: Pink; MGI: Green; PharmGKB: Cyan; ClinicalTrials: Yellow;
OMIM: Sky Blue; SIDER: Gray; KEGG: Orange; CTD: Magenta. The cross domain query graph is composed with the paths between Topic 27 and Topic 16
such as i) {dv:Drug (SIO_010038)! dv:target! dv:Target(SIO_010423)! dv:x-genecards! dv:Gene(SIO_001121)}; ii){DrugBank:hdv:Drug (SIO_010038)
! dv:target! dv:Target(SIO_010423)! dv:x-uniproti )OMIM:omimv:Uniprot}; iii) {omimv:Resource! omimv:x-uniprot! omimv:Uniprot}.

doi:10.1371/journal.pone.0160005.g010
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dv:Target(SIO_010423)! dv:x-genecards! dv:Gene(SIO_001121)}; ii){DrugBank:hdv:Drug
(SIO_010038)! dv:target! dv:Target(SIO_010423)! dv:x-uniproti ) OMIM:omimv:Uni-
prot}; iii) {omimv:Resource! omimv:x-uniprot! omimv:Uniprot}. Table 7 shows the infor-
mation retrieval comparison between the MedKDD and the SLAP frameworks in terms of the
association with targets, genes, and OMIM resources for the top five drug instances. Fig 11
shows the SPARQL query and query results for the drug instances and their association with
target, gene, OMIM resources. Similar to the first case, for the query across two domains Drug-
Bank and OMIM, MedKDD retrieved all the relevant information while SLAP could not
retrieve any information except partial information about drug and gene association.

In the comparative analysis, we demonstrated MedKDD’s capacity retrieving the association
relationships between multiple concepts or predicates ether cross topics within a single domain
or across domains. MedKDD shows the 100% accuracy rate in retrieving this information from
the topics of nine different domains. Although SLAP proposed a strong statistical model to pre-
dict the association between drugs and genes, SLAP has a very limited capacity in retrieving
information across topic (drug, target, and gene) or across domains (DrugBank and OMIM).
The SLAP prediction of drug and gene interactions was strictly limited to the association
between chemical compounds and targets. This result implicates the effectiveness of the
MedKDD framework in discovering knowledge even across topics or across domains com-
pared to the cross domain query processing approach, namely SLAP.

Domain Collaboration Patterns in Cross Domains
Based on top five CDNP patterns (Provider, Consumer, Reacher, Directional Connector, Non-
Directional Connector), we analyzed the collaboration across domains as shown in Fig 12.
Topic graphs are depicted in Fig 13. For each case study, we now show its topic pattern graph
of concepts and predicates and the instances of concepts in this topic graph.

Case 1: Provider Patterns in Domain Collaboration Five domains (DrugBank, PharmGKB,
ClinicalTrials, KEGG and CTD) are involved in the collaboration of the Provider pattern. In
this collaboration, we found that DrugBank and KEGG are a Provider, CTD is a Balancer, and
PharmGKB is a Consumer as well as a Bridger. ClinicalTrials is its Consumer. Fig 12(a) shows a
domain collaboration graph for the given Provider pattern. Fig 13(a) shows the provider pattern
graph of Topic 25.

Table 7. Top 5 Drug Instances & Cross Domain Query Results of MedKDD& SLAP.

Drug Name MedKDD SLAP

#Targets #Genes #Resources #Targets #Genes #Resources

NADH [drugbank:DB00157] 143 141 204 0 0 0

L-Glutamic Acid [drugbank:DB00142] 62 62 90 0 94 0

Pyridoxal Phosphate [drugbank:DB00114] 58 54 73 0 56 0

Ethanol [drugbank:DB00898] 78 78 62 0 0 0

Zonisamide [drugbank:DB00909] 63 63 56 0 27 0

The results are from the cross domain query designed with the following paths such as i) {dv:Drug (SIO_010038)! dv:target! dv:Target(SIO_010423)!
dv:x-genecards! dv:Gene(SIO_001121)}; ii){DrugBank:hdv:Drug (SIO_010038)! dv:target! dv:Target(SIO_010423)! dv:x-uniproti ) OMIM:omimv:
Uniprot}; iii) {omimv:Resource! omimv:x-uniprot! omimv:Uniprot}. The query about the drug and target association is from a single topic, Bio2RDF Topic

27. However, the query across two domains DrugBank and OMIM, MedKDD retrieved all the relevant information for this cross domain query while SLAP

could not retrieve any information except partial information about drug and gene association.

doi:10.1371/journal.pone.0160005.t007
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Fig 1(a) shows a Provider pattern in Topic 25. This pattern describes the collaboration of
two predicates, namely phv:x-hgnc and kv:x-hgnc to integrate information from three domains.
Specifically, PharmGKB Resource links to KEGG Gene (SIO normalized) through HGNC Gene
symbol. Table 8 shows 5 instances of the concepts in the Provider pattern of Topic 25.

Case 2: Domain Collaboration with Consumer Patterns Five domains, namely KEGG,
OMIM, DrugBank, CTD, and PharmGKB, are involved in this case. We found that CTD is a
Consumer of KEGG, OMIM and PharmGKB. DrugBank are a Balancer with KEGG. Fig 12(b)
shows a domain collaboration graph for the Consumer pattern, CTD. Fig 13(b) shows the Con-
sumer pattern graph of Topic 15.

Fig 1(b) shows a Consumer pattern in Topic 15. This Consumer pattern shows the collabora-
tion between predicatesmgv:x-ensembl-protein and kv:x-uniprot as a Consumer of the
PharmGKB concept (SIO normalized), SIO_001077:Gene. The collaboration is established
across three domains such as KEGG,MGI and PharmGKB. In this pattern, due to the collabo-
ration of these two Consumer predicates, the Uniprot concept Resource is linked to the

Fig 11. The Cross Domain SPARQL query and Query Results. The figure shows the SPARQL query (left) and query results for the cross domain query
designed with the paths shown in Fig 10.

doi:10.1371/journal.pone.0160005.g011
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Ensemble concept Resource through PharmGKB concept Gene (SIO normalized). Table 9
shows 5 instances of the concepts in the Consumer pattern in Topic 15.

Case 3: Domain Collaboration with Reacher Patterns Only two predicates from two
domains, namely PharmGKB and ClinicalTrials, are involved in the Reacher pattern. From this
pattern analysis, we found that PharmGKB plays a Provider and ClinicalTrials a Consumer
from this collaboration. Fig 12(c) shows the domain collaboration with the Reacher pattern
between PharmGKB and ClinicalTrials. Fig 13(c) shows the Reacher pattern graph of Topic 22.

Fig 1(c) shows the Reacher patterns in Topic 22. This Reacher pattern was formed with the
predicates kv:pathway and dv:x-kegg across four domains (PharmGKB, DrugBank, KEGG,
CTD). Through the collaboration of these two predicates in this pattern, the PharmGKB con-
cept Drug (SIO normalized) is linked to the KEGG concept Resource and the KEGG concept
Resource is linked to the CTD concept Pathway (SIO normalized). Table 10 shows 5 instances
of the concepts in the Reacher pattern of Topic 22.

Case 4: Domain Collaboration with Directional Connector Patterns From the pattern anal-
ysis with top 40 predicates, all nine domains have the Directional Connector (DC) patterns. Fig
12(d) shows the domain collaboration through the DC patterns with 54 links among these
domains. We have found that CliniclalTrials, DrugBank and SIDER play the role of Provider
and CTD,HGNC, KEGG,MGI, OMIM, PharmGKB Consumer. Furthermore, KEGG,
PharmGKB, SIDER,HGNC play the role of Bridger. The connection among the domains were
established through the Bridger pattern. Fig 13(d) shows the DC pattern graph of Topic 16.

Fig 12. Cross Domain Pattern Graphs. (a) Topic 25: Provider Pattern Graph (b) Topic 15: Consumer Pattern Graph (c) Topic 22: Reacher Pattern Graph
(d) Topic 16: DC Pattern Graph (e) Topic 23: NDC Pattern Graph.

doi:10.1371/journal.pone.0160005.g012
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Fig 13. Cross Domain Collaboration Graphs. (a) Domain Provider Pattern (b) Domain Consumer Pattern (c) Domain Reacher Pattern (d) Domain
Directional Connector Pattern (e) Domain Non-Directional Connector Pattern. A color is assigned to each domain as follows: DrugBank: Red; HGNC: Pink;
MGI: Green; PharmGKB: Cyan; ClinicalTrials: Yellow; OMIM: Sky Blue; SIDER: Gray; KEGG: Orange; CTD: Magenta.

doi:10.1371/journal.pone.0160005.g013

Table 8. Provider Pattern in Topic 25.

phv:Resource hv:Resource SIO_001077:Gene

epidermal growth factor receptor Gene Symbol for EGFR EGFR, ERBB, ERBB1, HER1, PIG61, mENA; epidermal growth factor
receptor (EC:2.7.10.1); K04361 epidermal growth factor receptor [EC:2.7.10.1]

complement component 1, r
subcomponent

Gene Symbol for
C1R

C1R; complement component 1, r subcomponent (EC:3.4.21.41); K01330 complement
component 1, r subcomponent [EC:3.4.21.41]

complement component 1, q
subcomponent, B chain

Gene Symbol for
C1QB

C1QB; complement component 1, q subcomponent, B chain; K03987 complement C1q
subcomponent subunit B

complement component 1, s
subcomponent

Gene Symbol for
C1S

C1S; complement component 1, s subcomponent (EC:3.4.21.42); K01331 complement
component 1, s subcomponent [EC:3.4.21.42]

interleukin 2 receptor, beta Gene Symbol for
IL2RB

IL2RB, CD122, IL15RB, P70-75; interleukin 2 receptor, beta; K05069 interleukin 2 receptor
beta

For the Provider pattern in Topic 25, the three important concepts and five instances are shown.

doi:10.1371/journal.pone.0160005.t008
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Fig 2(a) shows a DC pattern in Topic 16. In this DC pattern of Topic 16, three predicates
such as dv:x-hgnc, hv:x-omim and omimv:x-mgi were used to connect concepts across five
domains (KEGG, DrugBank, HGNC, OMIM,MGI). In this pattern, the KEGG concept Enzyme
(SIO normalized) links to theHGNC concept Resource. TheHGNC concept Resource links to
the OMIM concept Resource, and the OMIM concept Resource links to theMGI concept
Resource. We found all the paths within the bounded context (the maximum distance between
predicates, B = 3) determined by the DC patterns. One of them is the path hSIO_010343:
Enzyme! dv:x-hgnc! hv:Resource! hv:x-omim! omimv:Resource! omimv:x-mgi!
mgv:Resourcei. Table 11 shows 5 instances of the concepts in the DC pattern of Topic 16.

Case 5: Domain Collaboration with Non-Directional Connector Patterns In the Non-
Directional Connector (NDC) pattern discovery, all the 9 domains are involved. Fig 12(e)
shows the ontology collaboration through the NDC patterns. These 9 ontologies are connected
with 72 links, which means all of them are fully connected. Interestingly, all of them have the
same number of in-degree and out-degree, so that they are well balanced. Thus, no Bridge pat-
tern is required in this collaboration. Fig 13(e) shows the NDC pattern graph of Topic 23.

Fig 2(b) shows a domain collaboration graph generated from the NDC pattern in Topic 23.
This NDC pattern is composed with four predicates such asmgv:x-refseq-transcript, ctdv:path-
way and ctdv:disease that are used to connect nine different domains (KEGG, DrugBank,MGI,
HGNC, SIDER, PharmGKB, ClinicalTrials, OMIM, CTD). Specifically, in this pattern, those
three predicates are used to connect six concepts such as KEGG Gene (SIO normalized), Refseq
resource, KEGG Resource, CTD Chemical, KEGG Pathway (SIO normalized) and CTD Chemi-
cal-disease-association. Table 12 shows 5 instances of the NDC pattern in Topic 23.

Case 6: Domain Collaboration with Topics The 43 topics discovered from 9 domains are
shown in Fig 14. First, we present how the 43 topics are composed with the concepts and predi-
cates from these domains. Topic 16, Topic 23, Topic 25 are the most diverse topics whose

Table 9. Consumer Pattern in Topic 15.

SIO_001077:Gene ensev:Resource unv:Resource

Brd7 ENSMUSP00000034085 Bromodomain-containing protein 7

C1qbp ENSMUSP00000077612 Complement component 1 Q subcomponent-binding protein, mitochondrial

Ddx21 ENSMUSP00000042691 Nucleolar RNA helicase 2

Kcnab1 ENSMUSP00000047480 Voltage-gated potassium channel subunit beta-1

Nip7 ENSMUSP00000034392 60S ribosome subunit biogenesis protein NIP7 homolog

For the Consumer pattern in Topic 15, the three important concepts and five instances are shown.

doi:10.1371/journal.pone.0160005.t009

Table 10. Reacher Pattern in Topic 22.

SIO_010038:Drug kv:Resource SIO_001107:Pathway

L-Lysine L-Lysine; Lysine acid; 2,6-Diaminohexanoic acid ABC transporters

Succinic acid Succinate; Succinic acid; Butanedionic acid; Ethylenesuccinic acid Citrate cycle (TCA cycle)

Glycine Glycine; Aminoacetic acid; Gly Biosynthesis of amino acids

Pyruvic acid Pyruvate; Pyruvic acid; 2-Oxopropanoate; 2-Oxopropanoic acid; Pyroracemic acid Pentose phosphate pathway

L-Glutamic Acid L-Glutamate; L-Glutamic acid; L-Glutaminic acid; Glutamate Biosynthesis of secondary metabolites

For the Reacher pattern in Topic 22, the three important concepts and five instances are shown.

doi:10.1371/journal.pone.0160005.t010
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concepts and predicates are from all 9 different domains. On the other hand, Topic 4, Topic 10
and Topic 17 are from a single domain, DrugBank,MGI, SIDER, respectively. Second, the
number of topics that were discovered from KEGG, DrugBank, ClinicalTrials is 35, 29, 28,
respectively. They are three highest topic numbers among 9 domains. On the other hand, CTD
andHGNC contain less than 10 topics, which are two smallest ones. In terms of the size of
these domains, ClinicalTrials, DrugBank and KEGG are the top three biggest ones whileHGNC
and CTD are the bottom two smallest ones. Thus, we found that the size of domains (specially,
the number of predicates) is strongly related to the number of topics in these domains.

Discussion

Knowledge Discovery with Heterogeneous Medical Data
There are many efforts that have been made for semantic annotation of heterogeneous data
and perform knowledge discovery on biomedical data [34–37]. Most of these work have mainly
focused on building or using ontologies for data normalization, connecting, and reasoning.

Table 11. Directional Connector Pattern in Topic 16.

SIO_010343:Enzyme hv:Resource omimv:Resource mgv:
Resource

Prostaglandin G/H synthase 2 Gene Symbol for
PTGS2

PROSTAGLANDIN-ENDOPEROXIDE SYNTHASE 2;
PTGS2

Ptgs2

Vitamin K-dependent protein C Gene Symbol for
PROC

PROTEIN C; PROC Proc

Cytochrome P450 2C9 Gene Symbol for
CYP2C9

CYTOCHROME P450, SUBFAMILY IIC, POLYPEPTIDE 9;
CYP2C9

Cyp2c65

CYP3A Gene Symbol for
CYP3A7

CYTOCHROME P450, SUBFAMILY IIIA, POLYPEPTIDE 7;
CYP3A7

Cyp3a13

Cob(I)yrinic acid a,c-diamide adenosyltransferase,
mitochondrial

Gene Symbol for
MMAB

MMAB GENE; MMAB Mmab

For the Directional Connector Pattern in Topic 16, the four important concepts and five instances are shown.

doi:10.1371/journal.pone.0160005.t011

Table 12. Non-Directional Connector Pattern in Topic 23.

SIO_001077
(Gene)

refv:Resource v:
Resource

Chemical-Disease-Association Chemical SIO_001107 (Pathway)

Fbxl12 NM_001002846 SDKD 1,10-phenanthroline (C025205) & Plasminogen
Activator Inhibitor-1 Deficiency

Plasminogen Activator
Inhibitor-1

p53 signaling pathway

Gjb6 NM_001010937 SDKD 2-nitro-4-phenylenediamine (C014706) & Interleukin
2 Receptor, Alpha, Deficiency of

Interleukin 2, Receptor
Alpha

Cytokine-cytokine
receptor interaction

Dclre1b NM_001025312 SDKD 2-(methylamino)isobutyric acid (C017911) & Insulin-
Like Growth Factor I Deficiency

Insulin-Like Growth
Factor I

Oocyte meiosis

BC053393 NM_001025435 SDKD 2-methoxy-5-(2’,3’,4’-trimethoxyphenyl) tropone
(C030370) & Combined Saposin Deficiency

Combined Saposin Lysosome

Maf NM_001025577 SDKD 2-methoxy-5-(2’,3’,4’-trimethoxyphenyl) tropone
(C030370) & Krabbe Disease, Atypical

Combined Saposin Metabolism

For the Non-Directional Connector Pattern in Topic 23, the six important concepts and five instances are shown. in the table, SDKD is Synthesis and

degradation of ketone bodies refseq:NM_001002846, Chemical describes the deficiency of chemical components.

doi:10.1371/journal.pone.0160005.t012
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Chen et al. [34] annotated different domains into a single ontology and provided an approach
to find existing links between existing sources and targets as well as predict missing links
between potential sources and targets. Data normalization and data integration platforms have
been built for single domain and cross domain knowledge discovery. For the purpose, some
medical ontologies are introduced, namely Bio2RDF (Linked Data for the Life Sciences) [6],
TMO (Translational Medicine Ontology) [38], Chem2Bio2RDF (Linked Open Data Portal for
Chemical Biology) [39], SIO (Semanticscience Integrated Ontology) [40], ATC (Anatomical
Therapeutic Chemical) and DrugBank [41], Chem2Bio2OWL(Ontology for Chemogenomics/
Systems Chemical Biology) [42], LLD (Linked Life Data) [43], LODD (Linked open drug data)
[44] and LinkedCT (A Linked Data Space for Clinical Trials) [45].

We now discuss existing work on knowledge discovery. For relation extraction, ontologies
are helpful for extraction of relations in the form of thesaurus, dictionary, or general corpus
[46], for extraction of semantic knowledge of relations based on Metathesaurus and Semantic

Fig 14. 43 Topics Discovered from 9 Medical Domains. 40 Cross Domain Topics and 3 Single Domain Topics.

doi:10.1371/journal.pone.0160005.g014
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Network of UMLS [47], and for semantic search indexes [48]. Semantic rules have been applied
to extract relations from publications [49]. Relations can also be extracted based on specific
patterns such as protein-to-protein relations [50], gene-disorder association [51], and diseases
and drugs [52]. Shotton et al. [53] presented semantic enhancement methods through citation
context and semantically relations for biomedical research articles on tropical diseases.

A variety of research have been conducted in systematical and computational knowledge
discovery with cross domain datasets. HeteSim is a general framework that was designed for
relationship discovery and linking detection from heterogeneous networks [54, 55]. The
iPHACE framework was designed to extract knowledge between drug-target interaction [56].
ChemProt [57] provided a database to discover relationships between disease and chemical
biology. STITCH 3 [58] performed knowledge discovery between chemicals and proteins.
Oprea et al. [59] built an integrated platform of drugs, targets, and clinical outcomes for sup-
porting Drug repositioning. Kinnings et al. [60] discovered relationship between drug and dis-
ease by deploying chemical and systems biology. In [61] an ontology of chemical information
entities was developed for the integration of calculated properties of chemical entities within a
semantic web context. Campillos et al. [62] identified drug target by using side-effect similarity
and then found the association among drug, target, and side effect. Connectivity Map [63] was
designed to use gene-expression signatures in discovery of relationships among small mole-
cules, disease, gene, and drug.

However, our approach is different in that, first of all, we focus on a more general approach
for graph structural pattern analysis and topic discovery from heterogeneous information net-
works. In addition, we have combined an unsupervised learning algorithm with a pattern dis-
covery technique to provide a more systematic way of knowledge discovery from multiple
domains.

Ontology Mapping and Alignment
Our approach for finding roles in ontology collaboration is related to existing work in ontology
matching, alignment, classification and mapping [27]. Ontology mappings and aliments are
essential in advanced semantic searchesand reasoning over integrated ontologies [64]. Recent
work on ontology alignment have emphasized the importance of attributes in mapping
between source and target concepts as well as the role played by the neighborhood of a concept
[65, 66]. Specifically, [65] are interested in the identification of evolving mapping among multi-
ple ontologies, characterizing their evolution as well as facilitating the impacted mappings.
Similarity measures were defined for identification of relevant attributes for the mappings [66].
A semantic analysis for understanding the meaning of data has been achieved through map-
pings and alignments in biomedical systems [67]. The proposed approach in this paper would
be effective in the analysis of collaboration between ontologies and their roles. This analysis
will be useful to identify potential candidates for mappings and alignments that guarantee a
consistent integration of models and interoperability for biomedical applications.

Pattern-based Analysis
Pattern based knowledge analysis has been conducted in many aspects of biomedical research.
van Leeuwen [68] proposed an interactive way to mine data by applying pattern-based mining
method. Warrender and Lord [69] proposed an axiom based pattern driven approach in bio-
medical ontology engineering. Wang et al. [70] designed a biomedical pattern discovery algo-
rithm based on a supervised learning approach. Rafiq et al. [71] developed an algorithm to
discover temporal patterns in genomic databases. In [72], Gotz presented a method for data
mining and visual analysis on clinical event patterns using electronic health record data.
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WHIDE was proposed for co-location pattern mining in multivariate bioimages [73]. Huang
et al. [74] presented a clinical pathway pattern discovery method by using probabilistic topic
models. Lasko et al. [75] proposed an unsupervised learning method for computational pheno-
type pattern discovery using clinical data. These works were different from ours because the
discovered patterns in our approach were further analyzed for transforming to topics by clus-
tering and ranking, and then represented in a hierarchical manner.

Our work is motivated by previous work that emphasised the importance of ontological
relations. Tartir et al. [76] pointed out that there are numerous meaningful relations other than
class-subclass relations that would be useful for understanding the ontologies. Shi et al. [77]
provided a predicate oriented path finding approach by analyzing facts in large knowledge
graphs. VEPathCluster [78] proposed a combination of vertex-centric and edge-centric
approach for meta path graph analysis for enhancement of clustering quality of cross domain
datasets. Sabou et al. [79] considered ontological relations to be the primary criterion for the
summary extraction of ontologies, in which a relatively small number of concepts typically
have a high degree of connectivity through hops. Pesquita et al. [80] proposed classification
according diverse strategies suing different semantic similarity measures such as node-based/
edge-based and pair-wise/group-wise.

In our study, we hypothesize that an association measurement based on predicate neighbor-
hood patterns would be more effective in finding relevant information than a concept-based
measurement. Our approach defined a new model of predicate-based patterns and neighboring
closeness for an automatic knowledge discovery. In this paper, we fully focus on the discovery
of cross domain patterns from the heterogeneous information network representing different
types of objects and links in multiple biological ontologies. The MedKDD framework was
designed to effectively discover topics from multiple ontologies by partition them into smaller
topic graphs and constructing a topic hierarchy. The topic hierarchy was constructed based on
the analysis of the discovered patterns and participating graphs into smaller sub-graphs. To
our knowledge, there is no existing work that aim to discover cross domain topics based on
predicate-oriented neighborhoods patterns discovered from multiple ontologies and use the
discovered topics for knowledge discovery across domains.

Conclusion
In this paper, we presented the MedKDD framework for knowledge discovery and semantic
interoperability through the discovery of the Cross Domain Neighborhood Patterns (CDNP)
from the heterogeneous information network of the multiple medical ontologies. In MedKDD,
we developed the bottom-up hierarchical clustering (HPAL) algorithm and discovered cross
domain topics from the given multiple ontologies. We demonstrated that cross domain cohe-
sive topics can be dynamically discovered from heterogeneous information networks of multi-
ple ontologies and used for cross domain knowledge discovery. The MedKDD framework was
evaluated using a case study with nine ontologies of Bio2RDF and compared with the cross
domain query processing approach, namely SLAP. Overall, the experimental results confirm
that the MedKDD framework is effective in the cross domain knowledge discovery from het-
erogeneous information networks of multiple ontologies.

Future work will include the development of Apache Spark framework that is an extension
of Hadoop for parallel and distributed knowledge discovery processing from heterogeneous
information network [81]. For the assertion retrieval and clustering, we will explore existing
parallel and distributed approaches such as the NIMBLE project [82], Apache Mahout library,
and the Distributed Co-clustering (DisCo) framework [83] that have been used successfully in
diverse applications for extremely large datasets.
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