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Summary 
 
Age is the strongest risk factor for developing Alzheimer’s disease, the most common 
neurodegenerative disorder. However, the mechanisms connecting advancing age to 
neurodegeneration in Alzheimer’s disease are incompletely understood. We conducted an 
unbiased, genome-scale, forward genetic screen for age-associated neurodegeneration in 
Drosophila to identify the underlying biological processes required for maintenance of aging 
neurons. To connect genetic screen hits to Alzheimer’s disease pathways, we measured 
proteomics, phosphoproteomics, and metabolomics in Drosophila models of Alzheimer’s 
disease. We further identified Alzheimer’s disease human genetic variants that modify 
expression in disease-vulnerable neurons. Through multi-omic, multi-species network 
integration of these data, we identified relationships between screen hits and tau-mediated 
neurotoxicity. Furthermore, we computationally and experimentally identified relationships 
between screen hits and DNA damage in Drosophila and human iPSC-derived neural progenitor 
cells. Our work identifies candidate pathways that could be targeted to attenuate the effects of 
age on neurodegeneration and Alzheimer’s disease.  
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Neurodegenerative diseases are characterized by a progressive loss of neurons and pathological 
protein aggregation. Age is the most important risk factor for these diseases, which can lead to 
cognitive decline and motor defecits1. As the global population ages, there is an increasing 
imperative to understand and design effective therapies for neurodegenerative disorders. 
Alzheimer’s disease, the most common neurodegenerative disorder, is characterized by 
pathological aggregation and deposition of extracellular amyloid β plaques and intracellular 
neurofibrillary tangles comprised of tau protein2–4. The presence of amyloid β plaques and tau 
neurofibrillary tangles precedes neuronal death and cognitive decline5. Amyloid β plaques are 
predominantly made up of 42-amino acid amyloid β oligomers (amyloid β1-42), which 
accumulate due to erroneous cleavage of the amyloid precursor protein (APP)6. Furthermore, 
point mutations in the gene microtubule-associated protein tau (MAPT) lead to increased 
tangle formation and neuronal cell death in the neurodegenerative condition frontotemporal 
dementia, illustrating how tau can contribute to neuronal cell death7.  
 
While aging is a key risk factor of Alzheimer’s disease, it is not clear which aging-related 
biological processes lead to neurodegeneration and pathophysiological changes in disease1. 
Understanding the biological basis for age-associated neuronal cell death could provide an 
important new set of therapeutic targets in Alzheimer’s disease and related age-dependent 
neurodegenerative disorders8. Previous genome-wide association studies (GWAS), 
transcriptomic analysis, and quantitative trait locus (QTL) analysis have identified genetic risk 
factors and associated molecular changes underlying Alzheimer’s disease in the brain at bulk 
and single-neuron resolution9–16. However, the mechanisms by which many QTL-associated 
molecular changes impact neurodegenerative disease pathogenesis remain undefined.  
 
To define mechanisms maintaining neuronal function and viability with advancing age, we 
performed a neuron-specific, in vivo genome-scale RNAi screen in Drosophila (Figure 1, Figure 
2A). The short lifespan of Drosophila makes it possible to assess age-associated effects of gene 
knockdowns that would be challenging to study in other model organisms17–19. Drosophila and 
humans share numerous conserved genetic, cellular, electrophysiological and chemical 
properties20. The fruit fly also exhibits many of the same molecular phenotypes associated with 
advancing age as humans18,21–23. These observations suggest shared mechanisms of age-
associated neurodegeneration between humans and Drosophila. Our work builds on previous 
efforts that used genome-scale screens in Drosophila to identify regulators of tau-mediated 
neurotoxicity, as well as other work that identified neuron-essential genes in human induced 
pluripotent cell-derived neurons24–27. 
 
To relate the hits from our model organism screen to human disease, we used a multi-omic 
integration approach to identify the pathways that influence age-associated 
neurodegeneration. We measured proteomics, phosphoproteomics and metabolomics in 
transgenic Drosophila models of human amyloid β and tau to identify molecular changes 
associated with Alzheimer’s disease toxic proteins (Figure 1). To determine how our neuron-
specific RNAi screen and the related model organism data were important in human 
Alzheimer’s disease patients, we generated RNA-sequencing (RNA-seq) data from pyramidal 
neuron-enriched populations from the temporal cortex using laser-capture microdissection28–32 
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(Figure 1). We were particularly interested in measuring this neuronal cell type and brain region 
because they are especially vulnerable to the formation of neurofibrillary tangles29. We 
identified fine-mapped expression QTLs (eQTLs) and the eQTL-associated genes (eGenes) in 
neurons vulnerable to disease pathology to find patterns of gene expression associated with 
human genetic risk factors of Alzheimer’s disease. Next, we integrated these multi-species, 
multi-omic data with a previously published genome-scale screen for tau-mediated 
neurotoxicity24, existing human Alzheimer’s disease GWAS hits, proteomics, and metabolomics 
10,12,24,33,34 using the Prize-Collecting Steiner Forest algorithm (Figure 1)35,36. This approach has 
been used to identify biological processes in various disease consequences, including Alexander 
disease, medulloblastoma, Parkinson’s disease in Drosophila, amyotrophic lateral sclerosis, and 
an Appl model of Alzheimer’s disease in Drosophila37–41.  
 
Based on our integrated model, we nominated genes and pathways that contribute to age-
associated neurodegeneration in Alzheimer’s disease. We experimentally tested the predicted 
functional effects of knockdown of proposed targets in flies and in human induced pluripotent 
stem cells. Specifically, we demonstrate that the human Alzheimer’s disease genetic risk factor 
MEPCE and neurodegeneration screen hit HNRNPA2B1 regulate tau-mediated neurotoxicity. 
Furthermore, we show in flies and iPSC-derived neural progenitor cells that NOTCH1 and 
CSNK2A1 regulate the DNA damage response, suggesting pathways through which these genes 
enhance age-associated neurodegeneration. 
 
Results 
 
A genome-scale, forward genetic screen identifies regulators of age-associated 
neurodegeneration in Drosophila  
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Figure 1. Overview of analytical framework in this study for multi-omic integration to 
understand the biological processes underlying neurodegeneration. We performed a forward 
genetic screen for age-associated neurodegeneration in Drosophila. We measured proteomics, 
phosphoproteomics and metabolomics in amyloid β (gold) and tau (purple) models of 
Alzheimer’s disease and performed an eQTL meta-analysis of previous Alzheimer’s disease 
studies. We used a network integration model to integrate these new data with previously 
published human proteomics, human genetics, human lipidomics, and Drosophila modifiers of 
tau-mediated neurotoxicity. We tested hypotheses generated from this network model in 
Drosophila and human iPSC-derived neural progenitor cells. Icons created with Biorender.com.  
 
 
To identify the genes required to maintain the viability of aging neurons in vivo we performed a 
genome-scale, forward genetic screen in Drosophila (Figure 2A). Age-associated 
neurodegeneration is a hallmark of human Alzheimer’s disease and can be experimentally 
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assessed in a model organism with a short lifespan like Drosophila2,17–19. We used a transgenic 
RNAi screen to knock down 5,261 Drosophila melanogaster genes in neurons, aged the flies for 
30 days, and assessed brain integrity using hematoxylin and eosin-stained tissue sections 
(Figure 2A). Neurodegeneration is frequently accompanied by neuropil vacuolation in flies and 
in human neurodegenerative disease42–45. From this screen, we identified 198 genes that 
promoted age-associated neurodegeneration in Drosophila after knockdown (Table 1 and 
referred to below as “screen hits”). A simple pathway enrichment approach showed that the 
hits were overrepresented by genes involved in neuronal morphogenesis, development, cell 
death, and memory in Drosophila (Table S1, Benjamini-Hochberg FDR-adjusted p-value<0.1).  
 

 
Figure 2. A) Schematic of the genetic screen for age-associated neurodegeneration. Upon 
neuron-specific RNAi knockdown, neurodegeneration is assayed on H&E-stained brain sections 
and is frequently vacuolar. Example control and knockdown images are shown. Drosophila 
cartoons were created with Biorender.com. B) Geometric mean expression in transcripts per 
million (TPM) of age-associated neurodegeneration genes (neurodegeneration genes) and all 
protein-coding genes in the Genotype-Tissue Expression (GTEx) shows that the expression of 
neurodegeneration screen hits declines with age in human brain tissues. Regression lines 
indicate the relationship between age and TPM with a 95% confidence interval (standard error 
of the mean). The mixed effects regression analysis controlled for post-mortem interval, sex, 
ethnicity, and tissue of origin. Y axes of the left and right plots are on different scales. C) Gene 
set enrichment plot showing that the set of age-associated neurodegeneration genes has 
reduced expression with respect to age. Vertical lines indicate rank of neurodegeneration 
screen hits by their association between gene expression and age determined by mixed-effects 
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regression analysis coefficients. D) Proportion of genes that have significant associations 
between gene expression and age relative to the set of all protein-coding genes (blue) or the 
set of age-associated neurodegeneration genes (orange). Error bars indicate 95% binomial 
confidence intervals of the estimated proportion of genes with a significant association with 
age. Asterisk indicates tissues with an FDR-adjusted one-tailed hypergeometric test p-value less 
than 0.01. E) Proportion of protein-coding genes (blue) and age-associated neurodegeneration 
genes (orange) that are differentially expressed between Alzheimer’s disease (AD) and control 
in excitatory neurons in single-nucleus RNA-seq. Error bars indicate 95% binomial confidence 
intervals. 
 

Drosophila gene human gene function 
Adf1   
Adh HPGD  
AlCR2 SSTR2 Somatostatin receptor type 2 
alien COPS2 COP9 signalosome complex subunit 2 
AP-1gamma AP1G1 AP-1 complex subunit gamma-1 
AP-50 AP2M1 Clathrin coat assembly protein AP50 
Apc APC Adenomatous polyposis coli protein 
Aph-4 ALPP Alkaline phosphatase 
aPKC PRKCI Atypical protein kinase C-lambda/iota 
Appl APP Amyloid precursor protein 
arm CTNNB1 Beta-catenin 
Arp8 ACTR8 actin binding 
Arpc3A ARPC3 actin binding 
Atg18 WIPI2 WD repeat domain phosphoinositide-interacting 

protein 2 
Atg8a GABARAP LC3, autophagy 
Atx-1 ATXN1  
barr NCAPH non-SMC condensin I complex 
bel DDX3X ATP-dependent RNA helicase DDX3X 
BicD BICD1 bicaudal D homolog 1 
bif  actin binding 
burs  neuropeptide, not conserved 
Cad99C PCDH15 Protocadherin-15 
CAP-D2 NCAPD2 Condensin complex subunit 1 
cdi TESK2  
cdm IPO13 Karyopherin-13 
CG10200   
CG10738 NPR1  
CG10864 KCNK18 K channel 
CG11105 NKD1 naked cuticle homolog 1 
CG11198 ACACA acetyl-Coenzyme A carboxylase  
CG11723   
CG12455 CACNA2D3 calcium channel, voltage-dependent, alpha 2/delta 

subunit 
CG13253   
CG13779 SHFM1 protease 
CG1440 BLMH bleomycin hydrolase 
CG14419   
CG15021   
CG15177 EFCAB1  
CG15658   
CG1908   
CG2116  transcription factor, not conserved 
CG30020  transcription factor 
CG30203 SPON1 protease inhibitor 
CG31105  sodium trnasporter 
CG33213  transcription factor 
CG33231 SVIL gelsolin-like, actin binding 
CG33673   
CG33967 KIBRA WW domain-containing protein 1 
CG34402   
CG34422 ARID4A Retinoblastoma-binding protein 1 
CG42260 CNGA2 cyclic nucleotide activated channel 
CG42534   
CG42573   
CG4596 TMEM169  
CG6044   
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CG6498 MAST1 Microtubule-associated serine/threonine-protein 
kinase 1 

CG7023 USP12  
CG7526 LTBP1 TGF-beta1-BP-1 
CG7841 C16orf14  
CG8245 TMEM53 Transmembrane protein 53 
CG9086 UBR2 E3 ubiquitin-protein ligase UBR2 
CG9934 UBE4B Ubiquitin conjugation factor E4 B 
Cha CHAT  
CheB38a   
Chmp1 Chmp1b Chmp1b 
chn  transcription factor, not conserved 
CkIalpha CSNK1A1  
CkIIalpha CSNK2A1  
CkIIbeta CSNK2B  
Clc CLTB Clathrin light chain B 
Cont CNTN6 contactin 6 
CoRest RCOR2 REST corepressor 2 
CG5037 COX10 cytochrome-c oxidase 
crb CRB1 Crumbs homolog 1 
crm CRAMP1L chromatin regulation 
csw PTPN11 protein tyrosine phosphatase 
ct CUX1 Protein CASP/transcription factor 
cwo  BHLHE41 Class E basic helix-loop-helix protein 41 
dco CSNK1E Casein kinase I-epsilon 
Dl DLL1 Delta-like protein 1 
dm MYC Myc 
dock NCK1 NCK adaptor protein 1 
ear MLLT1 Protein ENL  
Eb1 MAPRE1 Microtubule-associated protein RP/EB family member 1 
Egfr ERBB3  
Eip75B NR1D1 nuclear receptor 
endoB SH3GLB2 Endophilin-B2 
epsilonCOP COPE  
exo84 EXOC8 exocyst complex component 8 
ey PAX6  
eya EYA1 Eyes absent homolog 1 
fliI FLII flightless-1 homolog 
fng RFNG Beta-1,3-N-acetylglucosaminyltransferase 
fu STK36 Serine/threonine-protein kinase 36 
fz FZD1 Frizzled-1 
Gadd45 GADD45G  
garz GBF1 BFA-resistant GEF 1 
Gbeta76C GNB3  
Gef26 RAPGEF2  
gish CSNK1G3 Casein kinase I isoform gamma-3 
gl  transcription factor 
GluRIIB GRIK4  
gsb-n PAX3  
Hem NCKAP1 Nck-associated protein 1 
hep MAP2K7 MAP kinase 
hh DHH Desert hedgehog protein 
hippo STK3  
hiw MYCBP2 E3 ubiquitin-protein ligase MYCBP2 
HLH4C LYL1 Lymphoblastic leukemia-derived sequence 1 
HLHm3 HES6  
HLHMgamma HES2 Transcription factor HES-2 
Hnf4 HNF4A  
HP1c CPX5 HP1 
Hrb98DE HNRNPA2B1 Heterogeneous nuclear ribonucleoprotein  
Hsf HSF1 Hsf 
inx2  gap junction 
IP3K1 ITPKA  
klar   
Lam LMNB1 Lamin-B1 
lbk LRIG3 LRR/Ig 
Lim3 LHX3  
lin19 CUL1  
Lis-1 PAFAH1B1 Lissencephaly-1 
Lkr TACR3 Neuropeptide Y receptor related 
Lmpt FHL2  
lz RUNX3  
mago MAGOHB RNA binding 
mbl MBNL1 RNA binding 
mib1 MIB1 E3 ubiquitin-protein ligase MIB1 
Mlc2 MLY2  
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mol DUOXA1 Dual oxidase maturation factor 1 
msn MAP4K4 JNK pathway 
msps CKAP5  
MstProx TLR7  
Mtch MTCH2 Mitochondrial carrier homolog 2 
mtTFB2 TFB2M  
mxc NPAT activates histone transcription during cell cycle 
N NOTCH1  
NaCP60E SCN8A  
net ATOH8 transcription factor, atonal related 
neur NEURL1B E3 ubiquitin-protein ligase NEURL3 
ninaE OPN4  
Nplp3   
nuf RAB11FIP4 Rab11 family-interacting protein 4 
nvy CBFA2T3  
Obp44a   
okr RAD54L RAD54-like 
Or98b   
osk   
Pis CDIPT Phosphatidylinositol synthase 
pncr002:3R   
Porin2 VDAC3  
Pp4-19C PPP4C Serine/threonine-protein phosphatase 4 
ppk21 ASIC3  
Psn PSEN1  
ptc PTCH1  
Rab9 RAB9B  
Rala RALA Ras-related protein Ral-A 
Ras85D HRAS HRas 
rdgB PITPNM2  
RhoGEF2 ARHGEF12  
RhoGEF3 SPATA13  
ro GBX2 transcription factors 
rok ROCK1 Rho-associated protein kinase 1 
Rph RPH3A Rabphilin-3A 
rpk ASIC2 Na channel 
Rya-r44F RYR2 Ryanodine receptor 2 
sals SCAF1 actin binding 
santa-maria CD36 scavenger receptor 
scrib LRRC1  
sec6 EXOC3  
sev ROS1  
Sfmbt MBTD1 MBT domain-containing protein 1 
shg CDH20 cadherin 
snRNP-U1 SNRPC  
Sod SOD1  
spi TRADD  
Stam STAM  
Stat92E STAT5B  
sty SPRY3 EGFR signaling 
Syt1 SYT1  
Syt14 SYT14  
Syt4 SYT4  
Tango14 NUS1 Nogo-B receptor Precursor  
Tao-1 TAOK1 Serine/threonine-protein kinase TAO1 
Tim8 TIMM8B  
Tm2 TPM3 Tropomyosin alpha-3 chain 
TrpA1 TRPA1  
trr MLL3 Histone-lysine N-methyltransferase MLL3 
usnp SNAP29 Synaptosomal-associated protein 29 
vap RASA1 Ras GTPase-activating protein 1 
Vap-33-1 VAPB VAMP-B 
Vps36 VPS36  
Vps37A VPS37A ESCRT 
WASp WASL N-WASP 
wdb PPP2R5E PP2A, B subunit 
woc ZMYM4 zinc finger, MYM-type 4 
wtrw TRPV1 calcium channel 

Table 1. Hits from the age-associated neurodegeneration screen: List of Drosophila genes and 
human orthologs that were hits from the screen for age-associated neurodegeneration.  
 
We wanted to know if these screen hits were associated with human aging. We analyzed RNA-
seq data from 2642 human post-mortem brain tissues from the Genotype-Tissue Expression 
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(GTEx) project and found that the mean expression of the screen hits in human brains was 
negatively associated with chronological age (Figure 2B, right). There was a stronger negative 
association between average gene expression and age for the neurodegeneration screen hits 
than the association between average expression of all protein-coding genes and age (Figure 
2B, left). We subsequently ranked all genes by the regression coefficients measuring the 
relationship between gene expression and age. We performed Gene Set Enrichment Analysis on 
this ranked list to identify which pathways had significant changes in gene expression with 
respect to age. Our analysis showed a negative association between the expression of screen 
hits and age (Figure 2C, Benjamini-Hochberg FDR-adjusted p-value<0.1). To assess the 
robustness of our results, we performed permutation tests by randomly shuffling the patient 
ages. Not a single permutation out of 10,000 iterations had a more significant association 
between age and gene expression of the screen hits, suggesting that this result is specific to 
chronological age in humans.  
 
Next, we examined expression of screen hits with respect to age across regions of the human 
brain (Figure 2D). Tissues enriched in age-associated changes of the screen hits include 
Alzheimer’s disease-vulnerable regions such as the hippocampus and the frontal cortex (Figure 
2D, hypergeometric test Benjamini-Hochberg FDR-adjusted p-value<0.1). In many cases, the 
same genes showed significant age-associated changes in expression in several tissues (Figure 
S1, mixed effect model Benjamini-Hochberg FDR-adjusted p-value<0.1, absolute value of 
regression coefficient>0.1). We observed that the Alzheimer’s disease-vulnerable tissues 
clustered together and with the Parkinson’s disease-vulnerable substantia nigra by hierarchical 
clustering (Figure S1). These human results suggest that the hits from our screen are associated 
with human aging in multiple regions of the brain, some of which are affected by common 
neurodegenerative diseases. 
 
To examine cellular specificity, we analyzed the single nuclear RNA-seq data of excitatory 
neurons from a previously published single-nucleus RNA-seq study46. We observed that the 
average expression of screen hits was lower in Alzheimer’s disease-associated excitatory 
neurons than in excitatory neurons from healthy controls (Figure S2). We also found that the 
genes differentially expressed in Alzheimer’s disease-associated excitatory neurons in this 
dataset were enriched for neurodegeneration screen hits (Figure 2E, Benjamini-Hochberg FDR-
adjusted p-value<0.1). These results show that the gene expression of the screen hits declines 
with respect to age in human brain tissues and human Alzheimer’s disease excitatory neurons, 
suggesting their importance in human disease and aging.  
 
Human genetic risk factors enriched in disease-associated neurons complement results from the 
neurodegeneration screen  
 
We wanted to examine how the hits from our neuron-specific RNAi screen in Drosophila relate 
to genetic causes of Alzheimer’s disease in human neurons. To that end, we used laser-capture 
microdissection to obtain pyramidal neurons from the human temporal cortex of 75 individuals 
(Figure 3A). We then performed RNA-seq and eQTL analysis on these samples (Figure 3A, TCPY 
in Table S2). We were interested in pyramidal neurons of the temporal cortex because this 
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neuronal subtype is vulnerable to neurofibrillary tangle-mediated neurotoxicity in Alzheimer’s 
disease29. We first performed an eQTL meta-analysis across 7 different bulk RNA-seq and 
genomics studies in post-mortem brains (Tables S2, S3, Methods). The results from this meta-
analysis were then forwarded to the eQTL analysis in the newly collected temporal cortex 
pyramidal neuron RNA-seq data to see which brain eQTLs were enriched in Alzheimer’s disease-
vulnerable neurons. We found cis-regulatory effects in the pyramidal neuron-enriched 
transcriptomes for 12 eGenes (Table 2). The enriched genes included C4A, EPHX2, PRSS36, and 
multiple MHC class II genes (Table 2). Expression of the eGenes was correlated with several 
known biological processes previously associated with Alzheimer’s disease such as insulin 
signaling, protein folding and lipid metabolism46–58 (Figure S3). We incorporated the eGenes from 
the temporal cortex pyramidal neurons and the meta-analysis in our analysis of the fly screen 
hits. 
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Figure 3. Multi-omic changes in human AD patients and model systems. A) Schematic depicting 
laser-capture microdissection of temporal cortex pyramidal neuron-enriched populations and 
identification of eGenes. Brain cartoon created with Biorender.com. B) The eQTL associated 
with the eGene HLA-DRB1 is highlighted in red and overlaps with DNA binding motifs of MEF2B, 
CUX1 and ATF2 derived from ENCODE ChIP-seq and FIMO-detected motifs. Grey horizontal bars 
indicate ChIP-seq binding regions and the black horizontal bars indicate where the DNA-binding 
motif is located. C) UpSet plots indicate the number of proteomic, phosphoproteomic, and 
metabolomic changes change in the same or different directions when comparing Aβ1-42 

transgenic flies (Amyloid β flies) to controls with those associated with comparing tauR406W 

transgenic flies (tau flies) to controls. The top bar plot indicates how many changes fit into the 
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set depicted by the dots below, while the rightmost bar plot indicates the total number of 
proteins, phosphoproteins or metabolites that are upregulated in tauR406W transgenic flies, 
downregulated in tauR406W transgenic flies, upregulated in Aβ1-42 transgenic flies, or 
downregulated in Aβ1-42 transgenic flies. D) Heat maps depict the log2 fold changes between 
Aβ1-42 transgenic flies or tauR406W transgenic flies with controls for D) proteins or E) 
phosphoproteins that were hits in the age-associated neurodegeneration screen. An asterisk 
indicates whether the comparison was significant at an FDR threshold of 0.1. The columns of all 
heatmaps were clustered by hierarchical clustering. 
 

Chromosome:base 
pair position (hg19) 

Previously 
nominated GWAS 
candidate eGene eQTL Ref/alt allele P 

Fixed effects 
regression 
coefficient 

6:32626139 HLA-DRB1 C4A rs6905975 C:G 1.53E-02 -0.319 
8:27400592 CLU/PTK2B EPHX2 rs66924402 A:C 4.63E-02 0.170 
6:32627485 HLA-DRB1 HLA-DQA1 rs9273432 T:C 3.69E-02 -0.414 
6:32608251 HLA-DRB1 HLA-DQA2 rs28383408 C:G 9.15E-03 0.428 
6:32628030 HLA-DRB1 HLA-DQB1 rs9273471 G:A 2.49E-03 -0.866 
6:32608820 HLA-DRB1 HLA-DQB1-AS1 rs9272670 C:T 3.35E-02 -0.390 
6:32663564 HLA-DRB1 HLA-DQB2 rs5000634 A:G 3.95E-05 0.690 
6:32579035 HLA-DRB1 HLA-DRB1 rs9271209 G:A 6.94E-07 -0.686 
6:32574990 HLA-DRB1 HLA-DRB5 rs9271025 T:C 5.80E-04 -0.791 
16:31154146 KAT8 PRSS36 rs1549299 G:A 3.04E-02 -0.393 
7:100190116 ZCWPW1 PVRIG rs2734895 T:C 2.99E-02 -0.446 
6:47413226 CD2AP RP11-385F7.1 rs6934735 A:T 4.43E-02 -0.333 

Table 2. eQTLs linked to AD GWAS loci: eGenes and variants from an eQTL analysis of 75 
human temporal cortex pyramidal neuron-enriched population. P-value from meta-analysis 
across 1087 human AD patients across 7 previously published studies is also reported. Beta 
coefficient indicates the association between gene expression of the eGene and presence of 
Alzheimer’s disease. Chromosomal coordinates are reported according to the human genome 
reference hg19 and the hypothetical gene is the variant reported in Jansen et al. 2019 for that 
particular locus11. 
 
 
We hypothesized that some temporal cortex pyramidal neuron eQTLs influence eGene 
expression by disrupting transcription factor binding. We used the ENCODE 3 transcription 
factor ChIP-seq data to see which eQTLs overlapped transcription factor peaks and DNA-binding 
motifs (Figure 3B). We found that the eQTL (rs9271209) for HLA-DRB1 overlapped with ChIP-
seq peaks and DNA-binding motifs for the transcription factors MEF2B, CUX1 and ATF2 (Figure 
3B). Patients with the rs9271209 eQTL have reduced expression of HLA-DRB1, suggesting that 
this Alzheimer’s disease-associated effect on gene expression could be mediated through 
inhibition of transcription factor binding (Figure 3B, Table 2).  
 
Proteomics, phosphoproteomics and metabolomics from Drosophila models of tauopathy or 
amyloid β neurotoxicity suggest how neurodegeneration screen hits contribute to disease 
 
We generated proteomic, phosphoproteomic and metabolomic data from the heads of 
established Drosophila models of amyloid β and tau toxicity to find relationships between the 
neurodegeneration screen hits and Alzheimer’s disease toxic proteins43,59 (Figure 1, Tables S4, 
S5, S6). Specifically, we modeled amyloid β pathology using a transgenic fly line expressing the 
human amyloid β1-42 isoform (Aβ1-42 transgenic flies)59. We modeled tau pathology using a well-
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characterized transgenic fly line expressing human MAPT with the neurodegenerative disease-
associated R406W point mutation (tauR406W transgenic flies)43. We used tauR406W transgenic flies 
because these flies display a modest, but detectable degree of neurodegeneration at 10 days of 
age43. We aged control and experimental flies for 10 days and measured proteomics, 
phosphoproteomics and metabolomics.  
 
We were interested in the molecular changes associated with the different pathological toxic 
proteins of Alzheimer’s disease and related disorders. The largest sets of differential proteins, 
phosphoproteins or metabolites were those that were downregulated in tauR406W transgenic 
flies or Aβ1-42 transgenic flies only (Figure 3C, Benjamini-Hochberg FDR-adjusted p-value<0.1). 
Proteins downregulated in both Aβ1-42 transgenic flies and tauR406W transgenic flies were 
enriched for enzymes that metabolize carboxylic acids, amino acids, and lipids (Figure S4, 
Benjamini-Hochberg FDR-adjusted p-value<0.1). Unbiased metabolomics confirmed some of 
the signals we saw in the enriched proteomic pathways (Figure S4, Benjamini-Hochberg FDR-
adjusted p-value<0.1). A C32:1 diacylglyceride (DAG), a C34:1 DAG, and a modified amino acid 
3-methylhistidine were significantly upregulated in Aβ1-42 transgenic flies and tauR406W 

transgenic flies while a C43:0 triacylglyceride and a nicotinamide adenine dinucleotide were 
downregulated in both models (Figure S4). Additionally, we found that proteins that were 
upregulated in Aβ1-42 transgenic flies and tauR406W transgenic flies were enriched for muscle 
development and cell adhesion (Figure S4). 
 
We tested whether the neurodegeneration screen hits were differentially abundant in the 
proteomic and phosphoproteomic data to identify genes that were likely to be associated with 
Aβ- or tau-related pathways (Figures 3D and 3E, Benjamini-Hochberg FDR-adjusted p-
value<0.1). The screen hits that were differentially abundant in the Aβ1-42 transgenic fly 
proteomics were enriched for biological processes pertaining to development and cognition 
(Figure S4H, Benjamini-Hochberg FDR-adjusted p-value<0.1). None of the screen hits were 
differentially phosphorylated in the tauR406W transgenic flies, while there were 11 
phosphopeptides found in neurodegeneration screen hits that were differentially 
phosphorylated in Aβ1-42 transgenic flies (Figure 3E). Among these, the Drosophila proteins 
Appl, gish and Egfr are part of the Gene Ontology term for cognition; Appl and gish were 
significantly upregulated, while Egfr was significantly downregulated (Figure 3D, Benjamini-
Hochberg FDR-adjusted p-value<0.1). Egfr was also significantly downregulated in the tauR406W 

transgenic fly proteomics (Figure 3D, Benjamini-Hochberg FDR-adjusted p-value<0.1). Since Egfr 
knockdown is associated with age-associated neurodegeneration in our forward genetic screen, 
our observation suggests that Egfr and its human ortholog ERBB3 play a role in neuronal death 
and decline in the context of Alzheimer’s disease pathology. 
  
Network integration of AD Omics and novel genetic screening data identifies subnetworks 
representing biological processes underlying neurodegeneration 
 
We performed network integration of our Drosophila neurodegeneration screen hits with 
Alzheimer’s disease multi-omics to determine how the neurodegeneration screen hits 
contribute to human Alzheimer’s disease (Figure 1). We integrated the hits from the 
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neurodegeneration screen with our human eGenes and Drosophila proteomics, 
phosphoproteomics and metabolomics, a previously published genome-scale screen for tau 
mediated neurotoxicity tauR406W flies, previously published human AD proteomics, and 
previously published human lipidomics using the Prize-collecting Steiner Forest algorithm 
(PCSF) to build a protein-protein/protein-metabolite interaction network model of Alzheimer’s 
disease24,34,33 (Figures 1, and 4A, Table S7). The detailed results of this network are visualized in 
an interactive website (Methods, Data and Code availability). Louvain clustering of the network 
revealed subnetworks enriched for biological processes associated with Alzheimer’s disease in 
previous studies, such as insulin signaling, postsynaptic activity, and double-stranded break 
repair50–52,57,58,60–62 (Figure 4A). Subnetworks were also enriched for cell signaling pathways 
such as NOTCH signaling and hedgehog signaling that have not been previously characterized as 
hallmarks of neurodegeneration58 (Figure 4A).  
 

 
Figure 4. Network integration of Alzheimer’s disease multi-omics and novel genetic screening 
data identifies subnetworks characterized by hallmarks of neurodegeneration and processes 
previously not implicated in Alzheimer’s disease. A) Network integration of human and 
Drosophila multi-omics for Alzheimer’s Disease highlights subnetworks enriched for proteins 
belonging to known gene ontologies. Each subnetwork is represented by a pie chart, which 
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indicates the proportion of nodes represented by a given data type. Edges indicate if at least 
one node in one subnetwork interacts with a node in the other subnetwork. Each pie chart is 
labeled by the enriched biological process by hypergeometric test (FDR-adjusted p-value less 
than 0.1). B) A subnetwork enriched for postsynaptic activity. Nodes belonging to the 
annotated process are highlighted in yellow. Also in this subnetwork are metabolites associated 
with postsynaptic activity such as acetylcholine.  C) Phosphorylated tau, APOE, and APP-
processing proteins interact with each other and are in a subnetwork enriched for NOTCH 
signaling-associated genes. Members of the NOTCH signaling pathway are highlighted in yellow.  
 
 
We inspected the nodes of our network communities to determine whether the subnetworks 
represented expected or new relationships in the context of Alzheimer’s disease. The 
subnetwork enriched for postsynaptic activity showed expected protein-metabolite and 
protein-protein interactions in choline metabolism63,64 (Figure 4B). We observed interactions 
involving the metabolite acetylcholine with choline O-acetyl transferase (CHAT) and choline 
transporter (SLC22A1) (Figure 4B). Additionally, we saw interactions between choline, CHAT 
and choline transporters SLC22A1 and SLC22A2 (Figure 4B). This subnetwork illustrates the 
ability of our network analysis to recover established biological processes in Alzheimer’s 
disease. 
 
A novel role of NOTCH signaling emerged in one subnetwork that linking members of the 
pathway with phosphorylated tau, members of the gamma secretase complex, the APOE 
protein (Figure 4C). Each of these proteins has been associated with hallmarks of Alzheimer’s 
disease65–69. However, the link between NOTCH signaling and amyloid β processing, 
neurofibrillary tangle formation or APOE variants has not previously been reported. These 
results suggest roles for NOTCH signaling proteins in Alzheimer’s disease-mediated pathology. 
 
Network integration of Alzheimer’s disease Omics and genetic hits reveals targets that regulate 
tau-mediated neurotoxicity  

We decided to experimentally test implications of a subnetwork linking a screen hit 
(HNRNPA2B1) and an eGene (MEPCE) with Drosophila modifiers of tau toxicity24 (Figure 5A). 
We knocked down the fly orthologs of HNRNPA2B1 or MEPCE in a Drosophila model of 
tauopathy with two independent RNAi lines per gene (Figure 5B, 5C). To enhance relevance to 
Alzheimer’s disease in which wild type human tau is deposited, we used transgenic flies 
expressing wild-type human tau (tauWT) in the fly retina43. We found that knockdown of fly 
orthologs of either HNRNPA2B1 or MEPCE enhanced tau retinal toxicity, as quantified using a 
previously described semi-quantitative rating scale70 (Figure 5B, 5C, one-way ANOVA with 
Tukey’s post-hoc correction p<0.05). The fly data are consistent with the human eQTL results, 
which show that MEPCE expression is reduced in Alzheimer’s disease patients with the eQTL 
rs7798226 (Table S3) and suggest a mechanism for effects of the GWAS variant in Alzheimer’s 
disease.  
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Figure 5. Network integration of AD mulit-omics and novel genetic screening data reveals 
biological processes associated with tau-mediated neurotoxicity. A) The neurodegeneration 
modifier HNRNPA2B1 and the eGene MEPCE interact with each other and have protein-protein 
interactions with modifiers of tau neurotoxicity. The interaction between HNRNPA2B1 and 
MEPCE is found in the subnetwork in figure 4 that is enriched for insulin signaling. B) Knock-
down of the Drosophila orthologs of HNRNPA2B1 (Hrb98DE) and MEPCE (CG1293) shows 
enhancement of the rough eye phenotype in flies expressing wild type human tau. Control is 
GMR-GAL4/+. n=8. Flies are one day old. Two independent RNAi constructs were used to knock 
down each gene. C) Quantification of rough eye severity. Statistical significance was measured 
using a one-way ANOVA with Tukey’s post-hoc correction and is indicated with an asterisk. 
Error bars are the standard error of the mean. D) Volcano plot depicting differential expression 
analysis by DeSeq2 of bulk RNA-seq after HNRNPA2B1 CRISPRi knockdown in NGN2 neural 
progenitor cells (Benjamini-Hochberg FDR<0.1, absolute log2 fold change > 1). Each dot 
represents a single gene. The horizontal dashed line indicates the negative log10 FDR-adjusted 
p-value significance cut-off of 0.1 and the vertical dashed lines indicate the log2 fold change cut-
offs of 1 and -1. Red dots indicate genes that are significantly upregulated and blue dots 
indicate genes that are significantly downregulated. E) Dot plot of the enriched pathways 
identified by gene set enrichment analysis of the RNA-seq data. The 10 pathways with the 
highest negative log10 FDR-adjusted p-value are plotted. The size of the dot indicates the 
proportion of genes that are part of the enriched pathway. The color of the dot represents the 
normalized enrichment score (NES), where blue indicates downregulation and red indicates 
upregulation. The x-position of the dot indicates the negative log10 FDR-adjusted p-value and 
the y-position is the corresponding, enriched pathway. 
 
 
To understand how HNRNPA2B1 contributes to age-associated neurodegeneration in human 
systems, we performed RNA-seq after CRISPRi knockdown of HNRNPA2B1 in human iPSC-
derived, NGN2 neural progenitor cells. Our knockdown achieved a partial reduction of 
HNRNPA2B1 gene relative to control (Figure S5A, log2(Fold Change)=-0.60, Benjamini-Hochberg 
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FDR-adjusted p-value<0.1). Differential expression after HNRNPA2B1 knockdown showed that 
the most significantly downregulated genes involved those involved in neuronal development 
or synaptic activity such as SCG2, FABP7, TENM1, and SIX3 (Figure 5D; Table S8, log2(Fold 
Change)<-1, Benjamini-Hochberg FDR-adjusted p-value<0.1). Gene Set Enrichment Analysis 
showed that the top enriched pathways include downregulation of the electron transport chain 
and of genes involved in postsynaptic events (Figure 5E; Table S9, Benjamini-Hochberg FDR-
adjusted p-value<0.1). Reduced postsynaptic activity and electron transport chain activity have 
been previously associated with Alzheimer’s disease and tau-mediated neurotoxicity57,71–76. 
These changes suggest potential roles for how HNRNPA2B1 contributes to tau-mediated 
neurotoxicity and neurodegeneration in human aging. 
 
Network analysis implicates neurodegeneration genes as regulators of the Alzheimer’s disease-
associated biological process of DNA damage repair 
 
In addition to the network connections between NOTCH signaling proteins and hallmark 
proteins of Alzheimer’s disease (Figure 4C), we also noted many links between NOTCH signaling 
proteins were associated with the Alzheimer’s disease-associated process of DNA damage, a 
process also associated with Alzheimer’s disease60–62,77–79(Figure 6A). Some of these interacting 
partners were shared with another neurodegeneration screen hit, CSNK2A1 (Figure 6A). All the 
interacting DNA damage repair-associated nodes that interact with CSNK2A1 and NOTCH1 
except for H2AFX and COPS2 regulate double-stranded break repair, suggesting that CSNK2A1 
and NOTCH1 knockdown may disrupt this process.  
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Figure 6. Network analysis implicates neurodegeneration genes as regulators of the AD-
associated biological process of DNA damage repair. A) NOTCH1 and CSNK2A1 interact with AD-
specific omics that are involved in DNA damage repair processes. Nodes involved in DNA 
damage are highlighted in yellow. B) Immunofluorescence shows that knockdown of Drosophila 
orthologs for NOTCH1 and CSNK2A1 lead to increased DNA damage in the fly. DNA damage is 
assayed by immunostaining for phosphorylated H2Av (pH2Ax, red). Brain cortex neurons are 
identified by elav immunostaining (green). Nuclei are identified with DAPI immunostaining 
(blue). n=6. Flies are 10 days old. Controls are elav-GAL4/+; UAS-Dcr-2/+ (CkIIa and CkIIb 
knockdowns) or elav-GAL4/+ (N knockdown). The scale bar represents 5 µm.  C) Percent of 
nuclei containing γH2AX foci in control flies, Drosophila knockdowns of orthologs of CSNK2A1 
(CKIIa and CKIIb) and NOTCH1 (N). Asterisks indicate significance of a one-way binomial test 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2024. ; https://doi.org/10.1101/2024.03.17.585262doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.17.585262
http://creativecommons.org/licenses/by-nd/4.0/


 19 

after Benjamini-Hochberg FDR correction p<0.01. Error bars are 95% binomial confidence 
intervals. n=6. Flies are 10 days old. Controls are elav-GAL4/+; UAS-Dcr-2/+ (CKII knockdown) or 
elav-GAL4/+ (N knockdown). D) Inhibition of Casein Kinase 2 (CK2) by CX-4945, and the 
inhibition of NOTCH cleavage by Compound E enhances DNA damage in human iPSC-derived 
neural progenitor cells measured by the COMET assay. E) Quantification of the tail moments 
from panel A in arbitrary units. Asterisks indicate p<0.01 by ANOVA with Tukey’s Post-Hoc 
correction. Error bars indicate standard error of the mean. F) Bar plots showing the normalized 
enrichment scores (NES) of selected, significantly enriched REACTOME pathways after CSNK2A1 
and NOTCH1 knockdown in NGN2 neural progenitor cells. Red and blue bars indicate positive 
and negative NES, respectively, reflecting upregulation or downregulation of pathways. 
Pathways were selected to show shared changes in pathways related to cell cycle, DNA repair 
and postsynaptic activity. G) Representative immunofluorescence images show inappropriate 
cell cycle re-entry in postmitotic neurons as indicated by PCNA expression (red, arrow) 
following CK2 knockdown. The neuronal marker elav identifies neurons (arrows). PCNA, the 
neuronal promoter elav and DAPI are represented in red, green, and blue respectively. 
 
 
Next, we used RNAi to knock down Drosophila orthologs of NOTCH1 and CSNK2A1 in a pan-
neuronal pattern in aging adult flies to assess the relationship between these 
neurodegeneration screen hits and DNA damage (Figures 6B and 6C). We used two RNAi 
molecules targeting the NOTCH1 ortholog N (Figures 6B and 6C). For CSNK2A1 we used one 
RNAi to target the CkIIa subunit of the casein kinase holoenzyme and another RNAi to target 
the CkIIb subunit of the casein kinase holoenzyme because many of the available CkII RNAi lines 
were lethal when used for pan-neuronal knockdown (Figures 6B and 6C). We observed that 
knockdown of the Drosophila orthologs for NOTCH1 and CSNK2A1 led to an increase in DNA 
damage, as measured by γH2AX foci (Figures 6B and 6C, One-Way Binomial Test p<0.01).  
 
We performed a COMET assay in wild-type human neuronal progenitor cells treated with 
inhibitors for the Notch signaling pathway or the casein kinase holoenzyme (CK2) to test if 
reduced CSNK2A1 or NOTCH1 function leads to increased DNA damage in human cells (Figures 
6D and 6E). We observed that treatment with the Notch inhibitor Compound E and the CK2 
inhibitor CX-4945 led to an increase in the tail moment of the neural progenitor cells compared 
to DMSO treatment, showing an increase in DNA damage after inhibitor treatment (Figure 6D 
and 6E, ANOVA with Tukey’s post-hoc correction p-value<0.01, Methods). These results show 
how the screen hits NOTCH1 and CSNK2A1 regulate DNA damage in human and Drosophila 
neurons, as inferred by our computational network analysis.  
 
Transcriptomic analysis suggests how CSNK2A1 and NOTCH1 knockdown could lead to age-
associated neurodegeneration through distinct DNA-damaging pathways 

We performed RNA-seq after CRISPRi knockdown of CSNK2A1 or NOTCH1 in NGN2-expressing 
neural progenitor cells to broadly understand how human cells respond to reduced CSNK2A1 
and NOTCH1 expression (Figure 6). Expression of both target genes dropped significantly in the 
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respective knockdowns (CSNK2A1: log2(fold change)<-1, FDR-adjusted p-value<0.1, Figure S5B; 
NOTCH1: log2(fold change)=-0.92, FDR-adjusted p-value<0.1, Figure S5C), with good clustering 
of replicates in PCA analysis (Figure S5D). We found 145 significantly upregulated and 282 
significantly downregulated genes upon knocking down CSNK2A1, while we found 15 
significantly upregulated and 5 significantly downregulated genes after knocking down NOTCH1 
(Figure S6A and S6B; Table S8, absolute value of log2(fold change)>1, FDR-adjusted p-
value<0.1). The disparity in the number of differentially expressed genes could be explained by 
how the knockdown efficiency of NOTCH1 was less than that of CSNK2A1 (Figure S5A and S5B).  

Gene Set Enrichment Analysis of RNA-seq data after CRISPRi knockdown of CSNK2A1 and 
NOTCH1 in NGN2 neural progenitor cells suggested that both genes regulated DNA damage 
repair pathways. However, we were surprised to find that these pathways were regulated in 
different directions for each knockdown (Figure 6F; Table S7). This analysis showed that cell 
cycle and DNA damage repair pathways were upregulated upon CSNK2A1 knockdown while 
these same pathways were downregulated upon NOTCH1 knockdown (Figure 6F). To determine 
if CSNK2A1 knockdown led to inappropriate activation of cell cycle regulators in postmitotic 
neurons, we knocked down a Drosophila ortholog of CSNK2A1 (CkIIa) and assessed changes in 
proliferating cell nuclear antigen (PCNA), a robust marker of cell cycle activation in Drosophila 
and mammalian systems80–82 (Figures 6F and 6G). We found an increase in PCNA following CKIIa 
knockdown by immunofluorescence, supporting our hypothesis that knockdown of CKIIa 
promotes neuronal activation of cell cycle regulators (Figure 6G). As expected, there was no 
PCNA activation in control post-mitotic neurons (Figure 6G). Activation of cell cycle proteins in 
mature neurons is associated with Alzheimer’s disease, cell death, and double strand break-
bearing neurons80,83–86. These results suggest that CSNK2A1 knockdown could lead to 
neurodegeneration through neuronal cell cycle re-entry and the accumulation of DNA damage-
bearing neurons.  

Discussion 

Starting from an unbiased genetic screen for modifiers of aging-related neurodegeneration, we 
computationally and experimentally identified several of the pathways downstream of the 
screen hits. One highlight of our work is the demonstration that CSNK2A1 and NOTCH1 regulate 
age-associated neurodegeneration through DNA damage response pathways (Figures 5, 6). Our 
work suggests a new direction in understanding DNA damage in aging and disease and finding 
ways to modulate it. Previous studies showed that that HDAC inhibitors reduced DNA damage 
burden and neuronal cell death60,77–79,87–89. Other studies have proposed neuroprotective 
compounds that inhibit cell cycle re-entry in post-mitotic neurons like we observed upon 
CSNK2A1 knockdown90.  

Future work could explore cause-and-effect relationships between DNA damage and activation 
of cell cycle genes in the context of CSNK2A1 knockdown. Currently, the causal relationship 
between cell cycle regulators and DNA damage in neurodegeneration is unclear91. One 
hypothesis supported by our results is that CSNK2A1 knockdown leads to neurodegeneration by 
activating genes that promote DNA replication and entry into the G1 phase of the cell cycle, 
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amplifying existing DNA damage in the neuron (Figures 6D and 6E). Alternatively, our work also 
suggests that excess accumulation of DNA damage upon CSNK2A1 knockdown could lead to 
inappropriate activation of cell cycle regulators and DNA repair proteins to fix DNA damage 
(Figures 6D and 6E). Understanding the causes or consequences of DNA damage can help 
inform neuroprotective approaches for limiting age-associated DNA damage. 

In another advance from this study, we suggest how change in MEPCE expression contributes 
to neuronal death in Alzheimer’s disease (Figure 5). Our eQTL analysis showed that patients 
that inherited the rs7798226 eQTL had reduced MEPCE expression and our experimental data 
shows that reduced expression of MEPCE enhances tau toxicity in the fly (Table S2, Figures 5B, 
5C). Future studies could investigate whether the downregulation of MEPCE in patients with the 
rs7798226 eQTL is strong enough to induce tau-mediated neurotoxicity in humans. This 
example illustrates how multi-omic network integration identified pathways potentially 
downstream of a disease-causing variant. Our network analysis work identified an eQTL that 
may play a role in Alzheimer’s disease-mediated neurodegeneration, which is an inference that 
could not be made from fine-mapping analysis alone.  

We acknowledge that some of our network findings differ from expectations in the literature. 
We found from our network analysis and subsequent experimentation in human tau transgenic 
flies that knockdown of HNRNPA2B1 led to increased age-associated neurodegeneration and 
increased tau-mediated neurotoxicity (Figure 5). However, HNRNPA2B1 was upregulated in 
Alzheimer’s disease excitatory neurons in the largest published single nucleus RNA-seq study in 
human Alzheimer’s disease79. Another study showed that HNRNPA2B1 knockdown in iPSC-
derived neurons and mouse hippocampal neurons was protective against oligomeric tau-
mediated neurotoxicity92. In the context of these studies, our results suggest that the 
HNRNPA2B1 is under tight control; significant changes in HNRNPA2B1 homeostasis may have 
consequences on tauopathy. Additionally, the effect of HNRNPA2B1 on tau-mediated 
neurotoxicity relative to the overexpression of tauWT could be different than that associated 
with the presence of oligomeric tau. The effect of HNRNPA2B1 knockdown could also be 
different in the fly retina from its effect in the mouse hippocampus.  

Our work illustrates an analytical framework that can be applied to other neurodegenerative 
diseases. The genetic screen for age-associated neurodegeneration was intentionally broad, 
with genes knocked out in a pan-neuronal pattern to maximize recovery of neurodegeneration 
hits. We observed that a significant proportion of age-associated genes in multiple human brain 
tissues are enriched for neurodegeneration screen hits (Figure 2D). Given the diversity of brain 
regions affected in aging-related disorders, some of the screen hits are likely associated with 
diseases other than AD, and some may influence more than one disease. Pathways that 
influence multiple diseases would be particularly important for therapeutic strategies to 
prevent aging of the brain. Previous work has used protein-protein interactions as a lens for 
looking at genes that underlie protein aggregation in multiple neurodegenerative diseases93. 
The framework presented in this paper could be used to combine the screen hits with 
appropriate disease-specific data to search for disease-universal or disease-specific regulators 
across neurodegenerative diseases. We also note that while our genetic screen data was 
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neuron-specific, future work could use network analysis approaches presented in this or other 
studies to screens in other non-neuronal cell types13,94.   

Methods 
 
Data and Code availability 
 
RNA-seq data from neural progenitor cells and temporal cortex pyramidal neurons will be 
deposited into the Gene Expression Omnibus (GEO) by the time of manuscript publication. The 
full network in Figure 4 is available and explorable at https://fraenkel-
lab.github.io/neurodegeneration-network/. 
 
Code can be found at https://github.com/fraenkel-lab/neurodegeneration-network and is 
publicly available as of the date of publication.  
 
Additional data needed to reanalyze the data reported in this paper is available from the lead 
contact upon request.  
 
Drosophila stocks and Genetics 
 
All fly crosses and aging were performed at 25°C. Equal numbers of adult male and female flies 
were analyzed. For the genome-scale screen, brain histology was examined at 30 days post-
eclosion. Flies were aged to 10 days post-eclosion for brain proteomics, metabolomics, and 
histology. The UAS-tau wild type, UAS-tauR406W and UAS-Aβ1-42 transgenic flies been described 
previously43,59. Expression of human tau or amyloid β was directed to neurons using the pan-
neuronal driver elav-GAL4 or to the retina using the GMR-GAL4 driver. Dcr-2 was expressed in 
some animals to enhance RNAi-mediated gene knockdown. Transgenic RNAi lines for genome-
scale gene knockdown were obtained from the Bloomington Drosophila Stock Center and from 
the Vienna Drosophila Resource Center. The following stocks were also obtained from the 
Bloomington Drosophila Stock Center: elav-GAL4, GMR-GAL4, UAS-CG1239 (MEPCE) RNAi 
HMC02896, UAS-CG1239 (MEPCE) RNAi HMC04088, UAS-Hrb98DE (HNRNPA2B1) RNAi 
HMC00342, UAS-Hrb98DE (HNRNPA2B1) RNAi JF01249, UAS-CkIIa RNAi JF01436, UAS-CkIIβ RNAi 
JF01195, UAS-N RNAi 1 (GLV21004), UAS-N RNAi 2 (GL0092), UAS-Dcr-2. 
 
Histology, immunostaining, and imaging  
 
For examination of the adult fly brain, animals were fixed in formalin and embedded in paraffin. 
4 µm serial frontal sections were prepared through the entire brain and placed on a single glass 
slide. Hematoxylin and eosin staining was performed on paraffin sections to assess brain 
integrity. For immunostaining of paraffin sections, slides were processed through xylene, 
ethanol, and into water. Antigen retrieval by boiling in sodium citrate, pH 6.0, was performed 
prior to blocking. Blocking was performed in PBS containing 0.3% Triton X-100 and 2% milk for 1 
hour and followed by incubation with appropriate primary antibodies overnight. Primary 
antibodies to the following proteins were used at the indicated concentrations: pH2Av (Rockland, 
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600-401-914, 1:100), elav (Developmental Studies Hybridoma Bank, 9F8A9 at 1:20 and 7E8A10 
at 1:5) and PCNA (DAKO, MO879, 1:500). For immunofluorescence studies, Alexa 555- and Alexa 
488-conjugated secondary antibodies (Invitrogen) were used at 1:200. For quantification of 
pH2Av, a region of interest comprised of approximately 100 Kenyon neurons was identified in 
well-oriented sections of the mushroom body and the number of neurons containing one or more 
than one immuno-positive foci was determined. Images were taken on Zeiss LSM800 confocal 
microscope (Carl Zeiss, AG), and quantification was performed using Image-J software. For all 
histological analyses, at least 6 brains were analyzed per genotype and time point. The sample 
size (n), mean and SEM are given in the figure legends. Representative images were obtained 
using a Zeiss LSM 800 confocal microscope. All acquisition parameters were kept the same for all 
experimental groups. 
 
Quantitative Mass Spectrometry sample preparation for proteomics 
 
Three control (genotype: elav-GAL4/+), three tau (genotype: elav-GAL4/+; UAS-tauR406W/+), and 
three Aβ1-42 (genotype: elav-GAL4/+; UAS-Aβ1-42) samples of approximately 350 fly heads each 
were used for proteomic analysis. Samples were prepared as previously described95 with the 
following modifications. All solutions are reported as final concentrations. Drosophila heads were 
lysed by sonication and passaged through a 21-gauge needle in 8 M urea, 200 mM EPPS, pH 8.0, 
with protease and phosphatase inhibitors (Roche). Protein concentration was determined with a 
micro-BCA assay (Pierce). Proteins were reduced with 5 mM TCEP at room temperature for 15 
minutes and alkylated with 15 mM Iodoacetamide at room temperature for one hour in the dark. 
The alkylation reaction was quenched with dithiothreitol. Proteins were precipitated using the 
methanol/chloroform method. In brief, four volumes of methanol, one volume of chloroform, 
and three volumes of water were added to the lysate, which was then vortexed and centrifuged 
to separate the chloroform phase from the aqueous phase. The precipitated protein was washed 
with one volume of ice-cold methanol. The protein pellet was allowed to air dry. Precipitated 
protein was resuspended in 200 mM EPPS, pH 8. Proteins were digested with LysC (1:50; 
enzyme:protein) overnight at 25oC followed by trypsin (1:100; enzyme:protein) for 6 hours at 37 
oC. Peptide quantification was performed using the micro-BCA assay (Pierce). Equal amounts of 
peptide from each sample was labeled with tandem mass tag (TMT10) reagents (1:4; 
peptide:TMT label) (Pierce). The 10-plex labeling reactions were performed for 2 hours at 25oC. 
Modification of tyrosine residues with TMT was reversed by the addition of 5% hydroxyl amine 
for 15 minutes at 25oC. The reaction was quenched with 0.5% trifluoroacetic acid and samples 
were combined at a 1:1:1:1:1:1:1:1:1:1:1 ratio. Combined samples were desalted and offline 
fractionated into 24 fractions as previously described. 
 
Liquid chromatography-MS3 spectrometry (LC-MS/MS)  
 
12 of the 24 peptide fractions from the basic reverse phase step (every other fraction) were 
analyzed with an LC-MS3 data collection strategy on an Orbitrap Lumos mass spectrometer 
(Thermo Fisher Scientific) equipped with a Proxeon Easy nLC 1000 for online sample handling and 
peptide separations96. Approximately 5 µg of peptide resuspended in 5% formic acid + 5% 
acetonitrile was loaded onto a 100 µm inner diameter fused-silica micro capillary with a needle 
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tip pulled to an internal diameter less than 5 µm. The column was packed in-house to a length of 
35 cm with a C18 reverse phase resin (GP118 resin 1.8 μm, 120 Å, Sepax Technologies). The 
peptides were separated using a 180 min linear gradient from 3% to 25% buffer B (100% 
acetonitrile + 0.125% formic acid) equilibrated with buffer A (3% acetonitrile + 0.125% formic 
acid) at a flow rate of 600 nL/min across the column. The scan sequence began with an MS1 
spectrum (Orbitrap analysis, resolution 120,000, 350−1350 m/z scan range, AGC target 1 × 106, 
maximum injection time 100 ms, dynamic exclusion of 75 seconds). The “Top10” precursors were 
selected for MS2 analysis, which consisted of CID (quadrupole isolation set at 0.5 Da and ion trap 
analysis, AGC 1.5 × 104, NCE 35, maximum injection time 150 ms). The top ten precursors from 
each MS2 scan were selected for MS3 analysis (synchronous precursor selection), in which 
precursors were fragmented by HCD prior to Orbitrap analysis (NCE 55, max AGC 1.5 × 105, 
maximum injection time 150 ms, isolation window 2 Da, resolution 50,000). 
 
LC-MS3 data analysis  
 
A suite of in-house software tools was used for .RAW file processing and controlling peptide and 
protein level false discovery rates, assembling proteins from peptides, and protein quantification 
from peptides as previously described96. MS/MS spectra were searched against a Uniprot 
Drosophila reference database appended with common protein contaminants and reverse 
sequences. Database search criteria were as follows: tryptic with two missed cleavages, a 
precursor mass tolerance of 50 ppm, fragment ion mass tolerance of 1.0 Da, static alkylation of 
cysteine (57.02146 Da), static TMT labeling of lysine residues and N-termini of peptides 
(229.162932 Da), and variable oxidation of methionine (15.99491 Da). TMT reporter ion 
intensities were measured using a 0.003 Da window around the theoretical m/z for each reporter 
ion in the MS3 scan. Peptide spectral matches with poor quality MS3 spectra were excluded from 
quantitation (<200 summed signal-to-noise across 10 channels and <0.7 precursor isolation 
specificity). 
 
Metabolomics 
 
Three control (genotype: elav-GAL4/+), three tau (genotype: elav-GAL4/+; UAS-tauR406W/+), and 
three Aβ1-42 (genotype: elav-GAL4/+; UAS-Abeta1-42) samples of 40 fly heads each were collected 
and untargeted positively and negative charged polar and non-polar metabolites were assessed 
using liquid chromatography-mass spectrometry as described in detail previously97.  
 
Identifying Age-Associated Genes in RNA-seq data from the Genotype-Tissue Expression (GTEx) 
project 
 
To identify what genes had significant associations between gene expression in the brain and 
chronological age, we sought out RNA-seq data sets with many individuals and a large dynamic 
range of ages. We analyzed 2642 samples from 382 individuals representing 13 different brain 
tissues, using the measurements of transcripts per million (TPM) available from the GTEx 
analysis version 8 (https://gtexportal.org/home/datasets). The age range of the patients are 
from 20-70 years old with a median age of 58 years old. To measure the effects of age on gene 
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expression in the brain, we used a mixed-effects model as implemented in lme4 version 
1.1.27.1, treating sex, ethnicity, patient identity and tissue of origin as covariates with the 
following equation: 
 
Y ~ Age + Sex + PMI + Tissue + Ethnicity + Sample ID 
 
Where “Sample ID” is treated as a random effect while all other covariates are treated as fixed 
effects. We identify genes as significantly associated with age if the FDR-adjusted p-value for 
the age coefficient is less than 0.1 and if the absolute unstandardized coefficient for age is 
greater than 0.1, which corresponds to a change of 1 TPM per decade in this data set, assuming 
age is the only factor. We used this equation to assess whether there was a significant effect on 
gene expression with age given the mean expression of the screen hits. To assess robustness of 
this test, we performed 10,000 permutations of either gene sets of the same size as the set of 
the screen hits or over patient age. We computed an empirical p-value which was the number 
of permutations with p-values smaller than the original test divided by the number of 
permutations. When performing this analysis for individual tissues, we used a generalized 
additive model with the same formula but excluding the “Sample ID” and “Tissue” variables.  
 
To perform Gene Set Enrichment Analysis, we used the R package “fgsea” version 1.14.0 using 
the Reactome 2022 library from Enrichr as the reference set of pathways. We used the 
standardized regression coefficient to rank the genes47,98.  
 
Analysis of single-nuclear RNA-seq data  
 
To identify cellular subtypes that were associated with disease, we analyzed previously 
published single nuclear RNA-seq data46, which included 70,000 cells from 24 Alzheimer’s 
disease patients and 24 age and sex-matched healthy controls. The data were preprocessed as 
in previous work46. In short, for each of the previously defined “broad cell types” (excitatory 
neurons, inhibitory neurons, astrocytes, oligodendrocytes, microglia and oligodendrocyte 
progenitor cells), we applied Seurat version 4.0.4’s implementations for log-normalizing the 
data, detecting highly variable features, and standard scaling the data. We used Seurat’s 
implementation of PCA reducing the data to 20 principal components. After applying PCA, we 
used Harmony version 0.1 to correct for the effects of sex, individual, sequencing batch and 
post-mortem interval in our data. This correction was performed to minimize the effects of 
confounders in our clustering analysis. We further applied Scrublet to predict and remove 
doublet cells from the population as implemented in Scanpy version 1.8.2. We used the 
Harmony components for UMAP dimensionality reduction and Leiden clustering. To determine 
the Leiden clustering resolution, we calculated the silhouette coefficient after applying Leiden 
clustering on a range of values (resolution={0.1,0.2,0.3,0.4, 0.6, 0.8, 1.0, 1.4, 1.6, 
2.0,2.1,2.2,2.3,2.4,2.5}). We selected the clustering resolution that maximized the silhouette 
coefficient. To identify disease-associated clusters, we applied a hypergeometric test to 
determine if a cluster was over-represented by cells derived from Alzheimer’s disease patients 
or healthy controls. We subsequently applied MAST as implemented in Seurat to determine the 
differentially expressed genes between Alzheimer’s disease-enriched clusters and the 
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remaining sub-clusters within a given cell type. We defined differentially expressed genes as 
having an FDR-adjusted p-value less than 0.1 and an absolute log2 fold change greater than 1.  
 
Analysis of Drosophila multi-omics 
 
We performed two-way t-tests to assess the significance of Drosophila proteins, 
phosphoproteins and metabolites between Drosophila models of amyloid β and control as well 
as significant proteins, phosphoproteins and metabolites between Drosophila models of tau and 
control. We used gProfiler with the g_SCS multiple hypothesis correction to identify significant 
gene ontology terms using Drosophila pathways as a reference99. We used PiuMet to map 
unannotated m/z peaks in the metabolomic data to known compounds100.  
 
Fluorescence microscopy  
 
Confocal images were taken on a Zeiss LSM-800 confocal microscope with Airyscan.  
 
Laser-capture RNA-seq  

We used the laser-capture RNA-seq method to profile total RNA of brain neurons similar to 
what we reported in previous studies31,32. In brief, laser-capture microdissection was performed 
on human autopsy brain samples to extract neurons32. For each temporal cortex (middle gyrus) 
about 300 pyramidal neurons were outlined in layers V/VI by their characteristic size, shape, 
and location in HistoGene-stained frozen sections and laser-captured using the Arcturus Veritas 
Microdissection System (Applied Biosystems) as in previous studies32. Linear amplification, 
construction, quantification, and quality control of sequencing libraries, fragmentation, and 
sequencing methods were described in earlier studies32. RNA seq data processing and quality 
control was performed similar to what we reported in previous studies31,32. In summary, 
The RNA-sequencing data was aligned to the human genome reference sequence hg19 using 
TopHat v2.0 and Cufflinks v1.3.0. To measure RNA-sequencing quality control, we used FASTQC 
and RNA-SeQC. We blinded ourselves to the disease status of the patient when preparing the 
samples. 
 
Data sets used for expression Quantitative Trait Locus (eQTL) analysis  
 
eQTL analysis was performed using seven previously published bulk cortex data sets and one 
new laser-captured pyramidal neuron data set. ROSMAP, MayoRNAseq, MSBB, and HBTRC data 
were obtained from the AD Knowledge Portal (https://adknowledgeportal.org) on the Synapse 
platform (Synapse ID: syn9702085). CommonMind was obtained from the CommonMind 
Consortium Knowledge Portal (https://doi.org/10.7303/syn2759792) also on the Synapse 
platform (Synapse ID: syn2759792); GTEx was obtained from https://gtexportal.org/home/. 
UKBEC, was obtained from http://www.braineac.org/; BRAINCODE, was obtained from 
http://www.humanbraincode.org/. The data sets are described in detail at each of the source 
portals and in the corresponding original publications31,32,101–109. 
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We used a conservative four-stage design: 1, Cortex discovery stage: eQTL analysis in four 
human cortex cohorts (stage D in Supplementary Table 1). 2, Cortex replication stage: 
replication of findings from the discovery stage in three independent human cortex cohorts 
(stage R in Supplementary Table 1). 3, To further enhance statistical power, we performed 
meta-analysis across all seven cohorts. This meta-analysis highlighted an additional 17 
suggestive eGenes with P values £ 5 * 10-8 (Table S2) which were not recovered in the two-
stage design. 4, We confirmed 12 suggestive eGenes in the laser-captured pyramidal neuron 
data set with P values £ 0.05. 
 
Gene expression data processing 
For RNAseq data sets, the gene reads counts were normalized to TPM (Transcripts Per Kilobase 
Million) by scaling gene length first and followed by scaling sequencing depth. The gene length 
was considered as the union of exon lengths. Consistent and stringent quality control and 
normalization steps were applied for each of the cohorts: 1) For sample quality control, we 
removed samples with poor alignment. We kept samples with > 10M mapped reads and > 70% 
mappability by considering reads with mapping quality of Q20 or higher (the estimated read 
alignment error rate was 0.01 or less). 2) Filtering sample mix-ups by comparing the reported sex 
with the transcriptional sex determined by the expression of female-specific XIST gene and male-
specific RPS4Y1 gene. 3) Filtering sample outliers. Sample outliers with problematic gene 
expression profiles were detected based on Relative Log Expression (RLE) analysis, spearman 
correlation based hierarchical clustering, D-statistics analysis110. 4) For normalization, gene 
expression values were quantile normalized after log10 transformed by adding a pseudo count 
of 1e-4. 5) SVA package was applied for removing batch effects by using combat function and 
adjusting age, sex, RIN, PMI. We accounted for latent covariates by performing fsva function. 
Residuals were outputted for downstream analysis. For array-based gene expression datasets, 
we directly used the downloaded, quality-controlled gene expression profiles. 
 
Genotype data processing for eQTL analyses 
We applied PLINK2 (v1.9beta) and in house scripts to perform rigorous subject and SNP quality 
control (QC) for each dataset in the following order: 1) Set heterozygous haploid genotypes as 
missing; 2) remove subjects with call rate < 95%; 3) remove subjects with gender 
misidentification; 4) remove SNPs with genotype call rate < 95%; 5) remove SNPs with Hardy-
Weinberg Equilibrium testing P value < 1 ´ 10-6; 6) remove SNPs with informative missingness 
test (Test-mishap) P value < 1 ´ 10-9; 7) remove SNPs with minor allele frequency (MAF) < 0.05; 
8) remove subjects with outlying heterozygosity rate based on heterozygosity F score (beyond 
4*sd from the mean F score); 9) IBS/IBD filtering: pairwise identity-by-state probabilities were 
computed for removing both individuals in each pair with IBD>0.98 and one subject of each pair 
with IBD > 0.1875; (10) population substructure was tested by performing principal component 
analysis (PCA) using smartPCA in EIGENSOFT111. PCA outliers were excluded and the top 3 
principal components were used as covariates for adjusting population substructures.  
 
Imputation of Genotypes for eQTL analyses 
The array-based genotype datasets were enhanced by genotype imputation. Genotype 
imputation for each dataset was performed separately on Michigan Imputation Server, using 
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1000G phase 3 reference panel. Eagle v2.3 and Minimac3 were selected for phasing and imputing 
respectively, and EUR population was selected for QC. Only variants with R2 estimates less than 
or equal to 0.3 were excluded from further analysis. And only variants with MAF > 5% were also 
included in downstream eQTL analysis. Prior to imputation, pre-imputation checks provided by 
Will Rayner performed external quality controls to fit the requirements of the imputation server. 
We used European population reference (EUR) haplotype data from the 1000 Genomes Project 
(2010 interim release based on sequence data freeze from 4 August 2010 and phased haplotypes 
from December 2010) to impute genotypes for up to 6,709,258 SNPs per data set. We excluded 
SNPs that did not pass quality control in each study 
 
eQTL analysis 
The eQTL mapping was conducted using R Package Matrix EQTL using the additive linear model 
on a high-performance Linux-based Orchestra cluster at Harvard Medical School. For cis-eQTL 
analysis, SNPs were included if their positions were within 1Mb with the TSS of a gene. And trans-
eQTL analysis included SNP-gene association if their distance was beyond this window. FDRs 
reported by MatrixEQTL were used to estimate the association between SNPs and gene 
expression.  
 
Meta eQTL analysis 
We performed meta eQTL analysis using three separate effects model implemented in 
METASOFT112, which took effect size and standard error of SNP-gene pair in each dataset as input. 
Fixed effects model (FE model) was based on inverse-variance-weighted effect sizes. Random 
Effects model (RE model) was a very conservative model based on inverse-variance-weighted 
effect size. Han and Eskin’s random effects model (RE2 model) was optimized to detect 
associations under heterogeneity. We reported statistics of the RE2 model in this study. 
 
Identifying eGene-associated variants that associate with transcription factor binding 
 
We were interested in determining whether eGene-associated variants overlapped with 
transcription factor binding sites. We used the optimal hg19 ChIP-seq-derived transcription 
factor peak sets from ENCODE 3, which we downloaded from the UCSC genome browser. To 
determine if the eQTL of interest overlapped with a DNA-binding motif, we extracted the 
sequence 50 base pairs upstream and 50 base pairs downstream of the variant and used FIMO 
to detect the presence of an overlapping DNA-binding motif113. We used the HOCOMOCO 
version 11 core motif set as reference motifs. Correlations between HLA-DRB1 and CUX1 
expression were performed using Pearson’s correlation test as implemented in R version 4.0.2.  
 
To identify correlations between eGenes and biological pathways, we applied GSVA version 
1.42.0 to the CPM-normalized temporal cortex pyramidal neuron RNA-seq to identify the 
REACTOME pathway enrichments per-sample. For this analysis we used the REACTOME 
pathways available in GSVAdata version 1.30, which downloads the REACTOME pathways from 
msigdb version 3.0 with the data set named “c2BroadSets”. We calculated correlations 
between GSVA signatures and gene expression using the Pearson correlation coefficient as 
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implemented in R version 4.0.2, considering correlations with an FDR-adjusted p-value less than 
0.1.  
 
Design of integration analyses 
 
In order to identify the biological mechanisms through which human and model organism 
genetic hits contribute to neurodegenerative disease, we utilized the Prize-Collecting Steiner 
Forest algorithm (PCSF) as implemented in OmicsIntegrator 236 (OI v2.3.10, 
https://github.com/fraenkel-lab/OmicsIntegrator2). The PCSF algorithm identifies disease-
associated networks based on termini derived from sequencing data that is significantly altered 
in individuals with the disease. We used OmicsIntegrator to map proteomic, 
phosphoproteomic, metabolomic and genetic changes to a set of known protein-protein and 
protein-metabolite interactions derived from physical protein-protein interactions from 
iRefIndex version 17 and protein-metabolite interactions described in the HMDB and Recon 2 
databases. To add brain-specific edges, we include the interactions derived from Affinity 
Purification Mass Spectrometry (AP-MS) of mice in BraInMap114. Additionally, we include 
previously published interactions between proteins found in tau aggregates and 
phosphorylated tau derived from AP-MS of neurofibrillary tangles115. The costs on the protein-
protein interactions were computed as 1 minus the edge score reported by iRefIndex, while the 
cost of the protein-metabolite interactions were calculated as in previous studies100,116. Given 
that these reference interactions were defined in human proteins and metabolites, we mapped 
the Drosophila proteins and phosphoproteins to their human orthologs using DIOPT version 8.0, 
choosing the human orthologs that the tool determined were of “moderate” or “high” 
confidence117 (https://www.flyrnai.org/cgi-bin/DRSC_orthologs.pl). In order to 
comprehensively characterize metabolomic changes, we used PiuMet to map uncharacterized 
metabolites to compounds identified in HMDB100. In addition to integrating the 
phosphoproteomic data, we included the predicted upstream kinases from iProteinDB whose 
proteomic levels in Drosophila correlated with its phosphoproteomic targets118 (Spearman 
correlation coefficient>0.4, https://www.flyrnai.org/tools/iproteindb/web/). 
 
For the Alzheimer’s disease-specific network, we integrated the screen hits with genetic 
modifiers of disease severity from model organism screens and available proteomics, 
phosphoproteomics and metabolomics from the literature and generated data. Given the 
breadth and diversity of sequencing data for Alzheimer’s disease, we applied different 
thresholds of significance for each source of sequencing data to generate the Alzheimer’s 
disease network. The prizes of the proteomic, phosphoproteomic, and metabolomic data are 
calculated as the negative base 10 logarithm of the Benjamini-Hochberg FDR-corrected p-value 
calculated by a two-way t-test. The Drosophila phosphoproteomic data and the metabolomic 
data were subject to an FDR threshold of 0.1, while the Drosophila proteomic and human 
proteomic data had more stringent cutoffs (FDR<0.01 and FDR<0.0001 respectively). 
Additionally, the metabolomic data were only assigned prizes if the absolute log2 fold change 
was greater than 1. The human lipidomic data were assigned prizes by their negative log10 
nominal p-value and were included if their nominal p-value was less than 0.05. The upstream 
kinases were assigned the same prizes as the targeted phosphoproteins. Instead of assigning 
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prizes based on a two-way t-test, the genetic hits were assigned prizes differently. For the 
human eGenes, prizes were assigned to all genes in the discovery phase with a value equal to -
log10(genome-wide FDR). For genes found in the Drosophila neurodegeneration and tau 
aggregation screens, prizes were set to 1=-log10(0.1). For the human GWAS loci, the prizes were 
set to the -log10 Bonferroni corrected, genome-wide p-value for those determined to be causal 
loci according to previous analyses and 1 otherwise12. After the initial prize assignments, the 
values are minimum-maximum normalized to values between 0 and 1 within each data type, 
weighing each prize by a scale factor reflecting our confidence in the degree to which a given 
data type reflects Alzheimer’s disease pathology (Table S7). We further included previously 
published Drosophila modifiers of tau toxicity24. 
 
For each network, we performed 100 randomizations of the edges with gaussian noise to assess 
the robustness of the nodes to perturbations to edges and prize values. Additionally, we 
performed 100 randomizations of the prize values to assess the specificity of each node to their 
assigned prizes. We filtered out nodes that did not have a prize (Steiner nodes) if they appeared 
in fewer than 40 of the robustness randomizations and more than 40 of the specificity 
randomizations. We then performed Louvain and Greedy clustering for community detection in 
the networks.  
 
OmicsIntegrator hyperparameters control the weights on prizes (β), the weight of the edges on 
the dummy node for network size (ω) and the edge penalty for highly connected “hub” nodes 
(γ). In order to select hyperparameters for OmicsIntegrator, we evaluated a range of 
hyperparameters for each network: β={2,5,10}, ω={1,3,6} and γ={2,5,6}. We chose networks 
based on minimizing the mean specificity, maximizing the mean robustness, and minimizing the 
KS statistic between node degree of the prizes as compared to those of the predicted nodes.  
 
Networks were visualized using Cytoscape version 3.8.0. 
 
COMET assay for DNA damage in human neural progenitor cells 
 
For the alkaline COMET assay, we applied inhibitors of CK2 (CX-4945) and the NOTCH signaling 
pathway (Compound E) to human iPSC-derived neural progenitor cells. Cells were treated with 
5µM of the inhibitor overnight and harvested. Comets were selected using the OpenComet 
plugin in ImageJ88,119. The extent of DNA damage was measured by the tail moment and 
proportion of intensity between the tail and the head of the comet. The tail represents single-
stranded DNA that trails off from the nucleus due to DNA damage burden. Longer tails indicate 
a greater extent of DNA damage. DMSO and etoposide were included as negative and positive 
controls respectively. 

Human iPSC culture 

Human iPSCs (male WTC11 background, gift from the lab of Michael Ward) harboring a single-
copy of doxycycline-inducible (DOX) mouse NGN2 at the AAVS1 locus and pC13N-dCas9-BFP-
KRAB at human CLYBL intragenic safe harbor locus (between exons 2 and 3) were cultured in 
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mTeSR Medium (Stemcell Technologies; Cat. No. 85850) on Corning Tissue Culture Treated 
Dishes (VWR International LLC; Cat. No. 62406-161) coated with Geltrex (Life Technologies 
Corporation; Cat. No. A1413301). Briefly, mTESR medium supplemented with mTESR 
supplement (Stemcell Technologies; Cat. No. 85850) and antibiotic Normocin (Invivogen; Cat. 
No. Ant-nr-2) was replenished every day until 50% confluent26. Stem cells were transduced with 
lentivirus packaged with CROPseq-Guide-Puro vectors and selected with Puromycin (Gibco; Cat. 
No. A11138-03) until confluent. When cells were 80%-90% confluent, cells were passaged, 
which entailed the following: dissociating in Accutase (Stemcell Technologies; Cat. No. 7920) at 
37°C for 5 minutes, diluting Accutase 1:5 with mTeSR medium, collecting in conicals and 
centrifuging at 300g for 5 minutes, asipirating supernatant, resuspending in mTESR 
supplemented with 10uM Y-27632 dihydrochloride ROCK inhibitor (Stemcell Technologies; Cat. 
No. 72302) and plating in Geltrex-coated plates. 
 
NGN2 Neuronal Differentiation and RNA extraction 
 
Neuronal differentiation was performed as described in previous work with a few 
modifications120. On day 1, iPSCs transduced with CROPseq-Guide-Puro were plated at 40,000 
cells/cm2 density in Geltrex-coated tissue culture plates in mTESR medium supplemented with 
ROCK inhibitor and 2µg/ml Doxycycline hyclate (Sigma; Cat. No. D9891-25G). On Day 2, Medium 
was replaced with Neuronal Induction media containing the following: DMEM/F12 (Gibco; Cat. 
No 11320-033), N2 supplement (Life Technologies Corporation; Cat. No. 17502048), 20% 
Dextrose (VWR; Cat. No. BDH9230-500G), Glutamax (Life Technologies Corporation; Cat. No. 
35050079), Normocin (Invivogen; Cat. No. Ant-nr-2), 100 nM LDN-193189 (Stemcell 
Technologies; Cat. No. 72147), 10uM SB431542 (Stemcell Technologies; Cat. No. 72234) and 
2uM XAV (Stemcell Technologies; Cat. No. 72674) and 2µg/ml DOX. The Neuronal Induction 
Media was replenished on day 3. On day 4, the medium was replaced with Neurobasal Media 
(Life Technologies Corporation; Cat. No. 21103049) containing B27 supplement (Gibco; Cat. No. 
17504044), MEM Non-Essential Amino Acids (Life Technologies Corporation; Cat. No. 
11140076) Glutamax, 20% Dextrose, 2µg/ml DOX, Normocin, 10ng/ml BDNF (R&D Systems; Cat. 
No. 11166-BD), 10ng/ml CNTF (R&D Systems; Cat. No. 257-NT/CF), 10ng/ml GDNF (R&D 
Systems; Cat. No. 212-GD/CF) and cultured for 2 days. At day 6, cells were dissociated with 
Accutase and resuspended with Trizol (Thermofisher Scientific; Cat. No.15596018). RNA was 
extracted following manufacturer’s manual, using Direct-zol RNA Miniprep kit (Zymo Research, 
R2050) 
 
Bulk RNA-seq analysis of CRISPRi knockdowns in neural progenitor cells 
 
We analyzed the RNA-seq data after CRISPRi knockdown as performed in previous CRISPRi 
studies27. In summary, we mapped the raw sequencing reads to the hg38 reference 
transcriptome with salmon version 1.10.1. We used the ‘-noLengthCorrection’ option to 
generate transcript abundance counts. We generated gene-level count estimates with tximport 
version 1.16.1. To account for the effects of different guides, we performed differential 
expression analysis between knockdown and control with DESeq2 version 1.28.1 treating guide 
identity as a covariate. We applied the apelgm package version 1.10.0 to shrink the log2 fold 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2024. ; https://doi.org/10.1101/2024.03.17.585262doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.17.585262
http://creativecommons.org/licenses/by-nd/4.0/


 32 

changes. We applied Gene Set Enrichment Analysis to the ranked, shrunk log2 fold changes 
using the fgsea package version 1.14.0 and the Reactome 2022 library as the reference pathway 
set47,98.  
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