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Abstract

Immunotherapy using checkpoint blockade (ICB) with antibodies such as anti-PD-1 has rev-

olutionised the treatment of many cancers. Despite its use to treat COVID-19 patients and

autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis, the

effect of hydroxychloroquine (HCQ) on cancer immunotherapy has not been examined. In

this study, remarkably, we find that HCQ alone, or in combination with azithromycin (AZ), at

doses used to treat patients, decreased the therapeutic benefit of anti-PD-1 in cancer immu-

notherapy. No deleterious effect was seen on untreated tumors. Mechanistically, HCQ and

HCQ/AZ inhibited PD-L1 expression on tumor cells, while specifically targeting the anti-PD-

1 induced increase in progenitor CD8+CD44+PD-1+TCF1+ tumor infiltrating T cells (TILs)

and the generation of CD8+CD44+PD-1+ effectors. Surprisingly, it also impaired the appear-

ance of a subset of terminally exhausted CD8+ TILs. No effect was seen on the presence of

CD4+ T cells, FoxP3+ regulatory T cells (Tregs), thymic subsets, B cells, antibody produc-

tion, myeloid cells, or the vasculature of mice. This study indicates for the first time that HCQ

and HCQ/AZ negatively impact the ability of anti-PD-1 checkpoint blockade to promote

tumor rejection.

Introduction

The anti-malarial 4-aminoquinoline drugs chloroquine (CQ) and hydroxychloroquine (HCQ)

as well as the antibiotic azithromycin (AZ) have gained much attention as potential therapies.

The parent compound chloroquine (CQ) was originally reported to inhibit SARS-Cov-1 coro-

navirus infection [1] and in vitro studies have shown activity against SARS-CoV-2 [2, 3]. The

exact mechanism of action of CQ and HCQ is unknown although these drugs increase the pH

of endosomes that the virus uses for cell entry and can interfere with the glycosylation [4].

Other mechanisms have also been proposed [5]. CQ has a half-life of 20–60 days and can
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accumulate at higher levels in metabolically active tissues [6]. Similarly, a macrolide antibiotic

AZ can synergise with HCQ to block viral entry into cells and decrease viral replication [7].

Aside from the treatment of malaria, HCQ has been used widely over the past decade at

lower concentrations to treat auto-immune diseases such as systemic lupus erythematosus and

rheumatoid arthritis where it can reduce inflammation [8, 9]. More recently, amid contro-

versy, it has and continues to be used to treat coronavirus disease 2019 (COVID-19) [10, 11].

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/2019-nCoV) poses a seri-

ous threat to global public health. An initial non-randomised trial showed remarkable efficacy

in combination with AZ in clearing SARS-Cov-2 [12]. Other studies have produced conflicting

results [13–23]. However, adverse cardiovascular effects may predispose certain patient groups

to ventricular arrhythmias [24, 25]. The efficacy may vary with the dose used in the various

studies. One recent study from the multi-center COVID-19 RISK and Treatments (CORIST)

Collaboration, using 400–600 mg of HCQ per day found that treatment was associated with

reduced mortality [26]. Another recent study from Belgium using similar doses also reported

reduced mortality [27]. The doses and onset of treatment in these studies differed from the UK

RECOVERY trial where 1600 mg on the first day and 800 mg on days 2–9 were given [28].

Overall, there is an interest whether HCQ might be more effective if used early in infection,

before the need for hospitalisation. Many countries continue to use HCQ to treat COVID-19

health workers who are suspected or confirmed of infection [29].

In terms of the immune response, HCQ and CQ have been reported to have mixed and

contradictory effects on the immune system. One report showed that CQ enhances human

CD8+ T cell responses [30], while another showed that HCQ inhibits CD4+ T cell activation

[31]. HCQ is well known to inhibit autophagy [32], may reduce the efficacy of antigen-presen-

tation [8, 33] and decrease the production of proinflammatory Th17-related cytokines [34].

Another report showed that HCQ enhanced the function of suppressive regulatory T cells

(Tregs) [9].

In a related context, the past 15 years have witnessed a revolution in the application of

immunotherapy for the treatment of cancer. Immune checkpoint blockade (ICB) uses mono-

clonal antibodies that block the binding of inhibitory receptors (IRs) on T cells to their natural

ligands often expressed on cancer cells. The blockade of cytotoxic T-lymphocyte–associated

antigen 4 (CTLA-4) and programmed death 1 (PD-1) or the PD-1 ligand, PD-L1 have achieved

survival rates of 20–30% in treating cancers such as non-small cell lung carcinoma (NSCLC),

melanoma, kidney, and bladder cancer [35, 36]. The tumor microenvironment (TME) can

alter the make-up and function of TILs [37].

With the use of HCQ in treating autoimmunity and COVID-19, a percentage of these

patients will be cancer patients on ICB. This raises an important question as to the best thera-

peutic approach for COVID-19 patients, one that limits viral spread, while allowing for the

benefit of checkpoint immunotherapy in promoting reactivity against tumor neo-antigens.

This has been further complicated by reports that HCQ can reverse the drug sequestration in

lysosomes [38] and enhance chemo-sensitization in cancer patients [38]. Phase II trial studies

showed that HCQ is effective in treating patients with recurrent oligometastatic prostate can-

cer by promoting cell death in cancer cells. In breast cancer, autophagy has been reported to

be tumour-suppressive [39, 40], while in other cases, can promote tumors [41, 42]. In a similar

vein, AZ can inhibit primary antibody responses, and recall responses on bacterial infections

[43]. Although these previous studies emphasized effects on the gut microbiota [44, 45], it is

noteworthy that AZ and ciprofloxacin (CPX) also act as lipophilic weak bases where they affect

intracellular organelles similar to CQ and HCQ [46]. HCQ has been reported to potentiate the

effects of anti-PD-1 against B16 melanoma cells in C57BL/6 mice via the inhibition of palmi-

toyl-protein thioesterase 1 (PPT1) [47].
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Given the urgent clinical context, there is a pressing need to assess the effects of both HCQ

and AZ on the immune checkpoint response against cancer. In this study, we show that HCQ

and AZ, alone or in combination, impaired the ability of anti-PD-1 therapy to promote the

elimination of the B16 melanoma. We further show that HCQ or HCQ/AZ combined therapy

selectively inhibits the appearance of self-renewing CD8+ PD-1+TCF1+ TILs and CD8+ PD-1+

TOX+ effector T cells. Our study indicates that HCQ negatively affects anti-PD-1 immune

checkpoint blockade in the promotion of tumor rejection.

Results

HCQ and AZ reduce the efficacy of anti-PD-1 therapy

To address this issue, we assessed whether HCQ or AZ was beneficial, or harmful to tumor

immunotherapy. Mice were implanted with B16-PD-L1 melanoma cells intradermally into

C57BL/6J mice 4 days before the injection of anti-PD-1 alone (200ug/mouse), or in conjunc-

tion with HCQ or AZ at days 4, 7, 11 and 14. Tumors were harvested on day 17. The dosing

with HCQ and AZ was similar as used in clinical trials to treat SARS-CoV-2 infection [12]. Fig

1A shows that the growth curve in which tumour volume increased from 100mm3 on day 10

to 610mm3 from day 16 (n = 14). Anti-PD-1 reduced the growth of tumor as early as day 12

(i.e. 100 vs 210 mm3) until day 16 (i.e. 220 vs 610mm3). Importantly, HCQ impaired the anti-

PD-1 reduction in tumor growth as seen on day 16 (i.e. 425mm3 for HCQ/anti-PD-1 vs.

210mm3 for anti-PD-1). Injection of AZ alone showed a trend in reducing the beneficial effect

of anti-PD-1 (375mm3 vs 210mm3 for anti-PD-1), although this did not achieve statistical sig-

nificance. The combination of HCQ and AZ reversed the benefits of anti-PD-1 to the same

extent as HCQ alone (430mm3 vs 220mm3 for anti-PD-1) (also see spider graphs in S1 and S2

Figs). Interestingly, neither HCQ nor AZ affected tumor growth in the absence of anti-PD-1

(Fig 1B). Examples of control and treated tumors are shown in Fig 1C. Neither drug treatment

resulted in major loss of mouse weight (Fig 1D), while scatter plot analysis showed a correla-

tion between tumor volume and weight in reducing tumor size in response to anti-PD-1,

HCQ and HCQ/AZ (p = 0.025) (S3 Fig). HCQ did not directly affect the growth of in vitro cul-

tured B16 cells (S4 Fig). These data showed that HCQ and HCQ/AZ impaired the ability of

anti-PD-1 to promote tumor regression.

We next examined the composition of TILs in tumors where anti-PD-1 showed a trend in

increasing CD45+ TILs (Fig 1E). Neither HCQ nor AZ affected this overall increase. Con-

versely, anti-PD-1 showed a trend in reducing the percentage of CD45- cells, although again,

this was not statistically significant (Fig 1F). In examining specific subsets, we showed that

anti-PD-1 caused a significant increase in the overall presence of CD8+ TCRβ+ TILs, which

was unaffected by HCQ or AZ (Fig 1G). The same treatment showed a trend in decreasing the

percentage of CD4+ Thelper cells and CD4+ FoxP3+ TILs. Neither AZ, nor HCQ affected this

trend.

Within the CD8 TIL compartment, anti-PD-1 therapy increased the representation of

CD8+ CD44+ PD-1+ cells (Fig 1H), while the presence of HCQ and AZ interfered with the

ability of anti-PD-1 to achieve statistical significance relative to untreated mice. By contrast,

no differences were noted in CD8+ central memory TILs (Fig 1I), CD8+ effector memory T

cells (Fig 1J) or B cells (Fig 1K).

In terms of myeloid cells, cancer-driven emergency myelopoiesis give rises to myeloid-

derived suppressor cells (MDSCs) that express PD-1 [48, 49]. Anti-PD-1 therapy showed a

trend in decreasing the presence of suppressive M-MDSCs (Fig 1L) and PMN-MDSCs (Fig

1M) as well as in increasing the ratio of M-MDSCs to PMN-MDSCs (Fig 1N), as reported

[48]. HCQ nor AZ had a statistically irrelevant effect on this trend. Similarly, anti-PD-1
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showed a trend in increasing the presence of cDC TILs which was unaffected by HCQ or

HCQ/AZ (Fig 1O). No obvious effect of therapies on the presence of DC1 (Fig 1P) or DC2

and 3 TILs was observed (Fig 1Q).

We next examined the surface expression of PD-1, PD-L1 and CD80 receptors on different

TILs (Fig 2). Anti-PD-1 treatment showed a trend in increasing PD-1 expression on

PMN-MDSCs (Fig 2A). Neither HCQ nor AZ monotherapy in combination with anti-PD-1

affected this trend, although the combination of HCQ/AZ reduced expression to control levels.

No effect on the expression of PD-L1 or CD80 was observed. Anti-PD-1 increased the percent-

age of PD-1 expressing PMN-MDSCs which was unaffected by co-injection of HCQ or AZ in

mice (Fig 2B). The percentage of PMN-MDSCs TILs expressing PD-L1 was unaffected by

anti-PD-1 or anti-PD-1 with HCQ or AZ (Fig 2B). Similarly, no effect was observed on the

expression of class 2 major histocompatibility antigens (MHC) on B cells (Fig 2C) or cDCs

(Fig 2D). Likewise, anti-PD-1 treatment and HCQ or HCQ plus AZ had no appreciable effects

on the MFI of PD-L1 expression on CD45- CD31- cells, which likely represent B16 tumor cells,

Fig 1. Hydroxychloroquine and azithromycin reverse partially immune checkpoint blockade in cancer therapy. C57BL/6 mice were implanted intradermally with

B16-PD-L1 tumor cells. Following 1 week of anti-PD-1 treatment, HCQ with or without AZ were injected daily before tumors were harvested at day 17 post

implantation. Panel A: Tumor volumes in response to anti-PD-1 plus HCQ and AZ. Panel B: Tumor volumes in mice treated only with HCQ and AZ. Panel C:

Examples of tumors from mice treated with HCQ, AZ or anti-PD-1 plus HCQ and AZ. Panel D: Percentage of mouse weight loss over time. Panel E: Percentage of total

immune cell infiltrate (CD45+ cells). Panel F: Percentage of CD45- cells in tumors. Panel G: Percentage of CD8+, CD4+ T helper and regulatory T cells (Tregs) of total

TCRb+ cells in tumor. Panel H: Percentage of PD-1+ CD8+ TILs. Panel I: The effect of therapy on CD8+ central memory TILs. Panel J: The effect of therapy on CD8+

effector memory TILs. Panel K: The effect of therapy on B cell TILs. Panel L: The effect of therapy on the percentage representation of M-MDSC TILs. Panel M: The

effect of therapy on the percentage representation of PMN-MDSC TILs. Panel N: Ratio of M-MDSC TILs relative to PMN-MDSC TILs. Panel O: The effect of therapy

on the percentage representation of cDC TILs. Panel P: The effect of therapy on the percentage representation of DC1 TILsc. Panel Q: The effect of therapy on the

percentage representation of DC2 and 3 TILs.

https://doi.org/10.1371/journal.pone.0251731.g001
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relative to the control (Fig 2E). Further, no effect on the expression of other key ligands on

myeloid, B cells or on the B16 melanoma cells was observed. We also did not observe changes

in the presence of IgM or IgG antibodies against PD-L1 in mice treated with anti-PD1, alone,

or in combination with HCQ/AZ (S4 Fig). Index value was calculated by normalizing B16-IgG

and B16-IgM MFI of the sample to the average of tumor-free mice (S4D–S4F Fig). We also

did not observe effects on the composition of thymic subsets (S5 Fig).

HCQ and AZ impairs anti-PD-1 induction of progenitor CD8+ PD-1+

TCF1+ TILs

Given the effect of HCQ and AZ on CD8+ TILs, we next used flow cytometry combined with

viSNE and Cytobank analysis to interrogate the composition of this subset (Fig 3). viSNE can

visually define groupings of immune cells by simultaneously combining multiple markers [50].

Standard flow cytometric profiles showed that The CD8 compartment could be separated into

different areas by staining with anti-PD-1 and anti-TCF-1 (Fig 3A). One island of CD8+ cells

showed moderate to high levels of PD-1 and CD44 expression (island (i)), while a separate group-

ing of cells expressed primarily TCF-1 but no PD-1 (island (ii)). A grouping of cells between

islands (i) and (ii) showed moderate levels of PD-1 and TCF-1 co-expression (island (iii)). TCF-1

defines progenitor CD8+ T cells [51, 52] which give rise to effector CD8+ T cells [35, 49].

We first assessed the presence of TCF-1+ PD-1- and TCF-1+ PD-1+ progenitor TILs in

response to anti-PD-1 therapy, either alone or in conjunction with HCQ or AZ. Anti-PD-1

did not alter the presence of CD8+ TCF-1+ PD-1- cells relative to the overall CD8+ TIL popula-

tion (Fig 3B) or relative to the tumor volume (Fig 3C). HCQ and HCQ/AZ also had no effect

on the presence of this subset of TILs. By contrast, anti-PD-1 consistently increased the pres-

ence of CD8+ TCF1+ PD-1+ as measured relative to tumor volume (Fig 3D). Significantly,

HCQ and HCQ/AZ inhibited this event. Similarly, anti-PD-1 therapy increased the presence

of a subset of TCF1+ PD-1+ TILs expressing the receptor CD44 (Fig 3E). CD44 is a marker for

antigen (Ag)-experienced, effector and memory T cells [53]. In this instance, we also compared

Fig 2. The effect of HCQ and AZ on the expression of PD1, PD-L1 and CD80 on TIL subsets. Panel A: Histogram

showing the medium expression of PD1, PD-L1 and CD80 on PMN-MDSC TILs. Panel B: Histogram showing the

percent positive PMN-MDSC TILs expressing PD1 and PD-L1. Panel C: The effect of therapy on MHC class II

expression (MFI) on B cells. Panel D: The effect of therapy on MHC class II expression (MFI) on cDCs. Panel E: The

effect of HCQ and HCQ/AZ on the anti-PD-1 induced increase in PDL-1 expression in vitro cultured B16 cells.

https://doi.org/10.1371/journal.pone.0251731.g002
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Fig 3. The effect of HCQ and AZ on the presence of CD8+TCF1+ progenitor TILs. Mice were implanted with B16

tumours as described in Fig 1. Panel A: viSNE profiles of total CD8+ TILs. The figure shows the presence of the upper

cluster of TILs expressing moderate to high levels of CD8, PD-1 and CD44 (island (i)), a second island (ii) expressing

moderate levels of TCF-1+ with no PD-1; and island (iii) that co-expresses PD-1+ and TCF-1+. Panel B: Percentage of

CD8+ TCF-1+ PD-1- TILs as a percent of total CD8+ TILs. Panel C: Ratio of CD8+ CD44+TCF-1+ PD-1- TILs relative

to tumor volume. Panel D: Ratio of CD8+ TCF-1+ PD-1+ TILs relative to tumor volume. Panel E: Ratio of CD8+

CD44+ PD-1+TCF-1+ progenitor TILs relative to tumor volume. A comparison of tumor volumes in mice where HCQ

blocked the response to anti-PD-1 (big tumors) and mice where HCQ failed to block the response to anti-PD-1 (small

tumors). Panel F: MFI of TCF-1 expression CD8+ CD44+TCF-1+ PD-1+ TILs in response to anti-PD-1 alone or in

combination with HCQ or HCQ/AZ. Panel G: MFI of PD-1 expression CD8+ CD44+TCF-1+ PD-1+ TILs in response

to anti-PD-1 alone or in combination with HCQ or HCQ/AZ. Panel H: MFI of T-bet expression CD8+ CD44+TCF-1+

PD-1+ TILs in response to anti-PD-1 alone or in combination with HCQ or HCQ/AZ. Panel I: MFI of Ki67 expression

CD8+ CD44+TCF-1+ PD-1+ TILs in response to anti-PD-1 alone or in combination with HCQ or HCQ/AZ. Panel J:

MFI of CD8 expression CD8+ CD44+TCF-1+ PD-1+ TILs in response to anti-PD-1 alone or in combination with HCQ

or HCQ/AZ.

https://doi.org/10.1371/journal.pone.0251731.g003
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the effects of HCQ and HCQ/AZ from tumors of responsive and non-responsive mice. Mice

which were responsive to the effects of HCQ and HCQ/AZ had larger tumors (i.e. big), unaf-

fected by anti-PD-1. By contrast, mice which were non-responsive to the effects of HCQ and

HCQ/AZ had smaller tumors (i.e. small) similar in size to those seen with anti-PD-1 therapy

alone. Tumors from responsive mice showed a clear inhibition of the presence of CD8+ TCF-

1+ PD-1+ progenitors, while tumors from HCQ non-responsive mice showed an increase in

the presence of progenitors similar to that seen with anti-PD-1 therapy.

In terms of receptor expression, dot plot profiles showed that anti-PD-1 increased the MFI

for TCF-1 expression on CD8+ CD44+ TCF1+ TILs (Fig 3F). Co-therapy with HCQ and

HCQ/AZ had marginal but significant effects on preventing anti-PD-1 from achieving statisti-

cal significance relative to untreated control mice. These data showed that anti-PD-1 increased

both the numbers of CD8+ CD44+ TCF1+ cells as well as the level of TCF-1 expression on

these cells and that these effects were inhibited by both HCQ and HCQ/AZ. Less obvious

effects of HCQ on anti-PD-1 induced increases in PD-1 (Fig 3G), the transcription factor T-

bet (Fig 3H) or the activation marker Ki67 were seen (Fig 3I). Interestingly, HCQ and HCQ/

AZ increased the expression CD8 when treatment was combined with anti-PD-1 (Fig 3J).

Overall, these data showed that HCQ has a specific effect in inhibiting the ability of anti-PD-1

immunotherapy to increase the generation of CD8+ PD-1+ TCF1+ and CD8+ CD44+ PD-1+

TCF1+ progenitor TILs relative to tumor volume.

HCQ and AZ decreases the ability of anti-PD-1 to induce CD8+ effector

TILs

We next assessed the effect of HCQ and AZ on the generation of CD8+ effector TILs, which do

not express TCF-1, but are derived from progenitors [54]. Standard flow profiles did not show

an obvious difference in the presence of PD-1, TOX and TIM3 stained populations in response

to various treatments (Fig 4A). By contrast, viSNE analysis was able to see clear differences in

the presence of sub-populations of cells underscoring the power of the analysis (Fig 4A). 5 dif-

ferent clusters could be identified based on levels of receptor expression (Fig 4B and 4C). This

included TCF1- CD8+ cells with low-intermediate levels of PD1, TOX, TIM-3 (i.e. cluster 2:

PD1+ TOX+ TIM-3+) as well as cells with higher levels of PD1, TOX, TIM-3 expression (i.e.

clusters 3–5). Cells with the higher levels of PD-1 and TIM-3 expression classically correspond

to exhausted T-cells [55, 56]. The status of cells with lower levels of these inhibitory receptors

is unclear, but most likely are activated functional CD8+ T cells, which will eventually become

exhausted, if exposed to repeated, ongoing antigenic stimulation.

From this, we observed that anti-PD-1 induced a clear increase in TCF1- CD8+ cluster 2

expressing low levels of PD1, TOX, TIM-3 (i.e. PD1+TOX+TIM-3+) (upper table and middle

panel). Significantly, HCQ and HCQ/AZ inhibited the increase in the presence of this population

of cells. By contrast, no effect was seen on the presence of this population in anti-PD-1 untreated

mice (lower panel). Dot plot analysis confirmed that anti-PD-1 increased the ratio of CD8+

CD44+ PD1+ TOX+ TIM-3low TILs (cluster 2) relative to tumor volume and that this increase

was blocked by the presence of HCQ or HCQ/AZ (Fig 4D). These data showed that HCQ inhib-

ited the expansion of CD8+ TILs induced by anti-PD-1 therapy, expressing low levels of the acti-

vation markers PD-1 and TIM-3, either due to the inhibition of the presence of TCF-1+ PD-1+

progenitor T cells and/or due to direct effects on the PD1+ TOX+ TIM-3+ cells themselves.

At the same time, anti-PD-1 decreased the presence of CD8+ CD44+ T-cells with higher lev-

els of PD-1, TIM-3 and TOX-3 corresponding to clusters 3–5 (Fig 4B). In the case of clusters 4

and 5, the decrease was statistically significant. HCQ and HCQ/AZ treatment inhibited the

anti-PD-1 induced reduction in the presence of exhausted T-cells as most clearly seen in
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cluster 4. Unfortunately, as in other studies [57], due to small numbers of recovered TILs, it

was not possible to assess directly whether these subsets of cells were functionally non-respon-

sive or dysfunctional.

Importantly, an analysis of the cluster 2 (effector-like) to cluster 4 (terminal exhaustion) fre-

quency ratio relative to tumor weight further showed that shift to cluster 2 in response to anti-

PD-1 and its inhibition by HCQ/AZ was correlated with the loss of tumor control (Fig 4D).

Fig 4. The expansion of specific CD8+TCF-1- CD44+ PD-1+ subsets in response to anti-PD-1 is inhibited by HCQ

and AZ. Panel A: Histogram profiles of anti-PD-1, TOX and TIM3 staining. Panel B: viSNE analysis of CD8, CD44,

PD-1, TOX and TIM-3 expression of CD8+ CD44+ PD-1+ TILs. TCF1+ subsets have been removed. Panel C: tSNE

subdivision into different clusters based on expression levels of CD44, PD-1, TOX and TIM3. Upper panel:

Table shows how clusters were grouped together. Middle panel: Histogram showing changes in the representation of

different clusters in response to anti-PD-1 alone or in combination with HCQ and AZ. Lower panel: Histogram

showing changes in the representation of different clusters in response HCQ and HCQ/AZ. Panel D: Ratio of cluster 2

relative to tumor volume. Anti-PD-1 induced an increase in CD8+ effectors which was inhibited by HCQ and HCQ/

AZ. Panel E: Figure showing the ratio of cluster2/4 to tumor weight. Panel F: Percent of GZMB+ cells within the CD8+

CD44+ PD-1+ TIL population. Panel G: Percent IFNγ+ cells within the CD8+ CD44+ PD-1+ TIL population. Panel H:

CD8 expression (MFI) on cluster 2 TIL.

https://doi.org/10.1371/journal.pone.0251731.g004
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Lastly, we observed that anti-PD-1 showed a trend in increasing the percentage of CD8+

CD44+ T cells expressing GZMB and this trend was unaffected by HCQ or HCQ/AZ (Fig 4E).

Anti-PD-1 also showed a trend in increasing the percentage of CD8+ CD44+ T-cells expressing

IFNγ which was unaffected by HCQ or HCQ/AZ (Fig 4F). Lastly, as was seen in the progenitor

population, HCQ and HCQ/AZ had an usual effect on the expression of CD8 where it cooper-

ated with anti-PD-1 to significantly increase the MFI of CD8 expression on the CD8+ effector-

like (cluster 2) T-cells (Fig 4G).

Overall, these results showed that HCQ and HCQ/AZ interfered with the ability of anti-PD-1

to increase CD8+ effector-like TILs while at the same time prevented CD8+ TILs from acquiring a

phenotype indicative of T-cell exhaustion. A general ability of HCQ to inhibit T cell activation

would be consistent with this phenotype were it both inhibits the generation of functional CD8+

effectors while also preventing their progression into a more exhausted phenotype.

HCQ and AZ did not affect antibody and vascular endothelial cells

Aside from the immune system, we also examined the vasculature in mice (Fig 5). To evaluate

potential alterations in the morphological features of blood vessels, we examined retinal and

brain cortical vasculature in treated mice. Whole mounts of retinal vasculature showed no

changes in retinal vessel morphology or branching between groups. (Fig 5A). Further, an

examination of the pial cerebral vessels, cortical vessels, vessel bifurcation and length showed

no differences (Fig 5B). Images of retinal and brain cortical vasculature are shown in Fig 5C.

These data indicate that neither anti-PD-1 nor HCQ or AZ had any detectable effects on the

vasculature in mice. Furthermore, we found no effect of treatments on the overall branching

structure in the cortical vasculature. These results show that the topological structure of the

retinal and brain cortical vascular networks was not affected by the treatments.

Discussion

HCQ continues to be used to treat thousands of patients with autoimmune disorders and

infections with malaria and SARS-CoV-2. This situation makes an inquiry into the effects on

Fig 5. HCQ did not affect the vasculature. Panel A: Frequency of endothelial cells (ECs) relative to viable cells in the

tumor. Panel B: Whole mount images of cerebral and retinal vessels. Panel C: Quantification of vessel bifurcation,

arterial branches and vessel length in response to different treatments of mice [76].

https://doi.org/10.1371/journal.pone.0251731.g005
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HCQ and AZ on cancer immunotherapy an immediate pressing issue. In this study, we show

that HCQ alone, or in combination with AZ, at the doses used to treat COVID-19 patients,

reduces the ability of anti-PD-1 therapy to control the growth of cancer. This reduction was

accompanied by a selective interference with CD8+ TCF1+ progenitor and CD8+ PD-1+ effec-

tor TIL expansion or infiltration of tumors. Further, we show that TCF-1 expression serves as

a marker in peripheral blood CD8+ T cells for the response of the immune system to SARS-

CoV-2 and HCQ therapy. The reduction in the presence of CD8+ subsets would account for

the diminished anti-tumorigenic efficacy of PD-1 immunotherapy. Our study underscores

the need for caution in the use of HCQ in the treatment of COVID-19 patients under

immunotherapy.

We found that HCQ, either alone, or together with AZ, partially reversed anti-PD-1 immu-

notherapy in reducing the growth of B16 melanoma tumors in mice. The reversal was seen as

early as days 12–16 post-implantation at therapeutic doses used to treat COVID-19 patients.

No effect was observed on the growth of the B16 tumor in mice not treated with immunother-

apy. Further, the effects were seen on the composition of infiltrating CD8+ T cells, and not on

the growth of the tumor cells themselves. Mechanistically, HCQ and HCQ/AZ reduced an

anti-PD-1 induced increase in the expression of PD-L1 on tumor cells, while exerting specific

inhibitory effects on the presence of progenitor and effector CD8+ TILs. While the reduction

in PD-L1 expression of B16 cells should have promoted tumor rejection, the concurrent inhi-

bition of CD8+ progenitors and effectors appeared to dominant in the inhibition and reversal

of the anti-PD-1 anti-tumor response. The targeting of CD8+ T cells by HCQ in anti-PD-1

treatment is consistent with the fact that CD8+ T cells are the prime target of immunotherapy

elicited by anti-PD-1. We found no statistically significant effect on the presence of CD4+ T

cells, B cells or myeloid cells. In this context, it is also noteworthy that T and B cells use differ-

ent signaling pathways to initiate proliferation [58, 59]. Differences in signaling have also been

noted between CD4+ and CD8+ T cells where IL-2 induces quantitatively stronger prolifera-

tion in CD8+ T cells compared to CD4+ T cells [60] due to greater IL-2Rβ chain expression

[61]. We also failed to find differences in antibody titers in mice or in levels of IgG1/G2 anti-

bodies against PD-L1. This susceptibility of CD8+ T-cells to inhibition by HCQ in the context

of anti-PD-1 immunotherapy may also involve factors in the tumor microenvironment that

affected immune activation and function.

As reported by others [57, 62], we observed that anti-PD-1 immunotherapy increased the

presence of PD-1+ TCF-1+ progenitors and PD-1+ CD44+ TCF-1- effector TILs. These progen-

itors in turn are needed to produce more differentiated PD-1+TCF1- cells in immunotherapy

[62]. We presented these changes in terms of percentages since the absolute numbers of TILs

can decrease in small tumors and the subsets are connected to each other where, for example,

TCF-1 renewing cells give rise to more mature T cells. Importantly, HCQ and HCQ/AZ

impaired the ability of anti-PD-1 therapy to increase in the presence of these PD-1+ TCF-1+

progenitors. Consistent with this, HCQ also decreased the ability of anti-PD-1 to expand

CD8+CD44+ TILs. These cells generally expressed low-intermediate levels of the activation

markers PD-1 and TIM-3, and most likely represent a newly expanded effector population

expressing these activation markers. However, co-expression of PD-1 and TIM-3 with TOX

may also correspond to an early stage of cellular expansion leading to T cell exhaustion. In our

model, anti-PD-1 therapy reduced the presence of CD8+ TILs with the high co-expression of

PD-1, TIM-3 and TOX indicative of terminal exhaustion [63, 64]. Our study was able to distin-

guish between subsets with different levels of receptor expression showing the anti-PD-1 pref-

erentially expands CD8+ effector cells with low-intermediate levels of PD-1, TIM-3 expression

and actually limits the presence of more terminally exhausted CD8+ T cells. Differences in

these findings could be related to the tumor type and the duration in anti-PD-1 treatment of
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mice. HCQ concurrently inhibited the anti-PD-1 induced reduction in this subset of termi-

nally exhausted T cells, although the effect of the combination of HCQ/AZ did not inhibit the

reduction, in the case of the CD8+ T cells with highest observed levels of PD-1, TIM3 and TOX

indicative of the most severe exhaustion. Our observations are most consistent with a general

ability of HCQ to inhibit the activation and proliferation of CD8+ TILs. It can inhibit the

appearance of CD8+ progenitors, newly generated CD8+ effectors from progenitors and the

progression of CD8+ effectors to a more exhausted phenotype.

Surprisingly, AZ alone failed to elicit a statistically significant effect in mice on tumor

growth as observed for HCQ. AZ and ciprofloxacin (CPX) act as lipophilic weak bases where

they affect intracellular organelles similar to CQ [46] and previous studies have documented a

role for antibiotics such as ciprofloxacin (CPX) in the reversal of immune checkpoint blockade

on tumour eradication [44, 45]. These previous studies emphasized effects on the gut micro-

biota [44, 45]. The differences in these findings may relate to the dose of antibiotics used or the

coverage of bacterial inhibition by AZ versus ciprofloxacin (CPX) and other antibiotics. It

might also relate to the nature of gut microbiota in mice which is likely to vary in different con-

tainment facilities.

In terms of the expression of specific molecules, HCQ had variable effects on markers indica-

tive of activation. For example, while HCQ inhibited the expression of TCF1 TILs, it did not

reproducibly affect the expression of the activation marker Ki67 in progenitor T-cells. One sur-

prising observation was the potent effect of HCQ in increasing CD8 expression on progenitor

and effector T-cells. It is paradoxical given our previous findings showing that CD8 (and CD4)

bind to p56lck to initiate a protein-tyrosine phosphorylation cascade in T cells that is needed for T

cell activation [65, 66]. Further, the down-regulation of CD8-lck has been suggested as a mecha-

nism for peripheral tolerance [67, 68], while subpopulations with low CD8 have been reported

during chronic diseases [69] and in acute immune responses to pathogens [70]. HCQ and AZ

increased CD8 expression in combination with anti-PD-1. No effect was seen in the absence of

anti-PD-1 indicating that altered signaling linked to anti-PD-1 blockade synergizes with HCQ

and AZ to promote increased CD8 expression. It was observed on progenitors and effector T

cells. The functional consequences of this increased expression are unclear, although an increased

number of CD8 molecules engaged by MHC during antigen-presentation would be expected to

increase the activation and proliferation of T cells [59]. Alternatively, depending on the relative

stoichiometry and localisation of expression, an excess of CD8 receptors might lead to few recep-

tors bound to p56lck and hence, reduced activation. CD4 sequestration of p56lck complex may

also prohibit the induction of activation signals through the TCR-CD3 complex [71].

Other studies have documented the benefits of HCQ on other aspects of anti-tumor immu-

nity. Strikingly, Sharma et al. reported that HCQ potentiated the effects of anti-PD-1 against

B16 melanoma cells [47]. The findings of this paper are at odds with the findings outlined in

this paper. We used a lower HCQ concentration (daily 40 mg/kg) for 6 days while Armaravadi

and colleagues injected daily 60 mg/kg for 11 days. Further, we started treatment with HCQ

after detection of first signs of response to anti-PD-1 therapy. The tumor volume at that time-

point was approximately 200 mm3. Sharma et al. started anti-PD-1 and HCQ treatment simulta-

neously and in 4x smaller tumors (50 mm3). Other possible explanations include a possible dif-

ference in tumor as we used a B16-PD-L1 tumor cell line, while Sharma inoculated B16.F10 cells.

The Sharma paper also observed changes in macrophages and conditioned media. Myeloid cells

plays a key role in anti-PD-1 immunity; however, responses ultimately depend on CD8+ T-cells

which were seen to be defective in our model [49]. We would therefore argue that our findings

extend the theme of immune suppression by identifying specific T-cell subpopulations in tumors

responsible for this effect. Others have reported HCQ inhibition of CD4+ T cell activation [31],

antigen-presentation [8, 33] and the production of proinflammatory Th17-related cytokines
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[34]. We have also outlined the potential benefits of targeting other mediators of T cell activation

in the potentiation of anti-viral and tumor responses [72].

Despite this, we acknowledge that multiple immune cells play roles in orchestrating the

immune response such that CQ can decrease the immunosuppressive infiltration of myeloid-

derived suppressor cells and Treg cells [73] and HCQ inhibition of autophagy may synergize with

dual anti-PD1 and anti-CTLA4 therapy [74]. The actions of HCQ may therefore be complex, with

potential benefits and disadvantages dependent on the nature of anti-tumor immunology. How-

ever, our study signposts negative effects on T cells, the effectors of tumor immunity.

Many questions remain related to HCQ, COVID-19 and tumor immunology. Whether the

inhibitory effects on anti-PD-1 immune therapy may be offset by its reported benefit in sensi-

tizing chemotherapy remains to be determined. For example, HCQ has been reported to

enhance the anti-cancer activity of the histone deacetylase inhibitor, vorinostat (VOR), in pre-

clinical models and early phase clinical studies of metastatic colorectal cancer (mCRC) [75].

Lastly, the inhibitory effects on anti-PD-1 therapy in this study used HCQ doses that have

been used in the treatment of COVID-19 patients [12–22]. It remains unclear whether lower

concentrations of drug will have the same effect, although the effectiveness of lower concentra-

tions in treating auto-immune diseases such as SLE is in part likely due to its immune-suppres-

sive properties [8, 9]. The utility of HCQ may vary dependent on the dose of the drug and the

nature of cancer therapy.

Materials and methods

Housing and ethical approval

C57BL/6 mice were housed at the Hôpital Maisonneuve Rosemont animal facility (Montreal,

QC, Canada). Mice were housed in individually ventilated cages (IVC) and all experiments

were approved by the CR-HMR Ethical Approval (Le Comité de protection des animaux du

CIUSSS de l’Est-de-l’Île-de-Montréal (CPA-CEMTL), F06 CPA-21061 du projet 2017–1346,

2017-JA-001/2).

Mice

C57BL/6 mice were housed at the Hôpital Maisonneuve Rosemont animal facility (Montreal,

QC, Canada). Mice, aged 7–8 weeks, were implanted intradermally with 50,000 B16-PD-L1

melanoma cells that overexpress PD-L1. Cells were kindly provided by Dr. M. Ardolino,

Ottawa, Canada. Anti-PD-1 treatment (200ug/mouse, i.p., 2x/week) started at day 4 post-

implantation, when tumors were established. After 1-week of anti-PD-1 (clone: J43, BioXcell,

West Lebanon, TX) treatment, first signs of tumor response were noted and HCQ (40 mg/kg,

daily) and/or AZ (40 mg/kg for day 1 and 2; 20 mg/kg for day 3–5) were injected i.p. When

giving combined, injections were performed within a 4 h time interval. Due to different phar-

macokinetics of HCQ in mice, 40 mg/kg in mouse represents 600 mg in humans (Jackson

et al., 2016, abstract, AACR). Tissues and PBMCs were harvested day 17 post-implantation.

Chemicals

Hydroxychloroquine sulfate (HCQ) was purchased from Selleckchem and azithromycin (AZ)

was purchased from Hemopharm (Vrsac, Serbia).

Mouse tissue collection and preparation

Tumour infiltrating lymphocyte collection: Briefly, tumors were harvested and minced into

small pieces before enzymatic digestion with Liberase TL (Sigma, Damstadt, Germany) and
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DNase1 (Thermo Fisher, Waltham, MA, USA) at 37˚C for 30 min. Addition of RPMI with

10% FBS stopped reaction and mixture were passed through 70 μm cell strainers to generate

single cell suspension. After 2 washes cells were (i) for total TILs quantification stained for via-

bility and fixed or (ii) overlayed on a ficoll layer for lymphocyte collection. Lymphocytes were

then stained for viability followed by surface staining with FACS antibodies before fixation.

Intracellular staining was performed using the FoxP3/Transcription Factor Staining Buffer Set

(ebiosciences, San Diego, CA, USA). For PBL isolation from mice, blood was collected in

EDTA-coated tubes and peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll

(Corning, NY, USA). After 3 washes, PBMCs were stained for FACS. For the preparation of

thymocytes, thymi were collected from all mice immediately after sacrifice, dissociated and

passed through 70 μm cell strainers into RPMI medium. Following 3 washes, cells were stained

for viability and fixed in 2% PFA until further analysis.

Flow cytometry and antibodies

Antibodies were purchased from either Biolegend or BD Biosciences. Flow cytometric analyzes

were performed according to standard protocols. In brief, PFA-fixed TILs were washed

twice with cold PBS and stained with the targets listed below for 30 min on ice and then per-

meabilized for 45 min on ice. TILs were then stained for intracellular targets for 45 min on ice,

and then washed twice with PBS and proceeded to data collection. The antibodies used as

listed below:

Intracellular staining were performed using the FoxP3/Transcription Factor Staining Buffer

Set (ebiosciences, San Diego, CA, USA). Cells were acquired using BD LSR Fortessa X-20 and

DIVA software. FACS analyses were performed using FlowJo software and Cytobank pre-

mium. The antibodies were used to stain subsets of immune cells as outlined in the Table 1.

All the markers used for immune population identification are described in Table 2.

Wholemount brain staining

Brains were fixed in 4% paraformaldehyde overnight at 4˚C, washed 3 times in PBS, and

blocked overnight in blocking solution (0.1Tris-HCl, 150 mM NaCl, 0.2% Blocking reagent

(PerkinElmer), 0.5% Triton-X). After overnight incubation with anti-Smooth Muscle Actin-

FITC (Sigma), brains were washed and imaged with the use of a fluorescent dissecting

microscope.

Retinal staining

Eyes were prefixed in 4% paraformaldehyde for 15 min at room temperature. Dissected retinas

were blocked overnight at 4˚ C in blocking solution (0.1Tris-HCl, 150 mM NaCl, 0.2% Block-

ing reagent (PerkinElmer), 0.5% Triton-X). Retinas were then incubated with IsolectinB4 and

immunostained with anti-Smooth Muscle Actin-FITC (Sigma). Quantification of retinal vas-

culature branch points was done with the use of the angiogenesis analyzer tool for ImageJ.

Wholemount brain and retinal staining

Brains were fixed in 4% PFA overnight at 4˚C, washed 3 times in PBS, and blocked overnight

in blocking solution (0.1Tris-HCl, 150 mM NaCl, 0.2% Perkin Elmer blocking reagent and

0.5% Triton-X). After overnight incubation with anti-Smooth Muscle Actin-FITC (Sigma),

brains were washed and imaged with the use of a fluorescent dissecting microscope.

Eyes were prefixed in 4% PFA for 15 min at room temperature. Dissected retinas were

blocked overnight at 4˚C in blocking solution (0.1Tris-HCl, 150 mM NaCl, 0.2% Perkin Elmer
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blocking reagent and, and 0.5% Triton-X). Retinas were then incubated with IsolectinB4 and

immunostained with anti-Smooth Muscle Actin-FITC (Sigma). Quantification of retinal vas-

culature branch points was done using the angiogenesis analyzer tool for ImageJ.

Anti-B16-PDL1 antibody assay

Plasma was collected from heparinized murine peripheral blood by centrifugation for 15 min

at 2000g. Samples were immediately used or aliquoted and frozen at -80˚C. For the antibody

Table 1. Antibody list used for cytometry staining.

Antibody Flurochrome Company

Live Dead BV510 BD Bioscience

CD45 AF700 BioLegend

TCRb BUV305 BD Bioscience

CD19 PE BioLegend

CD11c BV650 BioLegend

CD11b APC BioLegend

PD-L1 PeCP Cy5.5 BioLegend

CD31 PECy7 BD Bioscience

Ly6C BV605 BioLegend

Ly6G APC Cy7 BioLegend

MHC II BV421 BD Bioscience

PD-1 BV786 BioLegend

CD80 FITC BioLegend

CD8 BV650 BD Bioscience

CD44 BV605 BD Bioscience

CD62L APC Cy7 BD Bioscience

TCF-1 APC Cell Signaling

Tbet PE Cy7 BioLegend

Ki67 PE BioLegend

TOX FITC eBioscience

TIM3 PE BioLegend

Granzyme B eF450 eBioscience

IFNg PE Dazzle eBioscience

https://doi.org/10.1371/journal.pone.0251731.t001

Table 2. Marker used for the identification of immune cell populations.

Cell population Marker

Ecs CD45- CD31+

B-cells CD45+ CD19+ TCRb-

M-MDSCs CD45+ CD11c- CD11b+ Ly6C+ Ly6G-

PMN-MDSCs CD45+ CD11c- CD11b+ Ly6Clow Ly6G+

cDC CD45+ CD11c+ MHC II+

DC1 CD45+ CD11c+ MHC II+ CD11b-

DC2 + DC3 CD45+ CD11c+ MHC II+ CD11b+

CD8+ TCM CD45+ TCRb+ CD8+ CD4- CD44+ CD62L+

CD8 + TEM CD45+ TCRb+ CD8+ CD4- CD44+ CD62L-

CD4 Thelper CD45+ TCRb+ CD8- CD4+ FoxP3-

Regulatory T cells CD45+ TCRb+ CD8- CD4+ FoxP3+

https://doi.org/10.1371/journal.pone.0251731.t002
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assay we used a slightly modified version of Dilillo D. et al. 2012 protocol. Briefly, 5x105

B16-PDL1 tumour cells were added to a 96-well plated, blocked with 10% FBS-PBS, and

washed with PBS. Plasma samples were diluted 1:16 in PBS and were added to B16 cells in a

volume of 100 μl, mixed and then incubated for 1 hour at 4˚C. Cells were intensively washed

and secondary Goat anti-mouse IgG-af488 conjugated (A11029; Invitrogen) and Rat anti-

mouse IgM-APC (clone RMM-1; Biolgend #406509) both at 1:500 dilution and incubated on

ice for additional 1 hour. Cells were washed and passed to flow cytometry. S5 Fig Shows data

from one experiment that is representative of all experiments held. Median fluorescence inten-

sity (MFI) and the frequency of positively stained cells were assessed in FlowJo (Treestar).

Index value was calculated by normalizing B16-IgG and B16-IgM MFI of the sample to the

average of tumor-free mice.

Statistics

All data are expressed as mean ± SEM. A t-test was used when only two groups were com-

pared, and a one-way ANOVA was used when more than two groups were compared. A two-

way ANOVA was used for multiple comparison procedures that involved two independent

variables. Dunett or Bonferroni tests were used for posthoc analyses. A difference in mean val-

ues between groups was significant when p� 0.05 �; p� 0.01 �� and p� 0.001 ���.

Supporting information

S1 Fig. Spider graphs representing the effects of HCQ and AZ on immune checkpoint

blockade in cancer therapy. C57BL/6 mice were implanted with B16 tumoral cells as

described above in Fig 1. Panel A: Tumor growths in control vs anti-PD-1 vs anti-PD-1 +

HCQ vs anti-PD-1 + AZ vs anti-PD-1 + HCQ + AZ. Panel B: Spider graph representing con-

trol vs anti-PD-1. Panel C: Spider graph representing control vs anti-PD-1 + HCQ. Panel D:

Spider graph representing control vs anti-PD-1 + HCQ + AZ. Panel E: Spider graph represent-

ing control vs anti-PD-1 + AZ.

(PDF)

S2 Fig. Spider graphs representing the effects of HCQ and AZ in control groups. C57BL/6

mice were implanted with B16 tumoral cells as described above in Fig 1. Panel A: Tumor

growths in control vs HCQ vs AZ vs HCQ + AZ. Panel B: Spider graph representing control

vs HCQ + AZ. Panel C: Spider graph representing control vs HCQ. Panel D: Spider graph

representing control vs AZ.

(PDF)

S3 Fig. Correlation between tumor wright and tumor volume in response to treatments.

Panel A: Anti-PD-1. Panel B: Anti-PD-1 + HCQ. Panel C: Anti-PD-1 + HCQ/AZ.

(PDF)

S4 Fig. HCQ and AZ do not inhibit the in vitro growth of B16 melanoma cells. Left panel:

Viability of B16 cells after a 24 incubation with 2 and 5uM AZ or HCQ or in combination as

determined by trypan blue exclusion. Right panel: Viability and metabolism of B16 cells as

determined by an MTT assay. The MTT assay is a colorimetric assay for assessing cell meta-

bolic activity. NAD (P)H-dependent cellular oxidoreductase enzymes can also reflect the num-

ber of viable cells.

(PDF)

S5 Fig. The effect of HCQ and AZ on the production of subclasses of immunoglobulin

against PD L-1. Serum IG levels were measured in response to anti-PD-1 and HCQ or AZ.
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Panel A: IgM levels (MFI). Panel B: IgG levels (MFI). Panel C: IgG levels (%). Panel D: IgG

levels (index value). Panel E: IgM and IgG (median index value). Panel F: IgM (index value).

(PDF)

S6 Fig. The effect of HCQ ad AZ on the cellularity of thymic subsets. Panel A: CD4 MFI on

CD4+ thymocytes. Panel B: CD8 MFI on CD8+ thymocytes. Panel C: CD4 MFI on double

positive (CD4 and CD8+) DP thymic subsets. Panel D: CD8 MFI on double positive (CD4

and CD8+) DP thymic subsets. Panel E: Percent representation of thymic subsets in response

to anti-PD-1, HCQ and HCQ/AZ. Panel F: Medium size representation of thymic subsets in

response to anti-PD-1, HCQ and HCQ/AZ. Panel G: HCQ uptake on thymocytes.

(PDF)
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