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Abstract: Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon formed by the incomplete
combustion of organic matter. Environmental B[a]P contamination poses a serious health risk to many
organisms because the pollutant may negatively affect many physiological systems. As such, chronic
exposure to B[a]P is known to lead to locomotor dysfunction and neurodegeneration in several
organisms. In this study, we used the zebrafish model to delineate the acute toxic effects of B[a]P on the
developing nervous system. We found that embryonic exposure of B[a]P downregulates shh and isl1,
causing morphological hypoplasia in the telencephalon, ventral thalamus, hypothalamus, epiphysis
and posterior commissure. Moreover, hypoxia-inducible factors (hif1a and hif2a) are repressed upon
embryonic exposure of B[a]P, leading to reduced expression of the Hif-target genes, epo and survivin,
which are associated with neural differentiation and maintenance. During normal embryogenesis,
low-level oxidative stress regulates neuronal development and function. However, our experiments
revealed that embryonic oxidative stress is greatly increased in B[a]P-treated embryos. The expression
of catalase was decreased and sod1 expression increased in B[a]P-treated embryos. These transcriptional
changes were coincident with increased embryonic levels of H2O2 and malondialdehyde, with the
levels in B[a]P-treated fish similar to those in embryos treated with 120-µM H2O2. Together, our data
suggest that reduced Hif signaling and increased oxidative stress are involved in B[a]P-induced acute
neurotoxicity during embryogenesis.

Keywords: benzo[a]pyrene; neurotoxicity; oxidative stress; hypoxia-inducible factor

1. Introduction

The nervous system is the most complex and important signal transmission system in the animal
body, playing important roles in controlling nearly every aspect of an animal’s physiology and
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response to the environment. As such, the nervous system is centrally involved in signal transmission,
automatic activities, cognition, memory, emotion and functional coordination of physiological systems.
Development of the vertebrate nervous system begins with the process of neural induction, which
refers to the specification of neuroectodermal cells that give rise to the neural plate. This process is
regulated by complex interactions between Bmp, Wnt and Fgf signaling [1,2]. After neuroectodermal
cells form the neural plate on the dorsal side of the embryo, the tissue is then remodeled and curls to
form a neural tube along the central axis on the dorsal side of the embryo. Cells within the neural tube
further differentiate to become mature neurons. Anomalies in the development of the nervous system
can cause congenital mental retardation, neural tube defects, epilepsy, dementia and neurodegenerative
disease; some such anomalies are caused by environmental chemical toxicants.

One major class of chemical toxicants is polycyclic aromatic hydrocarbons (PAHs), a group of
semivolatile organic compounds that are ubiquitous in the environment. The widespread environmental
distribution of these toxicants is because of their generation from the incomplete combustion of natural
or artificial organic matter and anthropogenic plastic and petrochemicals [3,4]. Many PAHs and their
epoxides are known to be highly cytotoxic, genotoxic (mutagenic and/or carcinogenic) and embryotoxic
to vertebrates. Benzo[a]pyrene (B[a]P) is a five-ring PAH that is created by the incomplete combustion
of organic matter; notably, it is found in cigarette smoke and grilled and broiled foods [5]. This molecule
is classified as a Group 1 carcinogen by the International Agency for Research on Cancer (IARC),
meaning that it is a known human carcinogen, and it can induce cancer in multiple organs of laboratory
animals [6,7]. There is no known commercial or industrial use for B[a]P, and it is only purposefully
produced for use in research. B[a]P is taken up by organisms from the air, water or diet [8,9]. Once taken
up into cells, B[a]P induces the expression of Cytochrome p450 (CYP) monooxygenase enzymes through
AhR/ARNT signaling, enhancing the catalysis of CYP-mediated metabolic reactions [10]. Research has
shown that B[a]P exhibits carcinogenicity, teratogenicity, neurotoxicity and immunotoxicity in various
species of experimental animals [11–14].

Many toxicants are known to damage cells by elevating the intracellular reactive oxygen species
and the induction of oxidative stress has been implicated in various conditions of the nervous system,
including neurodegenerative disease, attention deficit hyperactivity disorder, autism and dyslexia.
Oxidative stress refers to elevated intracellular levels of reactive oxygen species (ROS) and is defined
as an imbalance between free radicals and antioxidants in the cell or body [15]. In some normal
physiological states, oxidative stress is known to regulate gene expression, cellular differentiation and
aging-related mechanisms, among other processes [16–18]. On the other hand, oxidative stress that
is induced by cellular exposure to toxicants often leads to cell and tissue damage [19,20]. ROS are
derived from several intracellular sources, including mitochondria, NAD(P)H oxidase, xanthine
oxidase and uncoupled nitric oxide synthase [21]. During embryogenesis, experimental enhancement
or suppression of ROS alters embryonic development and growth, indicating a certain level ROS is
required to regulate the normal progression of embryonic development [22]. Although excessive ROS
has been implicated in the progression of Alzheimer’s disease (AD), Parkinson’s disease (PD) and
other neurodegenerative diseases [23], it also plays an important role in the regulation of embryonic
neurogenesis [24] and the dynamic control of ROS levels during embryogenesis is a key factor in
neural development.

Hypoxia-inducible factors (Hifs), including Hif1, Hif2 and Hif3, function in oxygen homeostasis
by regulating the genes responsible for glucose metabolism, erythropoiesis, angiogenesis, apoptosis
and cell proliferation [25]. As the cell number in developing embryos increases, endogenous embryonic
hypoxia stimulates the expression of Hif genes and stabilizes Hif proteins, which induce the expression
of vascular endothelial growth factor (vegf ) and erythropoietin (epo) to, respectively promote angiogenesis
and erythrogenesis [26,27]. Additionally, Hif2a has been reported to maintain neural progenitor cell
populations and promote neural differentiation by regulating survival during embryogenesis [28].

In the current study, we investigated the role of Hif signaling and oxidative stress in the
neuropathology of B[a]P in developing zebrafish embryos by analyzing the expression of genes related
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to Hif signaling, examining the markers of oxidative stress. Embryonic exposure to B[a]P resulted
in developmental hypoplasia of the brain, trigeminal ganglion cells and Rohon–Beard cells at 24 hpf.
Moreover, reduced expression of hif1a and hif2a was coincident with the low expression of survivin and
epo in B[a]P-treated embryos. Expression of genes that modulate oxidative stress and the embryonic
level of H2O2 were also altered in B[a]P-treated embryos. These results provide novel insights into
how neurological disorders may be caused by B[a]P, further delineating the molecular neuropathology
of B[a]P during zebrafish embryogenesis.

2. Materials and Methods

2.1. Chemicals

B[a]P (No. B-1760) and other chemicals were purchased from Sigma-Aldrich (St. Louis, MO,
USA). To eliminate the potential interference of chemical contaminants, all chemicals used in this study
were of a molecular biology grade.

2.2. Animal Care and Maintenance

Wild-type (AB) and transgenic (Tg(elavl3:EGFP)) zebrafish were maintained in a recirculating
housing system under standard laboratory conditions: 28.5 ◦C, pH 7–8, 14:10 h light:dark cycle.
Fish were fed with commercial tropical zebrafish feed (Azoo, Taiwan) twice daily and live brine shrimp
(Ocean Star International, USA) once daily. The two zebrafish strains were used in this study, AB and
Tg(elavl3:EGFP), were both originally obtained from the Taiwan Zebrafish Core Facility at Academia
Sinica, Taiwan and were maintained in the laboratory for more than 10 generations. Embryos were
obtained through natural mating. Experimental animals were collected at the 1- to 4-cell stages and
cultured in sea salt egg water (0.0375% sea salt in deionized distilled water). All experiments involving
animals were conducted in accordance with the Institutional Animal Care and Use Committee (IACUC)
at National Chiayi University, which approved the animal experiments and standard operating
protocols (Approval No. 104043).

2.3. Benzo[a]pyrene Treatment and Embryo Processing

To determine the acute toxicity of ethanol on the developing neural system, 1- to 4-cell stage
embryos were transferred to a petri-dish containing sea salt egg water. Eighty embryos by 4 cells
stages were used in each group to increase throughput and reduce variability. Embryos were allowed
to habituate in B[a]P solutions at the following concentrations: 0 µM (control, 0.1% DMSO), 10 µM and
20 µM. To aid visualization of zebrafish development, 0.2-mM 1-phenyl-2-thiourea (Sigma-Aldrich)
was used in some experiments to inhibit pigmentation at 20–22 h post-fertilization (hpf); embryos were
staged as described previously [29]. The Tg(elavl3:EGFP) transgenic embryos were treated with B[a]P
at concentrations of 0 µM (control, 0.1% DMSO), 10 µM and 20 µM and their neural development was
observed under fluorescence microscopy at 24 hpf. All experiments were performed with at least three
independent replicates.

2.4. In Situ Hybridization Staining

Zebrafish embryos were exposed to 0 µM (control, 0.1% DMSO), 10 µM and 20 µM of B[a]P since 2
hpf. Embryonic exposure to B[a]P was terminated and fixed at 12, 24 and 48 hpf in 4% paraformaldehyde
in phosphate-buffered saline (PBS) at pH 7.2 and processed using standard protocols [30]. Antisense
probes labeled with digoxigenin-UTP (Roche) were synthesized by in vitro transcription using cDNA
templates encoding elavl3 [31], shh [32], epo [33] and survivin (birc5a) [34], as previously described.
In situ hybridization staining was developed with NBT/BCIP substrate. Sense riboprobes served as the
control for each antisense probe, all in situ staining results are shown in the Supplementary Figure S1.
All imaging was performed using an Olympus BX53 upright microscope equipped with an Olympus
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DP72 Digital Color Microscope Camera. All images were processed for contrast, brightness and color
using Photoshop CS3 Extended Version 10.0 (Adobe; San Jose, CA, USA).

2.5. Embryonic MDA and Hydrogen Peroxide Measurement

The lipid peroxidation product, malondialdehyde (MDA), is a well-established marker of oxidative
stress in cells and tissues. The level of MDA was quantified spectrophotometrically at 535 nm on
an Epoch spectrophotometer (BioTek). A calibration curve for MDA in the embryos was prepared
by treating the embryos with H2O2 at 15, 30, 60, 120 and 180 µM. Therefore, the MDA levels were
calculated as equivalents to H2O2 exposure concentrations (µM), based on a comparison of signal to
the calibration curves. Values were then compared with negative controls and expressed as a fractional
increase in MDA level compared with negative control. Embryonic H2O2 measurements were made
using the ferrous ion oxidation xylenol orange (FOX) assay [35]. Zebrafish embryos were homogenized
in 0.5 mL ice-cold 80% methanol and centrifuged, which was followed by the collection of supernatants.
The supernatants of samples and FOX reagent (100-µM xylenol orange, 250-µM ferrous ammonium
sulfate, 100-mM sorbitol and 25-mM H2SO4 in methanol) were mixed in a 1:10 ratio, and the mixtures
were incubated at room temperature for 30 min in the dark. The absorbance of the mixtures was
measured at 560 nm, and the concentration of embryonic H2O2 was calculated using a standard curve
(0, 20, 40, 60, 80 and 100 µM).

2.6. Real-Time Quantitative PCR

Total RNA was extracted using Trizol reagent (), and 3 µg of total RNA was reverse
transcribed with MMLV high performance reverse transcriptase (Epicenter) for cDNA synthesis.
Quantitative PCR reactions were performed with EvaGreen dye (Biotium) for low background and
high resolution data. Quantitative RT–PCR analysis was performed, and signals were detected
using the Rotor-Gene Q System (QIAGEN). Expression levels for each individual gene were
normalized to the actin gene expression from the same sample. Results were analyzed by the
2(−44CT) formula, as previously described (Livak and Schmittgen, 2001). The following primers
were used. actin: 5′-CACCTTGCAGCAGATGTGGA-3′, 5′-AAAAGCCATGCCAATGTTGTC-3′;
birc5a: 5′-CACTCCAGAAAACATGGCTAAA-3′, 5′-CCATCCTTCCAGCTCTTT CA-3′; epo: 5′-TGA
AGTCTGGGAAGCG ATG-3′, 5′-GCATGTGTAAGCCTGAC TGG-3′; hif1a: 5′-CCTTCTGCCACT
CACTGTGT-3′, 5′-CGAGGAGGGTAAGG GTTGGA-3′; hif2a: 5′-AGCTCGACT TGCTCTTGCTA-3′,
5′-CTGACAAGCT ACTGCTGAGTGA-3′; cat: 5′-AGGGCAACTGGGATCTTACA-3′, 5′-TTTATG GGA
CCAGACCTTGG-3′; sod1 (Cu-SOD): 5′-GTCGTCTGGCTTGTGGAGTG-3′, 5′-TGTCAGCGGGCTAGT
GCTT-3′; survivin (bir5b): 5′-AGACGTTGCCTGCTGTTTCT-3′, 5′-TAGGCAATCTTCCGATGACC-3′,
epo: 5′-TGA TGCTGATGGT GCTGGAG-3′, 5′-GACTGGACCTCCTGAGCTTG-3′.

2.7. Statistical Tests

The toxicity of B[a]P on zebrafish developing neural cells was determined based on the number of
neurons. All experiments were conducted in triplicate and the data were presented as the mean ±
standard deviation. Significant differences in developing neural number between the treatment groups
were evaluated using on-way ANOVA, followed by Tukey’s post hoc test. Values were considered
statistically significant when p < 0.05 and highly significant when p < 0.01. All statistical analyses were
performed using SPSS 21.0 (IBM).

3. Results

To study the toxic effects of B[a]P on the embryonic neural development of zebrafish,
Tg(elavl3:EGFP) embryos were used. In these transgenic fish, GFP is specifically expressed in
neurons. We exposed Tg(elavl3:EGFP) embryos to 0.1% DMSO (control), 10 µM and 20 µM B[a]P
from 2 hpf until 24 hpf. Images of B[a]P-treated live embryos at 24 hpf did not show obvious
morphological differences from the controls (Figure 1A–C). Neural development was then observed
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under fluorescent microscopy (Figure 1D–O). From the live images, we noticed that the fluorescence
intensity in B[a]P-treated embryos was weaker than that in the control embryos. The number of
trigeminal ganglion cells in the head and Rohon–Beard cells in the front-trunk, mid-trunk and tail
regions were counted. In the head region, the numbers of trigeminal ganglion cells were 15 ± 1.2 in the
controls, 9.3 ± 2.2 in 10 µM B[a]P and 6.5 ± 1.3 in 20 µM B[a]P-treated embryos (Figure 1P). There were
14.7 ± 1.7, 27.8 ± 2.1 and 41.3 ± 0.7 Rohon–Beard cells in front-trunk, mid-trunk and tail region of
control embryos. These numbers were reduced to 9.2 ± 2.1, 23 ± 0.6, 27.1 ± 1.6 in front-trunk, mid-trunk
and tail region of 10 µM B[a]P, and the values were 6.8 ± 0.7, 18.7 ± 1.6 and 19.3 ± 2.2 in front-trunk,
mid-trunk and tail region of 20 µM B[a]P treated embryos, respectively. These results indicated that
the number of developing trigeminal ganglion cells and Rohon–Beard cells was significantly reduced
in B[a]P-treated embryos. We further examined the development of the central nervous system in the
control and B[a]P-treated embryos by in situ hybridization staining with a riboprobe against elavl3
mRNA, which is specifically expressed in telencephalon, midbrain, midbrain hindbrain boundary,
midbrain hindbrain plate, hypothalamus and cranial ganglion (Figure 2A). Compared with the control
embryos, the expression pattern of elval3 was obviously altered in B[a]P-treated embryos (Figure 2A–C).
Compared with control embryos, the expression intensity of elavl3 in the telencephalon fore-midbrain
region (Figure 2D–F, rectangular frame), hindbrain and cranial ganglion (Figure 2G–I) in B[a]P-treated
embryos was weaker than that in the control embryos and the expression width in the hindbrain was
increased in B[a]P-treated embryos (Figure 2D–F). Real time quantitative PCR assay indicated that the
expression of elavl3 was does-dependently reduced in B[a]P treated embryos (Figure 2J). Taken together,
our results clearly indicate that B[a]P treatment induced embryonic neurodevelopmental toxicity.
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zebrafish embryos received the indicated treatments: 0 µM. (control, 01% DMSO; (A,C,F,I,L)), 10-µM
B[a]P (B,D,G,J,M) and 20-µM B[a]P (C,E,H,K,N). (A–C) Lateral view of the live embryos at 24 hpf after
treatment with 0.1% DMSO (control; A), 10-µM B[a]P (B) and 20-µM B[a]P (C); (D–O) Effects of B[a]P
on neurogenesis using the Tg(elavl3:EGFP) model. The embryos treated with 0.1% DMSO (control;
(D,G,J,M)), 10-µM B[a]P (E,H,K,N) and 20-µM B[a]P (F,I,L,O) were collected at 24 hpf. Representative
fluorescent images are shown for embryonic trigeminal ganglions (tg) in the head region (D–F) and
Rohon–Beard cell (rb) in the front trunk (G–I), mid-trunk (J–L) and in tail regions (M–O). (P–S) The
numbers of tg cells in the head region and rb cells in front-trunk (F-trunk), mid-trunk (M-Trunk) and
tail were counted from 10 embryos in each treatment group. Data are shown as mean ± standard
deviation. * p < 0.05, ** p < 0.01, *** p < 0.001 compared with the control.

Antioxidants 2020, 9, x FOR PEER REVIEW 7 of 18 

 
Figure 2. B[a]P-treated embryos exhibit defective nervous system development. In situ hybridization 
staining was performed with a riboprobe against elavl3, a marker gene specifically expressed in 
telencephalon (te), hypothalamus (hy), midbrain (mb), midbrain hindbrain boundary (mhb) and plate 
(mhp) and hindbrain (hb) of the developing brain (A). (A–I) Zebrafish embryos exposed to 0 μM. 
(control, 01% DMSO), 10-μM B[a]P and 20-μM B[a]P were analyzed at 24 hpf. Embryos in (A–C) are 
shown from the lateral view; the red arrowheads indicate developmental defects in the midbrain 
(mb), and the hollow arrowheads indicate developmental defects in midbrain-hindbrain boundary 
(mhb); (D–F) Embryos are shown from the lateral view. The developing telencephalon (te; rectangles 
in (E,F)) was wider and the expression of elavl3 was weaker than in the control embryos; (G–I) Images 
are focused on the hindbrain (hb) region. The development of cranial ganglia (cg) was dose-
dependently affected by B[a]P treatment; (J) Expression alteration of elavl3 in B[a]P was quantified by 
real-time quantitative RT–PCR (* p < 0.05, ** p < 0.01 compared with the control). 

3.1. Exposure of B[a]P Causes Reduced Expression of shh and islt1 in the Developing Neural System at 24 hpf 

To explore the toxic mechanism of B[a]P on the developing embryonic nervous system, we first 
probed the expression of sonic hedgehog (shh), a signal for neurogenic induction, proliferation and 
neuroprotection in various cell types and islet 1 (isl1), which encodes a LIM homeodomain 
transcription that plays an essential role in embryogenesis. The exposure of zebrafish to B[a]P led to 
reduced expression of shh in mid-dicencephalic organizer, basal plate and hypothalamus (Figure 3A–
C). From the lateral view, we also noticed that the expression of shh in the notochord and neural tube 
floor plate was more curved in 20 μM B[a]P-treated embryos (Figure 3C). From the dorsal view, 
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Figure 2. B[a]P-treated embryos exhibit defective nervous system development. In situ hybridization
staining was performed with a riboprobe against elavl3, a marker gene specifically expressed in
telencephalon (te), hypothalamus (hy), midbrain (mb), midbrain hindbrain boundary (mhb) and plate
(mhp) and hindbrain (hb) of the developing brain (A). (A–I) Zebrafish embryos exposed to 0 µM.
(control, 01% DMSO), 10-µM B[a]P and 20-µM B[a]P were analyzed at 24 hpf. Embryos in (A–C) are
shown from the lateral view; the red arrowheads indicate developmental defects in the midbrain (mb),
and the hollow arrowheads indicate developmental defects in midbrain-hindbrain boundary (mhb);
(D–F) Embryos are shown from the lateral view. The developing telencephalon (te; rectangles in (E,F))
was wider and the expression of elavl3 was weaker than in the control embryos; (G–I) Images are
focused on the hindbrain (hb) region. The development of cranial ganglia (cg) was dose-dependently
affected by B[a]P treatment; (J) Expression alteration of elavl3 in B[a]P was quantified by real-time
quantitative RT–PCR (* p < 0.05, ** p < 0.01 compared with the control).
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3.1. Exposure of B[a]P Causes Reduced Expression of shh and islt1 in the Developing Neural System at 24 hpf

To explore the toxic mechanism of B[a]P on the developing embryonic nervous system, we first
probed the expression of sonic hedgehog (shh), a signal for neurogenic induction, proliferation and
neuroprotection in various cell types and islet 1 (isl1), which encodes a LIM homeodomain transcription
that plays an essential role in embryogenesis. The exposure of zebrafish to B[a]P led to reduced
expression of shh in mid-dicencephalic organizer, basal plate and hypothalamus (Figure 3A–C). From
the lateral view, we also noticed that the expression of shh in the notochord and neural tube floor
plate was more curved in 20 µM B[a]P-treated embryos (Figure 3C). From the dorsal view, expression
of shh was obviously reduced in the brain and notochord of B[a]P-treated embryos (Figure 3E–F).
In untreated wild-type embryos, isl1 was specifically expressed in the telencephalon, ventral thalamus,
hypothalamus, epiphysis and posterior commissure at 24 hpf. Its expression was significantly reduced
by B[a]P treatment in the telencephalon, ventral thalamus and hypothalamus (Figure 3H–J). Surprisingly,
expression of shh was expanded in ventral thalamus and dramatically reduced in the hypothalamus,
epiphysis and posterior commissure of 20-µM B[a]P-treated embryos (Figure 3J). The frontal view also
revealed a low expression of isl1 in telencephalon, ventral thalamus and hypothalamus (Figure 3K–M).
Real-time quantitative PCR was further performed to confirm the expression reduction of shh and isl1
in B[a]P treated embryos (Figure 3N,O) These results serve to define the specific brain regions affected
by B[a]P-induced disruption of neural development.
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(AB) zebrafish embryos were treated with 0 µM. (control, 01% DMSO), 10-µM B[a]P and 20-µM B[a]P.
The embryos were fixed at 24 hpf. Expression of shh (A–G) and isl1 (H–M) was analyzed by in situ
hybridization staining. Images show the lateral view in (A–C,H–J). Images in (E–G) show the dorsal
view. Images in (K–M) show the frontal view; (B,C) Expression of shh was specifically expressed in the
mid-diencephalic organizer (mdo), hypothalamus (hy) and basal plate (bp) of B[a]P-treated embryos;
(E–G) The expression pattern of shh in the brain and floor plate (fp) in 20-µM B[a]P-treated embryos;
(H–M) The development of encephalic regions was examined by in situ hybridization staining by
probing for the islet1 gene (isl1) which is specifically expressed in telencephalon (te), ventral thalamus
(vp), hypothalamus (hy), epiphysis (ep) and posterior commissure (pc) in embryos at 24 hpf. (N, O)
Expression alteration of shh and isl1 in B[a]P was quantified by real-time quantitative RT–PCR (* p < 0.05,
** p < 0.01, ***p < 0.001 compared with the control).

3.2. No Obvious Neural Defects Are Present in B[a]P-Exposed Embryos at 12 hpf

To determine the embryonic timing at which B[a]P begins to affect the developing neural system,
we performed in situ hybridization staining with an elavl3 riboprobe in embryos at 12 hpf. At this time
point, elavl3 is expressed in cranial trigeminal ganglions cells, primary motor neurons and Rohon–Beard
cells (Figure 4A,D,G). Based on the staining results, no obvious effects of B[a]P exposure could be
observed on trigeminal cranial ganglion cells in the head region (Figure 4A–C) or in primary motor
neurons and Rohon–Beard cells (Figure 4D–I). These observations suggest that the neurotoxic effects of
B[a]P are not present at 12 hpf, suggesting that the window of vulnerability begins at later stages.
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Figure 4. Lack of obvious neural cell defects in B[a]P-treated embryos at 12 hpf. In situ hybridization
staining with a probe against elavl3 was performed to analyze the early development of neural cells
(A–I); all images show the dorsal view. Images in (A–C) are focused on the anterior trunk; (D–F) are
focused on mid-trunk region and (G–I) are focused on the tail region. tg, trigeminal ganglion; pm,
primary motor neurons; rb, Rohon–Beard cells.
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3.3. B[a]P Exposure Alters the Expression of Hypoxia-Related and Oxidative Stress-Related Genes

Many studies have shown that the expression of Hifs and oxidative stress-related genes occurs in
organisms exposed to chemical stresses [36], and the expression of these genes is also closely associated
with embryonic neural development [37]. To assess whether the expression of these genes is altered
by B[a]P exposure in the developing neural system, quantitative RT-PCR was performed to measure
the expression of hif1a, hif2a, calatase and sod1 (encodes Cu-containing superoxide dismutase; CuSod).
Interestingly, the levels of hif1a, hif2a and calatase were reduced (Figure 5A–C) and the level of sod1 was
increased (Figure 5D) in B[a]P-treated embryos compared with the controls. The low expression of hif1a
and hif2a was unexpected, so we further examined the expression of survivin, a target of hif2a that is
known to regulate embryonic neural development. In situ hybridization results indicated that survivin
was specifically expressed in the brain and neural tube of wild-type embryos at 24 hpf (Figure 6A,D) and
the expression level was obviously reduced in B[a]P-treated embryos (Figure 6B,C,E,F). The expression
levels were quantified and the results confirmed that B[a]P was able to dose-dependently reduce
the expression (Figure 6M). We also detected another Hif target gene, epo (Figure 6G–L), which is
expressed in brain during embryogenesis and is functionally associated with neural differentiation
and proliferation [38–40]. The quantitative results indicated that the expression of epo was also
dose-dependently reduced by B[a]P treatment (Figure 6N), and the effect sizes at each dose were
similar to those for hif2a in B[a]P-treated embryos.
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Figure 5. Expression levels of Hifs and oxidative stress-related genes are altered in B[a]P treated
embryos. Zebrafish embryos were exposed to 0 µM. (control, 01% DMSO), 10 and 20 µM of B[a]P
from 2 hpf until 24 hpf. Expression of genes encoding (A) Hif1α, (B) Hif2α, (C) Catalase and (D)Sod1
was examined by real-time quantitative RT–PCR. * p < 0.05, ** p < 0.01, *** p < 0.001 compared with
the control.
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Figure 6. Expression levels of Survivin and Epo genes are reduced in B[a]P treated embryos. Zebrafish
were exposed to 0µM (control, 01% DMSO), 10 and 20µM of B[a]P from 2 hpf until 24 hpf. Whole-mount
in situ hybridization staining was performed with riboprobes against survivin (A–F) and epo (G–L)
at 24 hpf. The staining levels of survivin (M) and epo (N) were quantified. * p < 0.05, ** p < 0.01,
*** p < 0.001 compared to control.

3.4. Exposure to B[a]P Increases Hydrogen Peroxide and Lipid Peroxidation

In many biological systems, exposure to chemical toxins often results in the cellular stress
associated with induction or repression of cellular reactive oxygen species (ROS), such as hydrogen
peroxide [41–43] and lipid peroxidation [44,45]. A proper embryonic level of hydrogen peroxide plays
an important role in controlling axon pathfinding during zebrafish development; however high levels
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of cellular H2O2 result in the impairment of cells and embryogenesis [37,46]. Moreover, the levels of
ROS and lipid peroxidation are influenced by a variety of enzymes. For example, catalase functions to
decompose H2O2 to water and oxygen [46] and SOD1 (CuSod) catalyzes the dismutation of superoxide
to hydrogen peroxide and oxygen [47]. Since we saw effects on the expression of catalase and sod1 in
B[a]P-treated embryos (Figure 5C,D), we wondered whether cellular H2O2 and the lipid peroxidation
product, MDA, may be affected in B[a]P-treated embryos. In the positive control group, we exposed
zebrafish embryos to 120 µM H2O2 combined with 0.1% DMSO and the embryonic levels of H2O2

and lipid peroxidation in the embryos were detected with the FOX and MDA assays, respectively.
Our results indicated that the embryonic levels of H2O2 and MDA were increased in B[a]P-treated
embryos. Surprisingly, the levels of these ROS markers in 10 µM B[a]P-treated embryos were similar to
the positive control embryos (Figure 7A) and the levels of both markers in 20-µM B[a]P-treated embryos
were higher than those in positive control embryos. Thus, the altered expression of catalase and sod1
were coincident with high levels of H2O2 (Figure 7A) and lipid peroxidation products (Figure 7B)
in B[a]P-treated embryos. Moreover, B[a]P-induced embryonic oxidative stress is likely to at least
partially mediate the toxic effects of B[a]P on developing neural system during embryogenesis.
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(A) Embryonic hydrogen peroxide content was determined by the FOX assay and (B) the level
of lipid peroxidation was examined by the malondialdehyde (MDA) assay. * p < 0.05, ** p < 0.01.

4. Discussion and Conclusions

There is increasing awareness of the relationship between environmental pollutants, oxidative
stress and neurodegenerative diseases. In this study, we used zebrafish embryos to investigate the toxic
effects of B[a]P and explore the association between its neural toxicity, the Hif-pathway and oxidative
stress. Zebrafish embryos were developmentally exposed to B[a]P at 10 and 20 µM. Developing neural
cells were monitored in B[a]P-exposed Tg(elavl3:EGFP) transgenic embryos, revealing the reductions
in trigeminal ganglion cells in the head region and Rohon–Beard cells in the trunk. We noticed that
the reduced cell levels were more significant in head and front-trunk than in the mid-trunk and tail
(Figure 1). We further examined the developing neural cells by in situ hybridization for elavl3, shh
and isl1; these results also revealed clear developmental toxicity to neural cells and showed more
significant effects in the head and front trunk than in the posterior regions (Figures 2 and 3).

Our results also suggest that exposure to B[a]P at early embryonic stages results in the expression
of neural regulatory genes in the head and front-trunk. In situ hybridization staining for shh
indicated that its expression level and pattern was severely affected in the mid-diencephalic organizer,
hypothalamus and basal plate brain regions, without obvious effects in the trunk regions (Figure 2A–G).
During embryonic neurogenesis, shh is expressed in the developing hypothalamus and is essential
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for hypothalamic induction and mid-diencephalic organizer development [48–50]. Staining for
isl1 expression also clearly revealed the effects of B[a]P toxicity on brain development. At 24 hpf,
isl1 is normally specifically expressed in telencephalon, ventral thalamus, hypothalamus, epiphysis
and posterior commissure regions of the developing brain (Figure 3H). However, in B[a]P-treated
embryos, the expression areas and intensity of isl1 in these regions were dramatically reduced
(Figure 3I,J). To explore when B[a]P toxicity is first observed, we further examined neural development
in B[a]P-treated embryos at an earlier time-point. No developmental toxicity was observed in
B[a]P-treated embryos at 12 hpf (Figure 4). These results indicated that the neurotoxicity of B[a]P is
likely to occur at embryonic stages later than12 hpf.

Many reports have shown the induction of oxidative stress upon exposure to environmental
toxins [51] or hypoxia [52]. Indeed, oxidative stress is arguably the most common toxic mechanism for
environmental agents [53,54]. Hifs belong to the basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS)
subfamily of bHLH transcription factors and are often centrally involved in the cellular response to
oxygen levels. Our results indicated that the expression of hif1a and hif2a was dose-dependently reduced
in B[a]P-treated embryos, suggesting the Hif pathway may be involved in the neurodevelopmental
toxicity of B[a]P. During embryogenesis, Survivin is especially important in neural progenitors of
mammalian and zebrafish embryos [55]. During brain development, survivin is highly expressed in
neural progenitor cells and plays an essential role in the maintenance of developing neural cells [56].
Antisense morpholino-induced knockdown of the zebrafish Hif2a protein was shown to cause a deficit
in survivin transcription, which abrogates neural cell development [28]. This mechanism may explain
our observation that embryonic exposure of B[a]P dose-dependently reduced the expression of survivin
in concert with hif1a and hif2a (Figure 5A,B and Figure 6M).

Epo is widely known for its role in erythropoiesis during embryogenesis and in adults.
Many reports have shown that Epo signaling also plays an important role in the neuroprotection of
the adult brain [57,58] and neural development during embryogenesis [59,60]. During embryogenesis,
the developing nervous system requires precise regulation of oxygen levels. Low levels of oxygen
induce Hif gene expression, which enhances the expression of epo to regulate erythrogenesis [61].
Our results indicated that the expression levels of hif1a and hif2a were reduced in B[a]P-treated embryos.
Consistently, the expression of epo also exhibited a dose-dependent reduction in B[a]P-treated embryos.
These results suggest that embryonic exposure to B[a]P reduces Hif-mediated signaling, which may be
responsible for the reduced expression of survivin and epo, resulting in defective neural development.

Inhibition of hif1a expression is known to enhance the generation of ROS and reduce the
transcription of primary antioxidant enzymes, which can cause pathology in multiple organs [62].
Expression of ROS-related genes, calatase and sod1, was altered in B[a]P-treated embryos. Both Catalase
and Sod1 participate in ROS detoxification. Sod1 is a cytosolic antioxidant enzyme that converts the
highly reactive superoxide radical to H2O2, which can be eliminated by enzymes, such as Catalase.
The induced expression of Sod1 and reduced expression of Catalase suggested that embryonic exposure
to B[a]P may increase the cellular level of H2O2. As predicted, the embryonic H2O2 level was
dose-dependently induced after B[a]P exposure. While high levels of H2O2 are widely known to cause
cytotoxic effects, many recent reports have shown that the molecule is also an important regulator of
eukaryotic signal transduction [63,64].

Surprisingly, the embryonic H2O2 level in 10 µM B[a]P-treated embryos was similar to the
positive control embryos treated with 120 µM H2O2. During zebrafish embryogenesis, dynamic
changes in endogenous embryonic H2O2 level may play an important role in regulating proper
embryogenesis [65]. Excessive cellular H2O2 results in lipid peroxidation, triggers cell death [66–68]
and induces neutrophil infiltration, inflammation by modulating the immune system [69,70]. Exposure
to B[a]P is known to play a role in lung carcinogenesis induced by tissue inflammation [70,71].
In current years, the potential neurotoxicity of B[a]P inducing oxidative stress-mediated neurotoxicity
and causing behavioral alterations and oxidative stress in animal models was reported [72–74]. B[a]P
can reach the encephalic central nervous tissues by crossing the blood–brain barrier [75–77]; this leads
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to increase nervous oxidative stress in the nervous system which in turn resulting in behavioral
changes and alterations to the expression of antioxidant enzymes (e.g., superoxide dismutase, catalase
and glutathione peroxidase and cellular lipid peroxidation [77,78]. Epidemiological studies have
demonstrated that exposure to B[a]P causes neurological abnormalities such as cognitive impairment,
learning difficulties, parasympathetic dysregulation and short-term memory loss [79–81]. Embryonic
B[a]P exposure increases the risk of neural hypoplasia. Neural tube defects are the most common and
severe congenital malformations due to the disturbance of normal neural tube closure during early
embryogenesis. Maternal B[a]P exposure increases fetal neural tube defects, neural apoptosis and the
expression of the oxidative stress related genes, cyp1a1, sod1 and sod2. Neural apoptosis and oxidative
stress-related gene expression can be attenuated by ectopic supplementation of antioxidants, such as
vitamin E or retinoic acid [82,83]. This shows that B[a]P exposure induces embryonic neural defects
that may involve increased oxidative stress.

Based on our findings, we conclude that Hif signaling-mediated embryonic oxidative stress is
likely to be involved in the developmental neurotoxicity of B[a]P and the tissue inflammation process.
Therefore, our study further elucidates the molecular basis of B[a]P neurotoxicity during embryogenesis.
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Figure S1: Sense riboprobe serves as negative controls for in situ hybridization staining assay.
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