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Abstract: Arylalkylamine N-acetyltransferase (AANAT) is a pivotal enzyme in melatonin biosynthe-
sis that catalyzes the conversion of serotonin to N-acetylserotonin. Homologs of animal AANAT genes
are present in animals, but not in plants. An AANAT homolog was found in Chlamydomonas reinhardtii,
but not other green algae. The characteristics of C. reinhardtii AANAT (CrAANAT) are unclear. Here,
full-length CrAANAT was chemically synthesized and expressed in Escherichia coli. Recombinant
CrAANAT exhibited AANAT activity with a Km of 247 µM and Vmax of 325 pmol/min/mg protein
with serotonin as the substrate. CrAANAT was localized to the cytoplasm in tobacco leaf cells. Trans-
genic rice plants overexpressing CrAANAT (CrAANAT-OE) exhibited increased melatonin production.
CrAANAT-OE plants showed a longer seed length and larger second leaf angle than wild-type plants,
indicative of the involvement of brassinosteroids (BRs). As expected, BR biosynthesis- and signaling-
related genes such as D2, DWARF4, DWARF11, and BZR1 were upregulated in CrAANAT-OE plants.
Therefore, an increased endogenous melatonin level by ectopic overexpression of CrAANAT seems to
be closely associated with BR biosynthesis, thereby influencing seed size.

Keywords: brassinosteroids; cytokinin; green algae; melatonin; seed size; serotonin N-acetyltransferase;
transgenic rice

1. Introduction

Arylalkylamine N-acetyltransferase (AANAT) is the penultimate enzyme for mela-
tonin biosynthesis in animals and plants. It catalyzes the conversion of serotonin to
N-acetylserotonin, which is the substrate for melatonin synthesis by N-acetylserotonin
O-methyltransferase (ASMT) [1,2]. AANAT is also named serotonin N-acetyltransferase
(SNAT); therefore, to differentiate them from animal AANAT genes, plant AANAT genes
are frequently termed SNAT genes. Both animal AANAT and plant SNAT proteins be-
long to the GCN5-related N-acetyltransferase superfamily, which transfer an acetyl group
from acetyl-coenzyme A (CoA) [3]. However, there is no significant amino sequence
homology between animal AANATs and plant SNATs except for a few amino acids in
the acetyl-CoA-binding domain [4]. Interestingly, an animal homolog of arylalkylamine
N-acetyltransferase (AANAT) is present in the genome of C. reinhardtii, but not in other green
algae or higher plants [3,5,6].

Based on the key role of AANAT (or SNAT) in melatonin biosynthesis, many animal
AANAT and plant SNAT genes have been cloned and their recombinant proteins func-
tionally characterized in vitro [7,8]. Ectopic overexpression of animal AANAT or plant
SNAT genes in plant species resulted in increased melatonin synthesis [9,10]. The resulting
AANAT- or SNAT-overexpressing transgenic plants exhibited increased melatonin synthe-
sis and enhanced responses to biotic and abiotic stresses, including ultraviolet-B [11], high
temperature [12], pathogen [13], salt [14], high light [15], cadmium [16,17], drought [18],
oxidative stress [19], and cold exposure [20]. The enhanced tolerance to various stresses
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in AANAT- or SNAT-overexpressing plants was attributable to melatonin overproduction
because melatonin not only has antioxidant activity but also induces antioxidant enzymes
such as catalase, peroxidase, and superoxide dismutase [9,21].

CrAANAT was first characterized by Okazaki et al. [22]. CrAANAT transfers an
acetyl group to serotonin. Transgenic tomato plants overexpressing CrAANAT had an
increased melatonin level. However, the Km and Vmax values of recombinant CrAANAT
and the phenotypes of CrAANAT-overexpressing transgenic plants are unknown. The aim
of this work was to determine the enzyme kinetics of CrAANAT and its functional role
in melatonin biosynthesis through heterologous expression in rice genome. We purified
recombinant CrAANAT and determined the Km and Vmax values of its AANAT activity.
Ectopic overexpression of CrAANAT in the rice genome increased the seed length and
upregulated brassinosteroid (BR) (rather than cytokinin)-related gene expression.

2. Materials and Methods
2.1. Synthesis of C. reinhardtii AANAT

Based on AANAT of C. reinhardtii (CrAANAT; GenBank accession AB474787), the
192 codons of CrAANAT (including the stop codon) were manually optimized according to
SNAT2 codons of rice [23]. Codon-optimized synthetic CrAANAT was custom-synthesized
by Bioneer (Daejeon, South Korea).

2.2. Affinity Purification of Various Recombinant C. reinhardtii AANAT Proteins from Escherichia
coli Expression

Four different types of Escherichia coli vectors were employed to express the full-length
synthetic Chlamydomonas reinhardtii AANAT (CrAANAT) DNA. Two vectors were pET300
(Invitrogen, Carlsbad, CA, USA) and pET28b (Novagen, San Diego, CA, USA) which
are designed to express the CrAANAT in either N-terminal- or C-terminal- hexahistidine
tagged form. The other two vectors were pET32b (Novagen) and pET60 (Novagen) which
are designed to express the CrAANAT in N-terminal fusion proteins of either thioredoxin
(Trx) or glutathione-s-transferase (GST). As for pET300, CrAANAT-attB1 forward primer
(5′-AAA AAG CAG GCT CCA TGG CTG AGG AGT CGC-3′) and CrAANAT-attB2 reverse
primer (5′-AGA AAG CTG GGT CTA GGC CTC AGC AGC CTC-3′) were used for PCR
amplification with the synthetic CrAANAT gene followed by second PCR using adaptor
primers with attB recombination sequences (attB1 adaptor forward primer, 5′-GGG GAC
AAG TTT GTA CAA AAA AGC AGG CT-3′; attB2 adaptor reverse primer, 5′-GGG GAC
CAC TTT GTA CAA GAA AGC TGG GT-3′). The resulting PCR product was gel purified
and cloned into the pDONR221 Gateway® vector (Invitrogen) via BP (between the attB
and the attP sites) recombination. The pDONR221:CrAANAT gene entry vector was then
recombined with the pET300 Gateway destination vector via LR (between the attL and
the attR sites) recombination to form the pET300-CrAANAT vector. A pET28b-CrAANAT
was constructed by PCR with NcoI forward primer (5′-ACC ATG GCT GAG GAG TCG
CTC-3′) and XhoI reverse primer (5′-CTC GAG GGC CTC AGC AGC CTC TGC-3′). To
generate pET60-CrAANAT, the CrAANAT-attB1 forward primer and 6×His attB2 reverse
primer (5′-AGA AAG CTG GGT TCA GTG GTG GTG GTG GTG-3′) were used to amplify
the CrAANAT with the pET28b-CrAANAT plasmid as a template. The resulting PCR
product was further amplified with the attB1 adaptor forward and attB2 adaptor reverse
primers followed by BP and LR recombination reactions as described above. A pET32b-
CrAANAT was constructed by ligating the NcoI and XhoI insert prepared during the
pET28b-CrAANAT vector construction. All plasmids were transformed into E. coli strain
BL21(DE3) (Novagen).

2.3. Purification of Recombinant CrAANAT Proteins

Each 10 mL of E. coli overnight culture of E. coli containing pET300-CrAANAT, pET28b-
CrAANAT, pET60-CrAANAT, and pET32b-CrAANAT plasmid vectors was inoculated into
100 mL of Terrific Broth (20 g/L Bacto-tryptone, 24 g/L Bacto-yeast extract, 4 mL/L glycerol,
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and phosphate buffer [0.017 M monopotassium phosphate and 0.072 M dipotassium phos-
phate]) containing with 50 mg/L ampicillin or 50 mg/L kanamycin (pET28b-CrAANAT)
and incubated at 37 ◦C until the optical density at 600 nm reached 1.0 about 3 to 4 h. The
culture was added with 1 mM isopropyl-β-D-thiogalactopyranoside (Sigma, St. Louis, MO,
USA) and grown at 28 ◦C with shaking at 180 rpm for 5 h. The protein was purified via
affinity nickel ion chromatography according to the column manufacturer’s instructions
(Qiagen, Tokyo, Japan).

2.4. Measurement of Serotonin N-Acetyltransferase (SNAT) Enzyme Activity

Two types of purified recombinant CrAANAT proteins were incubated in 100 µL of
100 mM potassium phosphate (pH 8.8 or various pH values) in the presence of 0.5 mM
serotonin and 0.5 mM acetyl-coenzyme A. SNAT enzyme assays were conducted at 45 ◦C
for 30 min (or various temperatures) and stopped by adding 25 µL of methanol. Then, 10 µL
aliquots of the reaction mixture were subjected to high-performance liquid chromatog-
raphy (HPLC) coupled to a fluorescence detector system to detect N-acetylserotonin as
described previously [24]. Non-enzymatic reaction products that were generated without
the CrAANAT enzymes were deducted. To acquire substrate affinity (Km) and maximum
reaction rate (Vmax), various substrates (50 to 2000 µM serotonin) and enzyme concen-
trations (0.2 to 1 µg) were employed. The Km and Vmax values were calculated using
Lineweaver–Burk plots. Protein concentration was determined using Bradford assays
(Bio-Rad, Hercules, CA, USA). The analyses were performed in triplicate.

2.5. Subcellular Localization of CrAANAT

The pER-mCherry vector which was kindly donated by Dr. H. Kang (Texas State
University, San Marcos, TX, USA) was used for assessing the localization of CrAANAT
protein in tobacco leaves. Full-length CrAANAT cDNA was amplified by PCR with two
AscI containing primers (CrAANAT AscI forward primer 5′-GGC GCG CCA TGG CTG
AGG AGT CGC TCG-3′; CrAANAT AscI reverse primer 5′-GGC GCG CCG GGC CTC AGC
AGC CTC TGC-3′). The resulting PCR product was first cloned into the T&A cloning vector
(T&A:CrAANAT; RBC Bioscience, New Taipei City, Taiwan) from which the AscI insert
of CrAANAT was produced and cloned into the binary pER8-mCherry vector at the AscI
restriction sites downstream of the estrogen-inducible XVE promoter to generate CrAANAT-
mCherry fusion proteins. The plasmid was transformed into Agrobacterium tumefaciens
strain GV2260 using the freeze-thaw method. As for a transient expression analysis of
CrAANAT-mCherry, the leaves of two-week-old tobacco (Nicotiana benthamiana) plant,
a native Australian species, were infiltrated with A. tumefaciens strain GV2260 carrying
pER8:CrAANAT-mCherry plasmid. The transformed tobacco leaves were then examined
using confocal microscopy to determine the subcellular localization of the CrAANAT-
mCherry fusion proteins. Further treatment with β-estradiol (Sigma Aldrich, St. Louis,
MO, USA) and confocal microscopy analysis were described previously [24].

2.6. Vector Construction and Production of CrAANAT-Overexpressing Transgenic Rice Plants

The pDONR221:CrAANAT gene entry vector harboring the synthetic CrAANAT gene
was then recombined with the pIPKb002 destination vector [25] via LR recombination to
yield pIPKb002-CrAANAT, which was transformed into Agrobacterium tumefaciens strain
LBA4404. We used Agrobacterium-mediated rice transformation with the coculture with
rice scutelum-derived calli to generate transgenic rice (Oryza sativa cv. Dongjin, a Korean
japonica cultivar) plants as described previously [26].

2.7. Plant Growth Conditions

Rice (Oryza sativa cv. Dongjin, a Korean japonica cultivar) seeds of both wild type
and CrAANAT overexpression (CrAANAT-OE) were sterilized with 2% sodium hyphochlo-
rite and rinsed with sterile distilled water. Sterilized seeds were grown on half-strength
Murashige and Skoog (MS) medium under cool daylight fluorescent lamps (60 µmol m−2 s−1)
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(Philips, Amsterdam, Netherlands) in 14-h light/10-h dark photoperiod at 28 ◦C/24 ◦C
(day/night) for 7 days. Germinated seeds were grown in a paddy field at the Chonnam
National University (35◦09′ N and 126◦54′ W; 53 m a.s.l), Gwangju, Korea in 2021. The
distance between the rice plants within a row was 30 cm, and the distance between the
rows was 30 cm. Grain length, grain width and 1000-grain weight were measured after
harvesting followed by drying for 1 month at room temperature of about 26 ◦C.

2.8. Chemical Treatment

Seven-day-old rice seedlings were incubated in 30 mL of 100 µM 5-methoxytrytamine
(Sigma-Aldrich, St. Louis, MO, USA) dissolved in 0.02% ethanol for 1 day under cool
daylight fluorescent lamps (60 µmol m−2 s−1) (Philips) in 14-h light/10-h dark photoperiod
at 28 ◦C/24 ◦C (day/night). The 0.02% ethanol was used as a control. The leaves and stems
were harvested for further analyses.

2.9. Quantitative Real Time-Polymerase Chain Reaction (qRT-PCR) Analysis

Total RNA from rice plants was isolated using a NucleoSpin RNA Plant Kit (Macherey-
Nagel, Düren, Germany). First-strand cDNA was synthesized from 2 µg of total RNA
using EcoDryTM Premix (Takara Bio USA, Inc., Mountain View, CA, USA). qRT-PCR
was performed in a Mic qPCR Cycler system (Biomolecular Systems, Queensland, VIC,
Australia) with specific primers and the TB Green® Premix Ex TaqTM (Takara Bio Inc.,
Kusatsu, Shiga, Japan). The expression of genes was analyzed using Mic’s RQ software v2.2
(Biomolecular Systems) and normalized to actin 1 (ACT1). Reverse transcription (RT)-PCR
and quantitative real-time (qRT)-PCR were performed with the primer set (Table S1).

2.10. Quantification of Melatonin

Frozen samples (0.1 g) were ground in liquid nitrogen with the use of the TissueLyser II
(Qiagen, Tokyo, Japan) and extracted with 1 mL of chloroform. The chloroform extracts
were centrifuged for 10 min at 12,000× g, and the supernatants (200 µL) were completely
evaporated and dissolved in 0.1 mL of 40% methanol, and 20-µL aliquots were subjected
to HPLC using a fluorescence detector system (Waters, Milford, MA, USA) as described
previously [27]. In brief, melatonin was detected at 280 nm (excitation) and 348 nm
(emission) on a Sunfire C18 column (Waters 4.6× 150 mm) in the following gradient elution
condition: from 42% to 50% methanol in 0.1% formic acid for 27 min, followed by isocratic
elution with 50% methanol in 0.1% formic acid for 18 min at a flow rate of 0.15 mL/min.
All measurements were performed in triplicate.

2.11. Statistical Analyses

The data were analyzed using analysis of variance (ANOVA) using IBM SPSS Statistics
23 software (IBM Corp., Armonk, NY, USA). Means with asterisks indicate significantly
different values at p < 0.05, according to a Fisher’s least significant difference (LSD) test.
All data are presented as mean ± standard deviations.

3. Results
3.1. Codon-Optimized Synthesis of CrAANAT and Its Expression in Escherichia coli

The full-length CrAANAT nucleotide sequence (encoding 191 amino acids) was chem-
ically synthesized based on the codon usage of rice SNAT2 (AK068156) exhibiting a
70% G+C content. Among the 192 codons of CrAANAT, 55 were modified in the syn-
thetic CrAANAT gene, increasing the G+C content from 64% to 67% (Figures 1 and 2).
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Figure 2. Nucleotide sequence alignments of native (black writing; AB474787) and synthetic
CrAANAT (red writing) genes. Identity is denoted by red dashes. The nucleotide sequence of
synthetic CrAANAT was codon-optimized with reference to rice SNAT2 (AK068156).

Synthetic CrAANAT was expressed in E. coli as a fusion protein with an N- or C-
terminal hexa-histidine (His6) tag, followed by Ni2+ affinity purification (Figure 3). In-
tact His6-CrAANAT and CrAANAT-His6 were insoluble and so could not be purified
using a Ni2+ affinity column. However, CrAANAT fusions with thioredoxin (Trx) or
glutathione-s-transferase (GST) were soluble and subjected to Ni2+ affinity purification
(Figure 3A,B). Recombinant Trx-CrAANAT-His6 exhibited serotonin N-acetyltransferase
(SNAT) activity of 10.1 pkat/mg protein at 45 ◦C and pH 8.8, compared to 18.7 pkat/mg
protein for GST-CrAANAT-His6 (Figure 3C). Therefore, CrAANAT transfers an acetyl
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group from acetyl-CoA to serotonin to produce N-acetylserotonin, the final substrate in
melatonin biosynthesis [4].
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Figure 3. Expression of CrAANATs in Escherichia coli. (A) Affinity purification of thioredoxin (Trx)-
CrAANAT. (B) Affinity purification of glutathione-s-transferase (GST)-CrAANAT. (C) SNAT activity
of purified recombinant CrAANAT. Protein samples were separated by SDS-PAGE and stained with
Coomassie brilliant blue. M, molecular size standard; 1, total proteins in 10 µL aliquots of bacterial cell
culture without isopropyl β-D-thiogalactopyranoside (IPTG); 2, total proteins after IPTG treatment;
3, 20 µg of soluble protein extract from supernatant after centrifugation at 15,000× g; 4, recombinant
proteins purified by affinity (Ni-NTA) chromatography. X, no purification; O, successful purification.

3.2. Kinetics of Recombinant CrAANAT

SNAT activity peaked at pH 8.8 and was similar at pH 7.8 (Figure 4). This high
pH optimum is consistent with that of other plant SNAT proteins [8,13,23,28,29] but
unlike animal AANAT proteins (pH 6.7) [30,31]. SNAT activity was fourfold lower at
pH 6.5 than at pH 8.8. SNAT activity was highest at 45 ◦C followed by 37 ◦C. The high
level of SNAT activity at 37 ◦C is similar to other animal AANAT proteins but not plant
SNAT proteins [8,30,31]. The Km and Vmax values were 247 µM and 5.4 pkat/mg protein
(325 pmol/min/mg protein), respectively. The Km value of CrAANAT is similar to those
of rice [24], Arabidopsis [29], and tobacco [8], but lower than that of red algae [32] and
cyanobacteria [33]. The Km value of CrAANAT was threefold higher than that of sheep
AANAT [7]. In contrast, the Vmax value of CrAANAT was lower than that of plant SNATs
and sheep AANATs. Therefore, the kinetics of CrAANAT has similarities to those of plant
SNATs and animal AANATs. To be more precise, the CrAANAT is close to plant SNAT at
the level of Km value, but to animal AANAT at the level of Vmax value.

3.3. Subcellular Localization of CrAANAT

Because in silico TargetP analysis of CrAANAT showed no transit or signal se-
quence [34], we hypothesized that CrAANAT is cytoplasmic. We subcloned CrAANAT
into a binary vector to express the CrAANAT-mCherry fusion protein under the control
of the estrogen-inducible XVE promoter. Agrobacterium cells harboring the binary vector
were infiltrated into tobacco leaves followed by transgene induction by β-estradiol. Confo-
cal microscopy showed that CrAANAT-mCherry exhibited strong mCherry fluorescence,
which co-localized with the green fluorescence of cytoplasmic GFP (Figure 5). Therefore,
CrAANAT localizes to the cytoplasm, as does sheep AANAT [35]. CrAANAT in the
cytoplasm is unlike the chloroplastic localizations of other plant SNAT proteins [8,13,24].
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Figure 5. Localization of CrAANAT. (A) Red fluorescence of CrAANAT-mCherry. (B) Green fluo-
rescence of cytoplasmic GFP. (C) Cyan fluorescence of chloroplasts. (D) Merged image (A + B + C).
Leaves of 30-day-old tobacco (Nicotiana benthamiana) seedlings were infiltrated with Agrobacterium
(GV2260) containing XVE-inducible CrAANAT-mCherry, or constitutive 35S:GFP (cytosolic marker).
Bars, 20 µm. Synthetic CrAANAT was used in place of native CrAANAT (AB474787).

3.4. Transgenic Rice Plants Overexpressing CrAANAT (CrAANAT-OE)

To determine whether CrAANAT is functionally coupled to melatonin biosynthesis
in vivo, we generated CrAANAT-OE under the control of the maize ubiquitin promoter
(Figure 6A).

Six homozygous T2 CrAANAT-OE were selected from 11 independent T1 transgenic
rice seeds (Figure 6A,B). These T2 CrAANAT-OE showed CrAANAT overexpression whereas
CrAANAT transcript was not detected in wild type (WT). The T2 homozygous CrAANAT-
OE, particularly line 7, showed slightly increased seedling growth (Figure 6C,D). When
these T2 homozygous transgenic seedlings were rhizospherically challenged for 24 h
with 100 µM 5-methoxytryptamine (5-MT), a substrate for AANAT-catalyzed melatonin
biosynthesis, the WT and CrAANAT-OE lines produced 83 and 116 ng/g fresh weight
(FW) (Figure 6E). Therefore, CrAANAT converts 5-MT into melatonin by acetylating 5-MT,
as do most animal AANAT and plant SNAT proteins [8,36]. In the absence of 5-MT, the
WT and CrAANAT-OE lines produced melatonin at 0.2 and 0.45 ng/g FW (Figure 6F).
Therefore, ectopic overexpression of CrAANAT increased AANAT activity compared to
wild type. CrAANAT overexpression was functionally associated with enhanced production
of melatonin in the CrAANAT-OE line compared to wild type.
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Figure 6. Structure of the pIPKb002-CrAANAT binary vector and its overexpression in transgenic
rice plants. (A) Schematic diagram of the pIPKb002:CrAANAT binary vector. (B) Expression
of CrAANAT in wild type (WT) and CrAANAT-overexpressing (CrAANAT-OE) seedlings (T2).
(C) Phenotypes of 7-day-old rice seedlings of WT and CrAANAT-OE transgenic plants (T2).
(D) Seedling lengths of WT and CrAANAT-OE plants. (E) Melatonin contents in 7-day-old rice
seedlings after 100 µM 5-methoxytryptamine (5-MT) in 0.02% ethanol. (F) Melatonin contents in
7-day-old rice seedlings after 0.02% ethanol treatment. Seven-day-old rice seedlings were rhizospher-
ically challenged with 100 µM 5-MT for 24 h in 0.02% ethanol. *, significant difference from wild type
(p < 0.05; ANOVA, followed by Fisher’s LSD test). The numbers of PCR cycles are shown in parenthe-
ses. Synthetic CrAANAT was overexpressed in the rice genome. Ubi-P, maize ubiquitin promoter;
HPT, hygromycin phosphotransferase; Tnos, nopaline synthase terminator. GenBank accession
number of UBQ5, Os03g13170.

Homozygous T2 CrAANAT-OE seeds were of greater length, but lesser width, than
WT seeds (Figure 7). The 1000-seed weight was similar in the CrAANAT-OE lines and wild
type. To determine whether the increase in seed length is associated with BRs, we measured
the second leaf angle, a phenotypic marker of BR levels. The second-leaf angle was larger
in the CrAANAT-OE seedlings than in WT seedlings (Figure 8A), indicating increased
BR levels. Cytokinins also regulate seed size in plants [37]. To identify the hormones
responsible for the increased seed length in the CrAANAT-OE lines, we evaluated the
expression levels of BR- and cytokinin-related genes. The expression levels of BR-related
genes were significantly increased in the CrAANAT-OE lines (the BR biosynthesis-related
genes DWARF [D]2, D4, and D11 and BRASSINOZOLE-RESISTANT 1 (BZR1), encoding a
transcription factor that regulates BR-responsive gene expression; Figure 8B) [38,39]. By
contrast, cytokinin degradation genes (CKX2, CKX4, and CKX10) and cytokinin biosynthesis
genes (LOGL1, LOGL3, and LOGL10) were upregulated. Therefore, the increased lamina
angle and seed length in the CrAANAT-OE line compared to wild type are caused by BRs
rather than cytokinins.
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* Significant difference from wild type (p < 0.05; Fisher’s LSD test).
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Figure 8. Second-leaf angle and cytokinin and brassinosteroid (BR) biosynthesis-related gene ex-
pression. (A) Second-leaf angle. (B) Quantitative real-time (qRT)-PCR of BR biosynthesis- and
signaling-related genes. (C) qRT-PCR of cytokinin biosynthesis- and degradation-related genes.
Fourteen-day-old rice seedlings grown in soil were used to measure the lamina angle of the sec-
ond leaf; meristem parts of rice seedlings, including second leaves, were subjected to total RNA
extraction and qRT-PCR. GenBank accession numbers are CKX2, cytokinin oxidase2 (Os01g0197700);
CKX4 (Os01g0940000); CKX10 (Os06g0572300); LOGL1, LONELY GUY LIKE phosphoribohydrolase1
(Os01g0708500); LOGL3 (Os03g0109300); LOGL10 (Os10g0479500); D2, DWARF2 (XP-015611433);
D4, DWARF4 (AB206579); D11, DWARF11 (AK106528); RAVL1, RAV Like1 (Os04g0581400); BRI1
(AK101085); BZR1 (Os07g39220); ACT1 (Os03g50885). * Significant difference from wild type
(p < 0.05; Fisher’s LSD test).
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4. Discussion

The final two genes in melatonin biosynthesis are AANAT (or SNAT) and ASMT [4].
AANAT was first cloned and characterized in sheep and rats [40,41]. AANAT homologs
have been cloned from fish [42], humans [31], yeast [43], and mosquitos [44]. AANAT
plays a rate-limiting role in melatonin biosynthesis by acetylating serotonin and 5-MT, thus
synthesizing N-acetylserotonin and melatonin, respectively, in animals and plants [8,36].
An animal AANAT homolog was reported in the green alga C. reinhardtii, but not in other
green algae or higher plants [5]. Okazaki et al. [22] expressed C. reinhardtii AANAT in
E. coli and reported that the purified GST-CrAANAT fusion protein transferred an acetyl-
CoA group to serotonin but did not determine its Km and Vmax values. Furthermore, its
overexpression in tomato increased melatonin synthesis, but this did not affect the plant
phenotype. The Km and Vmax values of purified recombinant CrAANAT for serotonin
indicated that CrAANAT encodes a SNAT enzyme. Similar to other plant SNAT proteins,
CrAANAT prefers a high pH, but an optimum temperature of around 37 ◦C, like animal
AANATs [45]. This optimum temperature of CrAANAT is in contrast to that of other plant
SNAT enzymes (45 ◦C to 55 ◦C) [8], indicating that CrAANAT possesses characteristics of
animal AANAT and plant SNAT proteins.

Melatonin has diverse functions in plant growth, development, and biotic and abiotic
stress responses [9,10,46–49] by modulating the cellular redox balance [50–52] and protein
quality control [53]. Additionally, melatonin functions in concert with other plant hormones
during growth and under stressful conditions [54,55]. Melatonin directly influences hor-
mone levels in Arabidopsis thaliana, in which exogenous melatonin promotes primary root
growth via the indole-3-acetic acid signaling pathway [56]. Indirect effects of melatonin
on plant hormones have been reported in plants with up- or down-regulated melatonin
synthesis [57,58]. Melatonin did not directly enhance gibberellic acid (GA) synthesis [57]
and BR effects such as leaf angle increases [58]. However, melatonin suppression in an
A. thaliana knockout mutant (snat1) and SNAT2 RNAi rice plants resulted in decreased
levels of GA and BR, respectively. This was caused by decreased starch synthesis, which is
promoted by melatonin [57,59,60]. An increased endogenous melatonin level in transgenic
rice overexpressing caffeic acid O-methyltransferase (COMT) markedly increased the seed
size and rice yield as a result of elevated cytokinin levels [61]. Transgenic rice plants
overexpressing SNAT genes from Archaea and rice showed an increase in seed size [62,63];
however, whether this is caused by cytokinins or BRs is unclear. Here, the increased rice
seed length caused by an increased endogenous melatonin level was linked to increased
BR levels due to upregulation of BR biosynthetic genes (Figure 9), not increased cytokinin
levels as in COMT-overexpressing rice [61]. Moreover, the increase in BR levels caused
by endogenous melatonin overproduction induces melatonin biosynthesis by activating
the expression of melatonin biosynthetic genes such as tryptophan decarboxylase 1 (TDC1),
TDC3, and tryptamine 5-hydroxylase (T5H) [64] (Figure 9). In sum, the effect of melatonin
on seed size and yield [17,61] and stress tolerance [65,66] suggests that the generation
of melatonin-rich rice plants by exogenous application [64] or transgenic approaches [4]
would increase yields and resistance to many biotic and abiotic stresses and enable the
production of melatonin-rich foods with health benefits [67].
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Figure 9. Proposed model for the melatonin-mediated increase in seed length. The increase in
melatonin synthesis caused by ectopic overexpression of CrAANAT leads to an increased seed length
and leaf angle, key phenotypic markers of increased BR levels in rice. A number of BR biosynthesis-
and signaling-related genes were upregulated in the CrAANAT-overexpressing rice plants. These
data suggest that melatonin is positively associated with BR levels in rice plants. The melatonin-
induced BR increase is an indirect effect on photosynthesis—melatonin is positively coupled to starch
synthesis and photosynthesis, which affect BR biosynthesis [57]. BR triggers melatonin biosynthesis
by inducing the expression of melatonin biosynthesis genes such as tryptophan decarboxylase 1 (TDC1),
TDC3, and tryptamine 5-hydroxylase (T5H) [64]. Solid arrows, confirmed functions; dashed arrows,
steps not yet demonstrated in rice. ↑, upregulation.

5. Conclusions

CrAANAT had homology to animal AANAT proteins but not to plant SNAT proteins.
Its optimum temperature was 37 ◦C, similar to animal AANAT proteins, but its optimum
pH was pH 8.8, similar to plant SNAT proteins, demonstrating that CrAANAT has char-
acteristics of both animal AANAT and plant SNAT proteins. Ectopic overexpression of
CrAANAT in the rice genome led to an increase in melatonin content, leaf angle, and seed
length, indicative of enhanced BR biosynthesis. An increased BR level in CrAANAT-OE
rice plants was indirectly verified by the upregulation of BR biosynthetic genes such as D2,
D4, and D11. This is the first report of an increase in BR biosynthesis by the ectopic overex-
pression of AANAT or SNAT in transgenic plants. Many RNAi transgenic rice plants with
downregulated melatonin synthesis show decreased BR levels and leaf angle, suggesting a
close relationship between melatonin and BR levels in rice plants [39,61]. The CrAANAT
can be used as a source gene for a simultaneous increase of melatonin and BR which will
lead to improved plant growth and stress tolerance conferred by either melatonin or BR
alone or a combination of both [38,39,50].
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