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Deep convolutional neural networks (CNNs) trained on
visual objects have shown intriguing ability to predict
some response properties of visual cortical neurons.
However, the factors (e.g., if the model is trained or not,
receptive field size) and computations (e.g., convolution,
rectification, pooling, normalization) that give rise to
such ability, at what level, and the role of intermediate
processing stages in explaining changes that develop
across areas of the cortical hierarchy are poorly
understood. We focused on the sensitivity to textures as
a paradigmatic example, since recent neurophysiology
experiments provide rich data pointing to texture
sensitivity in secondary (but not primary) visual cortex
(V2). We initially explored the CNN without any fitting to
the neural data and found that the first two layers of the
CNN showed qualitative correspondence to the first two
cortical areas in terms of texture sensitivity. We
therefore developed a quantitative approach to select a
population of CNN model neurons that best fits the
brain neural recordings. We found that the CNN could
develop compatibility to secondary cortex in the second
layer following rectification and that this was improved
following pooling but only mildly influenced by the local
normalization operation. Higher layers of the CNN could
further, though modestly, improve the compatibility
with the V2 data. The compatibility was reduced when
incorporating random rather than learned weights. Our
results show that the CNN class of model is effective for
capturing changes that develop across early areas of
cortex, and has the potential to help identify the
computations that give rise to hierarchical processing in
the brain (code is available in GitHub).

Introduction

The tremendous progress in machine learning has
shown that deep convolutional neural networks (CNNs)
trained on image classification are remarkably good at

object and scene recognition (Krizhevsky, Sutskever,
& Hinton, 2012; LeCun, Bengio, & Hinton, 2015).
Although CNNs (LeCun et al., 1989; LeCun, Bottou,
Bengio, & Haffner, 1998; Krizhevsky et al., 2012;
Zeiler & Fergus, 2014) are only crudely matched to the
hierarchical structure of the brain, such models have
been intriguingly able to predict some aspects of cortical
visual processing (Khaligh-Razavi & Kriegeskorte,
2014; Yamins et al., 2014; Kriegeskorte, 2015; Yamins
& DiCarlo, 2016; Cichy, Khosla, Pantazis, Torralba,
& Oliva, 2016; Güçlü & van Gerven, 2015; Pospisil,
Pasupathy, & Bair, 2016; Cadieu et al., 2014; Cadena
et al., 2019; Kindel, Christensen, & Zylberberg, 2019).
Here we focus on a question that has been less explored,
namely, understanding how the visual representation
changes hierarchically across layers of the artificial
network in comparison to early cortical areas. By
considering early cortical areas with presumably
fewer transformational stages, we seek to get a better
handle on some fundamental questions that are not
well understood. Focusing on texture sensitivity and
cortical area V2 as a paradigmatic example, we ask:
When does texture sensitivity and compatibility to V2
data first emerge in the CNN? What computations
in the CNN are important? What happens as one
proceeds along higher layers of the CNN? What is
the importance of supervised training versus the
architecture itself ? The CNN class of model under
consideration includes stacked linear and nonlinear
computations that are widely used in modeling neural
systems, such as convolution, rectification, pooling
of model neurons, and local (divisive) response
normalization.

Texture is a statistically defined repetitive
homogeneous structure. Textures are common
types of visual inputs in nature. Apart from their
representation in V2, there is a rich history of studying
texture representation in higher visual areas such as
V4 (Merigan, 2000; Hanazawa & Komatsu, 2001;
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Arcizet, Jouffrais, & Girard, 2008; Nandy, Sharpee,
Reynolds, & Mitchell, 2013; Okazawa, Tajima, &
Komatsu, 2015; Okazawa, Tajima, & Komatsu, 2016)
and texture perception in psychophysics (Julesz, 1975;
Tamura, Mori, & Yamawaki, 1978; Julesz, 1981; Bergen
& Adelson, 1988; Malik & Perona, 1990; Wallis et al.,
2017). Visualization of image features in the CNN
reveals that the second layer but not the first layer
has some texture selectivity (Krizhevsky et al., 2012;
Zeiler & Fergus, 2014). However, there has been little
work on this for understanding if and how texture
representation in a population of such model neurons
relates to cortical measurements across early visual
areas.

We focused on the transformation between primary
visual cortex (V1) and secondary visual cortex (V2) as a
baseline to compare the texture sensitivity at different
layers of the CNN. The changes in representation
between V1 and V2, and the computations that give
rise to such changes, are not well understood. Recent
experimental neurophysiology studies in macaque (and
humans) have shown compelling analyses that cortical
area V2, but not area V1, is sensitive to naturalistic
textures (Freeman, Ziemba, Heeger, Simoncelli,
& Movshon, 2013; Ziemba, Freeman, Movshon,
& Simoncelli, 2016). Using both neurophysiology
experiments and functional MRI, Freeman, Ziemba
et al. (2013; Ziemba et al., 2016) have shown that
high-order statistical dependencies of textures can
differentiate V2 neurons from V1. We considered
these data because they are currently the best test for
distinguishing V1 from V2, and they provide a rich
data set that could be compared to hierarchical models
(Figure 1a).

In this article, we asked if hierarchical models
such as the CNN can develop texture sensitivity
and compatibility with the V2 texture data. We were
particularly interested in what factors (if the model is
trained or not, receptive field size of the model neurons,
etc.) and computations (convolution, rectification,
spatial pooling, normalization, etc.) (Figure 1b) are
critical in doing so. We focused on the first two layers
of the CNN, but additionally, we also considered the
higher layers. This is because, the CNN architecture is
only very loosely matched to cortex, and V2 responses
may be better approximated with more layers.

We took AlexNet (Krizhevsky et al., 2012) as a
popular example CNN model to show at what level a
deep network starts to represent high-order statistics
from textures, comparing to V2 in the brain. AlexNet
has local normalization, a common computation used
in neural modeling, unlike some other CNNs. As a
point of comparison, we later considered another
popular CNN used for cortical modeling, the VGG
network (Simonyan & Zisserman, 2015), in which the
receptive field size grows more slowly. In our approach,
similar to the neurophysiology studies of Freeman et
al. (2013), we were interested in pinpointing the layer

at which texture sensitivity first emerged. Moreover,
because we have more control over the different
computational components in the CNN, we sought to
also consider the particular computations within the
layer. We concentrated on shallow (e.g., 4 to 8 layer)
networks rather than very deep (e.g., even >100 layers)
networks commonly used today in machine learning,
since the cortical visual hierarchy itself is more shallow.

Without fitting to data, we found qualitative
correspondence across a number of metrics between the
first two layers of the CNN and the neuronal data. We
also found some differences in the strength of effects
between the CNN and the brain.

To fit the CNN model and data, we developed an
approach for systematic quantification by selecting
(Figure 1c) a population of CNN model neurons that
best describes the primate brain recordings.

We were interested in both quantifying the
compatibility and determining the main factors and
computations that influence the compatibility. We found
that the correspondence to V2 data first emerged at but
not before the second layer of the CNN and specifically
after rectification and improved after pooling. The
compatibility was only mildly influenced by a nonlinear
computation known as local response normalization
(loosely matched to divisive normalization in V1)
(Carandini & Heeger, 2012; Heeger, 1992; Albrecht
& Geisler, 1991; Geisler & Albrecht, 1992). Higher
layers in the CNN also could further improve the
compatibility. The compatibility was reduced when
incorporating random weights rather than the weights
learned from images.

Our results show that the CNN class of model is
effective for capturing changes across early areas of
the cortical hierarchy. This more broadly presents the
opportunity to go beyond demonstrating compatibility,
to teasing out the computations that are important for
hierarchical representation and processing in the brain.
Our approach can be more widely applied to other
related architectures, computational building blocks,
stimuli, and neural areas.

Introduction to the methods
Computational building blocks of CNNs

In this section, we introduce the main methodologies
for the convolutional neural networks, texture stimulus
generation, and simulations. At the end of the
article, we include a Technical Methods section.
A number of hierarchical models in the machine
learning and neuroscience literature include similar
basic computational building blocks stacked together,
namely, convolution, spatial pooling, rectification, and
sometimes local response normalization. In this section,
we describe the basic computational building blocks of
convolutional neural networks.
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Figure 1. Simplified cartoon of hierarchical processing in the visual cortex and CNN. (a, top row): Cortical visual processing in the brain
(only areas V1 and V2 are depicted). V1 has spatially oriented receptive fields (only one orientation is shown), but receptive fields in
V2 are not yet clearly understood (hence puzzle symbol). The full linear nonlinear processing at each stage is not exactly known
(hence the question mark) (Yamins & DiCarlo, 2016, Figure 1). (a, bottom row): Processing in CNNs. LN indicates linear and nonlinear
transformations. The red box in the center represents the receptive field, the portion of the input visible to the model neuron. We ask
whether there is correspondence between the representation in the CNN layers and in the cortical areas in the brain, especially
between V2 and L2, although we also explore other layers of the CNN. (b) CNN with detailed intermediate linear and nonlinear
computations in L2, from which we analyze the selectivity of the output at each stage. After convolution, the nonlinear
transformations in the AlexNet (Krizhevsky et al., 2012) include a ReLU (Rectified Linear) nonlinearity, max pooling, and local response
normalization loosely matched to divisive normalization models of V1 (Albrecht & Geisler, 1991; Geisler & Albrecht, 1992; Heeger,
1992). (c) Schematic of selection of 103 neurons from the brain recordings (e.g., from area V2). We select the same number of model
neurons from the CNN (e.g., from layer L2) to find correspondence.

Convolution
Deep convolutional neural networks include a linear

front end, known as convolution in the neural network
community. This corresponds to the cross-correlation
between an input image and a filter.

Convolution has some properties that make it
attractive to the deep learning community, namely,
parameter sharing and the sparsity of connections. By
sharing parameters across the whole input, convolution
inherently learns location-invariant features.
Convolution also ensures much less connections from
the current layer to the next, which saves computational

burden compared to typical fully connected artificial
neural networks.

Max pooling
After convolution is performed on a layer input,

a spatial pooling operation can be applied to the
output map. The pooling in CNNs, including the ones
we implement here, typically includes a max pooling
operation, which only picks the maximum value within
a pooling window. The size of the pooling window is a
design choice. It is chosen based on the input shape,
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type, total number of layers in the network, and so on.
The most common pooling window size is 2 × 2 or 3
× 3, which means that every max pooling operation
will take the maximum value out of this window. The
pooling window size can be different in different layers
even in the same network.

Since the pooling window is applied to the image
with shifts that are greater than one spatial unit
(pixel, for instance), pooling shrinks the output maps
progressively. In this sense, we can apply a larger number
of filters as we move up in the hierarchy, keeping the
number of parameters computationally manageable.
At the same time, downsampling the feature maps has
the effect of detecting a feature irrespective of its exact
location. That is why pooling allows the CNN models
to learn translation invariance and control overfitting.

Nonlinearity/activation functions
A point nonlinearity is applied to the output maps

of max pooling. This allows the deep network models
to learn robust nonlinear features from the previous
layers instead of just their linear combinations. Modern
CNNs typically include a rectified linear unit (ReLU)
nonlinearity. These are also called the activation
functions.

Local normalization
Local response normalization plays an important

role in hierarchical object recognition models. Local
response normalization is used in both Layer 1 and
Layer 2 of AlexNet and has been shown to improve the
recognition accuracy. It is loosely related to divisive
normalization in the brain, by divisively normalizing
the rectified response of a given neuron by the rectified
responses of spatially overlapping receptive fields (five
in the case of AlexNet). The CNN normalization differs
from models of divisive normalization in neuroscience
in two main ways: (a) Division by other neurons
in the CNN is typically equally weighted, whereas
models in visual neuroscience often include a weighted
normalization signal (see the Discussion section), and
(b) divisive normalization in the CNN typically includes
only spatially overlapping filters, whereas models
of normalization in visual neuroscience sometimes
incorporate normalization from spatially surrounding
filters to address surround modulation from beyond the
classical receptive field (see the Discussion section).

If aix,y is the rectified linear activation at the (x,
y) position in each ith channel, then the normalized
response bix,y is defined by Krizhevsky et al. (2012):

bix,y = aix,y(
k + α

∑min(N−1,i+m/2)
j=max(0,i−m/2) (a

j
x,y)2

)β
(1)

where m is the size of the normalization neighborhood,
and N is the total number of model units in the layer.
Constants k, m, α, β are the hyperparameters with the
default values of 2, 5, 10−4, and 0.75, respectively.

Normalization is done across the spatially
overlapping unit activations across model units.
Each 1 × 1 response is selected and normalized with
corresponding values of all the model units across the
channel dimension.

From a machine learning perspective, local response
normalization is useful to normalize the unbounded
activations coming from the ReLU (Rectified Linear)
nonlinearity. It penalizes the responses that are
uniformly large in a local neighborhood. It is a type
of regularization that encourages competition among
units in the network. Divisive normalization has been
extensively studied in models of the visual system in
neuroscience (Carandini & Heeger, 2012; Heeger, 1992;
Albrecht & Geisler, 1991; Geisler & Albrecht, 1992).

CNN training and simulations

The main simulations we ran followed the
neurophysiology experiments with texture images
in Freeman et al. (2013) and Ziemba et al. (2016)
(simulation code is available in GitHub). We used
CaffeNet, a variant of AlexNet (Krizhevsky et al.,
2012), a popular deep CNN model widely applied in
computer vision and neuroscience. Here we refer to
the network as AlexNet. We chose AlexNet as our
base model, because it includes computations that are
loosely matched to visual cortex, such as pooling and
local (divisive) response normalization. In addition, the
receptive field (RF) size ratio can be controlled roughly
to match the V1 to V2 ratio.

The CNN model was trained on the ILSVRC2012
ImageNet data set, a popular large-scale image database
(Russakovsky et al., 2015). It is therefore important
to note that the model was trained on natural images
and then tested on texture images. This is crudely
similar to what we envision for the brain. That is, the
brain is exposed to natural images, but these images
contain textures, and so the brain presumably develops
texture sensitivity. Neurophysiology experiments have
effectively probed sensitivity to textures along the
cortical hierarchy, and here we probe the sensitivity in
neural networks.

We took the layer outputs after pooling and
normalization, referring to them as L1, L2, and so
forth. To get a better handle on where exactly in the
neural network compatibility with V2 first emerges, we
also considered layer outputs at all other intermediate
points of L2 in the network (Figure 1b). This allowed
us to better understand how the computational
building blocks (e.g., convolution, rectification,
pooling, normalization) in the CNN may give rise to
the differences observed in texture sensitivity between

https://github.com/nasirml/DeepNetAndBrain
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V1 and V2; in other words, at what point in the CNN
there is a transition from V1-like behavior to V2-like
behavior.

Texture generation and neurophysiology data

The neurophysiology data for V1 and V2 are
described in Freeman et al. (2013) & Ziemba et al.
(2016), with recordings from macaque monkeys. We
used the synthetic textures of Freeman et al. (2013),
which were generated from a set of 15 real texture
images. Each synthetic texture image was generated
using the approach of Portilla & Simoncelli (2000). We
refer to each set of textures generated from the same
source image as family and all the images within the
same family as samples. Naturalistic textures for a given
family were generated each with a different random
seed. Spectrally matched noise images (which we denote
noise images) were generated by randomizing the phase
of the synthetic images. The noise images have the same
spatial frequency distribution of energy as the original
ones but lack the differences in higher-order statistics.

Overall, the image set included 15 samples from each
family, resulting in 225 texture and 225 noise images. We
downsampled the textures so that the effective portion
of the image that the CNN neurons are sensitive to
is equated to the receptive field size of the cortical
neurons. For more detail on this process and the texture
generation, see Technical Methods.

We initially made a qualitative comparison
between the cortical data and the CNN model. We
then developed a quantitative approach to select a
population of CNN subunits that were most compatible
with the neurophsyiology data.

Simulation results

Qualitative correspondence of the CNN to the
neurophysiology cortical data

We compared the cortical data and the CNN without
any fitting, focusing on both visualization of the texture
class clusters and a metric for texture sensitivity.

To make the CNN model and the cortical data more
comparable, we equated the number of CNN model
neurons in our simulations to the number of neurons
in the neural population as in Freeman et al. (2013)
& Ziemba et al. (2016) (102 V1 and 103 V2 neurons).
We randomly selected 103 model neurons as shown in
Figure 1c.

For the CNN, we considered the total number of
filters in a given layer times a center 2 × 2 spatial
neighborhood (see Technical Methods). We defined

the spatial neighborhood as a population of neurons
picked from the center of a layer output in the CNN.
This is essentially a collection of neurons with spatial
positions aligned with the center location of the input
image. We considered a small spatial neighborhood so
that the receptive fields of the model neurons lie in the
main input but allow spatial jitter.

Visualization of texture clustering in the CNN population
To first gain intuition that L1 and L2 differ in

their texture representation, we visualized the CNN
model neuron population activity. We transformed
the responses of CNN layers from a high-dimensional
space (where dimensionality is the number of neurons
in the given CNN layer) to a two-dimensional space. We
used the Barnes-Hut t-distributed stochastic neighbor
embedding (t-SNE) (van der Maaten, 2014; van der
Maaten & Hinton, 2008) algorithm to achieve this
visualization. t-SNE is a technique for dimensionality
reduction that tries to model small pairwise distances
to capture local data structures in a low-dimensional
space.

In Figures 2A–E, each point results from embedding
an image represented by a high-dimensional response
vector into two dimensions. Therefore, we have a total
of 225 points that come from the same number of
images from 15 texture families. Each point represents
the population response to a texture sample, and
samples belonging to a same family share the same
color. L1 responses are more scattered and do not
group images of the same family tightly together.
This is apparent both when randomly choosing 103
model neurons (Figure 2a) and when considering all
neurons in an 8 × 8 spatial neighborhood (Figure
2b), amounting to a total of 3,072 neurons. In the
L2 response space, samples from the same texture
family group more tightly together. This is less clear
when using 103 random neurons in L2 (Figure 2d) but
becomes apparent when considering all neurons in a 4
× 4 spatial neighborhood (Figure 2e), amounting to
a total of 2,048 neurons. L2 therefore better separates
the texture responses than L1, qualitatively similar
to what has been shown for V2 versus V1 in the
neural data (Ziemba et al., 2016). However, a larger
number of neurons from the CNN are required to
match the texture discrimination capabilities of the V2
population.

Differentiating L2 neurons from L1 in CNNs via the
modulation index metric

To further show the distinction between L1 and L2
for texture sensitivity, we followed the approach in
Freeman et al. (2013) of computing a modulation index
metric. The modulation index captures the differential
response between textures and noise. We computed
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Figure 2. Qualitative depiction of texture class clustering in the CNN versus the cortical data. t-SNE visualization of CNN responses to
natural textures. Each point represents a sample and each color represents a family. (a, d): The CNN L2 neurons are able to better
separate the texture families than L1. This indicates that L2 neurons are more selective to the high-order texture properties of
different families. (b, e): L2 neurons show superior clustering of textures even with fewer neurons than L1. (c, f): Cortical V1 and V2
neurophysiology data from Figure 4 in Ziemba et al. (2016). The CNN results are comparable to the neurophysiology data, but
requiring in the CNN more than 103 neurons to obtain similar separation levels to the recorded V2 population.

the mean modulation index for each of the 15 texture
families, resulting in 15 mean modulation index values.
This was done for each of the network layers, L1 and
L2. We computed the modulation index from the
responses of all samples from each family, both natural
and noise, and averaged over the number of model
neurons in the respective layer.

The modulation index M for each model neuron is
defined as the difference of responses to the textures
versus the noise, divided by their sum, according to (2):

M = rna − rno
rna + rno

, (2)

where rna and rno are the responses to naturalistic
textures and noise, respectively. Figure 3 (top panel)
shows the average modulation index for all texture
families in the CNN, for L1 (red) and L2 (blue).

Averages are obtained from 10,000 repeats, where at
each iteration, we randomly select 103 model neurons
and compute the modulation index.

High modulation index of a population of model
neurons toward a family means that this group of
neurons is highly sensitive to this specific family; hence,
they show high differential response. Since first- and
second-order statistics are matched for both natural and
noise images, a differential response also means that
neurons latch onto higher-order statistical properties of
the stimuli.

We found that the average modulation index of L1
model neurons is near zero and the modulation index
of L2 is substantially higher than L1. The diversity in
modulation index for the different texture families is
shown in Figure 3, for both the CNN (Figure 3, top
panel) and the neuronal data (Figure 3, middle panel).
The average modulation index of L2 (0.18) is higher
than L1 (−0.04). The difference between the indexes
of L1 and L2 is significant (p < 0.0000005, t test
considering signs; p < 0.00001, t test ignoring signs and
considering only the magnitudes) and is qualitatively
comparable but stronger than the neurophysiology
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Figure 3. Modulation index in the CNN versus the cortical data.
The modulation index is shown for each texture family,
averaged over model neurons. Top panel: Data from the CNN,
with the texture families sorted from high to low mean L2
modulation index. L2 (blue) neurons have higher modulation
index than L1 (red) and hence higher differential response to
the textures versus the noise. Light gray area shows the
expected modulation due to chance and 2.5th and 97.5th
percentiles of the null distribution of modulation.
Corresponding textures and spectrally matched noise of the
modulations are shown at the top. Middle panel: Data from the
neurophysiology experiments of V2 and V1 (Figure 2e in
Freeman et al., 2013), with the texture families sorted from
high to low mean V2 modulation index. Bottom panel: Same
CNN mean modulation indices as in the top panel, but with the
texture families sorted according to the V2 mean modulation
index data of the middle panel.

data (V1: ≈0.00 and V2: ≈0.12; Freeman et al., 2013).
More specifically, Figure 3 (top panel) shows that
the L2 modulation is more drastic in some texture
families than others, as also observed for the V2 data
(Freeman et al., 2013). However, the rank order of
the textures was different between the CNN and the
neurophysiology data, which are shown in Figure 3
(bottom panel) (prompting our quantitative subset
selection approaches below).

Figure 4 shows the distribution of modulation index
for each of the neurons in the CNN. Very few of the
L1 model neurons (11%) have a positive modulation
index (Figure 4a). In contrast, a significant portion of
the L2 model neurons (94%) has a positive modulation
index. This is an indication of L2 sensitivity toward the
“naturalness” of textures (Figure 4b). This sensitivity
is qualitatively similar to the neurophysiology results
shown in Figure 2f of Freeman et al. (2013), which are
reproduced in Figures 4c and 4d.

Modulation index for CNN with trained versus random
weights

We ran a control to examine the influence of the
CNN architecture alone. Instead of using the model
weights that resulted from training on the ImageNet
database, we generated random weights (in the interval
[−1, 1]) for the L1 and L2 layers and averaged over
100 iterations. While keeping the L1 weights as
trained, randomization only in the L2 model neurons
decreased the average modulation index to 0.05 (from
0.18; Figure 5). The difference between the L1 and
L2 modulation index still remained significant (p <
0.000003, t test). This means that L1 and L2 could still
be differentiated according to this metric. But note that
the L2 modulation index is substantially reduced with
randomization of only the L2 weights. This means
that incorporating learned L2 weights leads to a much
higher sensitivity to textures than random L2 weights,
so learning in the second layer adds to the texture
sensitivity that is developed.

We found that randomizing both L1 and L2
dramatically decreased the sensitivity of the L2 neurons
to the textures versus the noise and yielded an average
modulation index of −0.02 and 0.01, respectively, for
L1 and L2 (Figure 5). The difference between L1 and
L2 was much less significant (p = 0.0025, t test on
the magnitude). In the case of randomized weights in
both L1 and L2 (L1L2rand), the range of modulation
indices is −0.01 to 0.03. This range is too small to
capture the V2 neuron modulation indices. We see that
the texture sensitivity of L2 neurons breaks in the
complete absence of the trained weights and shows very
low modulation similar to L1. This indicates that the
sensitivity to high-order statistics like textures is not a
trivial outcome of the deep network architecture. The
CNN model with trained weights learned from natural
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Figure 4. Distributions of modulation indices of model neurons versus the cortical data. (a) The CNN L1 modulation index centers
toward zero, indicating that the model neurons respond with similar strength to the textures as to the noise. (c) A significant number
of L2 model neurons have positive modulation indices, indicating that they respond more strongly to the textures than the noise. This
trend of both L1 and L2 sensitivity is qualitatively compatible with V1 and V2, (b) and (d), respectively, in the brain (replotted from
Figure 2(b) and (d), of Freeman et al., 2013).

images corresponds better to the neurophysiology data
than the CNN architecture itself.

Systematic quantification of the CNN to the
visual brain data

We have shown some qualitative correspondence
between the CNN and the cortical data. Figure 6
illustrates that for a random selection of CNN model
neurons, indeed this correspondence is only qualitative.
The mean modulation indices for the various textures
in the V2 cortical data versus the L2 in the CNN
are correlated (Spearman’s rank-order correlation is
0.65). We have also seen that the average correlation
across different random CNN populations of 103
neurons is highest in L2 and reduces in the higher
layers (L1: −0.11, L2: 0.62, L3: −0.17, L4: 0.19, and
L5: −0.12).

However, all the correspondence we have shown
thus far used the CNN model as is, without fitting

any aspect of the CNN to the cortical data. We
therefore wanted to know if one can obtain better
correspondence to the data by optimizing the choice of
model neurons to best fit the data. Other work has, for
instance, considered linear weighted combinations of
CNN model neurons to best fit cortical data (see, e.g.,
discussion in Kriegeskorte, 2015).

Here, we wondered whether there exists a set of 103
CNN model neurons that can fit well the cortical data.
That is, rather than considering all model neurons in the
CNN or some random selection of neurons, we posited
that perhaps a particular subset of the neurons could
better explain the subset of experimentally recorded V2
neurons. Recall that the choice of 103 model neurons is
to match the neurophysiology data. The modulation
index for the simulations, similar to the neurophysiology
data, is computed as an unweighted average over the
103 model neurons (therefore our focus on equally
weighted model neurons). We considered finding a
subset of model neurons that best fit the modulation
indexes from electrophysiology data, though we also
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Figure 5. Effect of CNN model training on sensitivity to
high-order texture properties in comparison to the brain data.
Average modulation index for AlexNet model neurons with and
without trained weights indicates the network with trained
weights shows superior texture sensitivity according to the
modulation index metric. Random weights in L2 (L2rand)
significantly reduce the sensitivity of L2 neurons. In the
complete absence of training in both layers (L1L2rand), texture
sensitivity reduces even further.

Figure 6. Modulation index comparison between the V2 data
and a set of 103 randomly selected neurons from the CNN L2
(i.e., no fitting of the CNN to the cortical data). Random
selection of model neurons does not match the
neurophysiology data well (Euclidean error 0.37), prompting us
to explore various subset selection methods for selecting the
model neurons from the CNN population that best fit the
cortical data. V2 data were collected in Freeman et al. (2013).

compared to the optimal fit that includes all model
neurons with different weights.

We view this question of obtaining a quantitative fit
to the neurophysiology data for the modulation index
as complementary to the more qualitative approach
we used above. The qualitative approach gave us

an indication of compatibility of the CNN to the
neurophysiology data, on average, and highlighted
some main trends, that is, that texture sensitivity
emerged in the CNN in the second layer and that
using weights learned from natural images in the CNN
led to more sensitivity to textures than considering
the CNN architecture alone and not incorporating
learned weights. The quantitative metric we develop
next is meant to tell us how closely the CNN can
quantitatively match the neurophysiology data in the
neural modulation index when selecting for the same
number of model neurons. For the remainder of the
article, we focus on this question with respect to the
modulation index metric, capturing sensitivity to the
textures versus the noise.

We note that the subset selection aspect of this
problem makes it different from a standard regression
and from approaches we are aware of for fitting neural
data, which often take a linear combination of the
model neurons (Kriegeskorte, 2015; Yamins et al.,
2014). Why search for a subset of CNN neurons that
can fit the cortical modulation index data? Our rationale
was that finding such a subset would suggest that at
the population level, there is some overlap between the
CNN model neurons and the cortical neurons in their
representation for the texture versus the noise stimuli,
as explained below.

Approaches for fitting CNN model neurons to the neural
data

To show a systematic quantification, we probed the
CNN to select a subset of 103 model neurons that
is most consistent with the cortical neurophysiology
experiments (Figure 1c). To show the robustness of our
results, we considered several different approaches for
subset selection.

First, we employed a greedy technique, which we
call subset greedy, to choose a subset of 103 model
neurons that best match the neurophysiology data from
the brain. Briefly, from the set of all possible model
neurons, the greedy approach chooses the first neuron
with the closest Euclidean distance to the V2 mean
modulation index data; then, the second neuron is
added to this subset so as to minimize the Euclidean
distance and so on until a total of 103 neurons are
chosen (see Technical Methods).

For comparison to our greedy fitting approach,
we also applied an optimal weighted average or full
population approach. The full population approach
finds a weighted sum of the model neurons (under the
constraint that the weights are nonnegative and sum to
1) that is the closest in squared Euclidean distance to
the experimental data. Notice that the weighted average
may include all available neurons and weight neurons
differently. The greedy approach is, in contrast, an
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approximation that finds a subset of 103 neurons with
equal weights that best matches the neural data.

Our rationale is that the full population approach
shows the best fit one can obtain with model neurons
from a given layer. However, it does not show an actual
population representation that matches the data since
the neurophysiology experiment and analysis includes
exactly 103 neurons equally weighted; it only reveals
a linear transform of the representation. The greedy
method chooses a subset of 103 neurons and thus uses
the actual CNN representation. This subset selection
approach is therefore more comparable to the analysis
in the cortical experiments, in which the modulation
index is computed as an equally weighted average of
the model neurons. However, the greedy approach
is suboptimal. It chooses 103 neurons in a greedy
manner. We therefore wanted to compare to an optimal
approach that can weight all model neurons, to see if
this results in similar trends as we manipulate aspects
of the model. So we applied another model selection
technique, which is a regularized version of the full
population fit that selects 103 neurons, and we termed
it as subset regularized.

Insights of having three different model neuron
selection techniques is like tackling the same problem
from different perspectives. Landing onto the same
conclusion, even though they operate in different ways
in their selection of the CNN neurons, makes our
investigation more comprehensive and shows that there
are model neurons in deep networks that are more
V2-like according to the modulation index population
metric.

Cross validation
In the next sections, we show results for fitting the

CNN neural population to the V2 texture data with
these approaches. To test the generalization capability
of our method, we cross-validate all the fits, that is,
training the model neuron subset selection on one set
of texture and noise images, and testing on the left-out
images. For the cross-validation, we extended the image
data set to a total of 225 texture and noise images for
each family. We learned the population (e.g., of 103
neurons) using 224 texture and noise images from each
family for the training and made a prediction of the
mean modulation index for the left-one-out set of 15
images. See Technical Methods section for more details
about the model-fitting techniques.

Metrics for quantifying the CNN model fits
We quantified the CNN fits to the data with two

metrics, to see if different metrics provide us with
similar conclusions. First, we calculated the Euclidean
error distance E between the mean modulation indices
in the neurophysiological data versus the modulation

indices obtained from the CNN for each family. A
smaller Euclidean distance indicates a better fit to the
V2 data and higher correspondence to the brain (see
Technical Methods section for details). The rationale
behind using the Euclidean distance as a measure of
correspondence is that it is directly related to the root
mean squared error (MSE) up to a normalization
constant. We chose an error metric in the fitting that is
sensitive to absolute values rather than relative values,
since we are fitting modulation indices. Our optimal
weighted and subset regularized fits are done in terms
of squared Euclidean distance, which for the optimal
fitting method makes the error and regularization terms
work at similar scales. In the subset greedy approach,
MSE and Euclidean (and even squared Euclidean)
distances indicate the same outcome. Second, we
quantified the fits between the V2 data and the CNN
using Spearman’s rank-order correlation, in which a
larger correlation corresponds to a better fit.

CNN L2 population fits are well matched to the V2 data
compared to L1

We found that a subset of 103 L2 model neurons
exists that provide a good fit to the V2 neurophysiology
data (Figure 7, second row). Euclidean errors for
the subset greedy method were 0.20 and 0.22 for the
training and test predictions, respectively. Considering
the whole population, we obtained train and test
errors of 0.15 and 0.19, and for the regularized fits,
we obtained errors of 0.20 and 0.24, respectively. In
contrast, all three fitting approaches showed that for
the L1 neurons, no such set exists that can fit the V2
data well (Figure 7, first row). It is interesting to note
that this result held even if we did not cross-validate
the data, that is, even training and testing on the same
images and therefore overfitting could not lead to good
correspondence of the L1 neurons with the V2 data. In
addition, we could not get a good correspondence of L1
neurons with the V2 data, even when we increased the
number of L1 neurons by a factor of ≈30 (103 model
neurons vs. neighborhood of 8 × 8 × 48; Figure 2).

Our fitting results match the expectations based
on the distributions of L1 and L2 model neuron
modulation indices of Figure 4. The L1 modulation
indices are all near 0, so it is not possible to find a
population of L1 neurons that captures the higher
average modulation indices of the V2 neurons. In
contrast, the L2 model neurons have the proper range
of modulation indices to capture the V2 sensitivity.
Overall, our results indicated that the second layer, but
not the first layer of the CNN, is better matched to the
V2 data in terms of the sensitivity to textures versus
spectrally matched noise.

These fitting errors were all lower than the random
selection of 103 model neurons in the population that
we examined earlier (compare to Figure 6; Euclidean
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Figure 7. CNN model fits with cross-validation. (a-c) L1 fits with greedy subset selection (error: 0.63), full population optimally
weighted (error: 0.59), and regularized subset selection (error: 0.62) fitting approaches. (d-f) L2 fits with greedy (error: 0.22), full
population optimally weighted (error: 0.19), and regularized subset selection (error: 0.24) approaches. L2 neurons (second row) show
superior fits to the V2 data compared to L1 neurons (first row), indicating CNN L2 neurons are more V2-like in the context of texture
sensitivity. V2 data was collected in Freeman et al. (2013). Note that we plot icons of the actual textures representing each family, but
the fits to the mean modulation index are based on responses to the synthesized texture images versus the noise.

error 0.37). The explained variance (R2) was 0.60 for
the subset greedy, 0.54 for the subset regularized, and
0.70 for the full population. In contrast, the explained
variance for the random population of 103 neurons was
0.40. Note that this represents a lower bound, since we
are not considering the variability due to samples in a
family, nor are we taking into account variability in the
experiments due to stimulus repeats.

In the context of Spearman’s rank-order correlation,
we expect the layer to be highly correlated with V2
data if the model neurons in the layers have similar
representation to the natural and noise properties in
the input stimulus. Overall, for all the three methods,
we found that L2 neurons show stronger correlation
with the brain data than L1 neurons (0.80 vs. 0.03 in
greedy, 0.86 vs. 0.04 in full population, and 0.75 vs. 0.09
in regularized selection). We see that the correlation is
aligned with the Euclidean distance metric.

We have performed additional simulations, leaving
a whole class of textures out and predicting them by
training from the rest of the classes. This increases
the fitting errors in comparison to the leave-one-out
technique of cross-validation in L2 (greedy: from 0.22
to 0.32; full population: from 0.19 to 0.30; regularized:

from 0.24 to 0.31). However, these errors are low in
comparison to the fitting errors of L1 neurons. We
have also seen a similar trend in the compatibility for
the Spearman correlation (greedy: from 0.80 to 0.46;
full population: from 0.86 to 0.55; regularized: from
0.75 to 0.48). The correlations therefore decrease but
are still relatively high compared to the L1 neural
fits. This indicates that model neurons retained by
subset selection capture some properties common
to all textures, not just to the textures used for the
fit.

CNN population fits are reduced for the architecture
alone, with random rather than learned weights

Given the good correspondence of the L2 model
neurons to the V2 data, we wondered at what point
this fit breaks or can be reduced. In the qualitative
section, we found that on average, when selecting 103
model neurons randomly, the network developed more
sensitivity when the weights of the CNN were learned
from natural images, signifying that the learning is
important beyond the architecture itself. Here we
considered this question from the complementary
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Figure 8. V2 fits of the CNN architecture with random weights (rather than weights learned from natural images), cross-validated.
Both the L1 and L2 weights are randomly selected (hence denoted as L1L2 random). (a) Greedy subset selection fits (error: 0.52). (b)
Full population optimally weighted fits (error: 0.50). (c) Regularized subset selection fits (error: 0.53). Randomization of the CNN
weights of L1 and L2 leads to reduced compatibility of L2 with the V2 data (compare to Figure 7, second row).

approach of quantitatively selecting 103 model neurons
that best match the neurophysiology data.

We found that taking random weights in the CNN
resulted in a larger error, and therefore a reduced fit,
compared to the trained network. This can be seen in
Figure 8. The Euclidean errors were 0.52, 0.50, and
0.53, respectively, for the greedy subset, full population,
and regularized subset techniques.

Figure 9 shows a more comprehensive summary of
the cross-validated fitting errors (9a) and Spearman’s
rank-order correlations (9b) across a range of random
weight controls. Errors are measured in Euclidean
distance on 225-fold (leave-one-out) cross-validation.
The figure first summarizes the main results on the
trained weights, before showing the results for the
various randomized conditions. As described in the
previous subsection, the trained L1 model neurons
(Layer 1) exhibited the highest fitting errors and lowest
correlation among all layers and controls, meaning they
resulted in a poor fit (hence little correspondence) to
the neurophysiology V2 data (see also Figures 7a–c).
The trained L2 model neurons exhibited the lowest
fitting errors (greedy subset 0.22, full population
0.19, and regularized subset 0.24) and the highest
correlations (greedy subset 0.80, full population 0.86,
and regularized subset 0.75) in all fitting techniques,
meaning that L2 achieved better correspondence to the
V2 data (Figures 7d–f).

We exhaustively explored a range of controls for
randomizing the CNN layer weights (Figure 9a),
therefore considering the influence of the architecture
alone. Overall, assigning random weights to the
network layers increased the cross-validated fitting
error. Randomizing only Layer 2 weights and keeping
the L1 weights trained (rand 2) led to significantly
worse fits than when both the L1 and L2 weights were
trained in all three model neuron selection techniques
(p < 0.000002 in greedy; p < 0.00007 in optimal; p
< 0.00002 in regularized; one-sample t test). This

indicated that training on the full CNN model (i.e.,
both the L1 and L2 weights) led to an improvement
of the fit versus training on the L1 weights alone.
Randomizing both Layer 1 and Layer 2 weights (rand
12) lead to a more dramatic increase of the errors in the
fitting (see also Figure 8). This indicated that training
the first layer alone went some way in obtaining a better
fit. Overall, the CNN model trained on natural images
had the closest fit to the neurophysiology V2 data, in
line with the qualitative results that we showed in the
earlier portion of the article. One can arguably say
that relevant texture statistics come from interactions
at particular frequencies, which cannot be captured
by random weights because of their poor frequency
localization.

We wondered if deeper random architectures could
lead to better correspondence with the brain data. We
therefore considered randomizing Layer 1, 2, and 3
weights (rand 123) and randomizing Layer 1, 2, 3, and
4 weights (rand 1234). For these conditions, we fit the
outputs of Layers 3 and 4, respectively, to the data. The
goal here was to see if stacking more random layers
helped in obtaining a better fit to the data. However,
the error remained high even when we stacked together
four layers (compare rand 12 with rand 123 and rand
1234). Therefore, a deeper random network did not
rescue the fit.

As an alternative to randomizing the weights, we also
asked what happens if the trained weights within each
filter are shuffled to destroy any spatial correlations.
This maintains the distribution of the trained weights
in each of the model neurons, which the network
might benefit from. To test this, we spatially shuffled
the trained weights for each of the model neurons in
both layers (shuffle 12). We found that this resulted in a
slightly better fit than the randomized counterpart, but
still remained poor (compare rand 12 vs. shuffle 12).

Overall, our results reveal the necessity of training
the deep learning models on the natural image data set
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Figure 9. Summary of the CNN model-fitting errors to the V2
data (cross-validated), including various model manipulations.
rand 2 denotes applying random weights only for L2; rand 12
denotes applying random weights for both L1 and L2; rand 123
and rand 1234 indicate that the neurons from Layers 3 and 4,
respectively, are fitted. shuffle 12 denotes shuffling the weights
in L1 and L2, and noN denotes no normalization in the CNN
layers. Errors in random and shuffled weights are averaged over
10 iterations, and error bars show their standard deviation. (a)
L1 neurons (Layer 1) cannot fit the V2 data well (see also Figure
7, first row). For these manipulations, the errors are lowest in
L2 (Layer 2), indicating that the second layer of the CNN could
better match the cortical V2 data for the texture sensitivity (see
also Figure 7, second row). Randomizing the weights in the CNN
overall increases the fitting errors and hence reduces the
compatibility for the texture data (see Figure 8). This indicates
the importance of training the CNNs on natural scenes to
develop texture sensitivity, resulting in a better match to the V2
data. (b) Spearman’s rank-order correlations of the CNN model
fits with the V2 data. The second layer with the trained weights
shows the highest correlation with the brain data. This result is
aligned with the fitting error results in (a), in which the second
layer neurons show lowest fitting errors.

beforehand to achieve a better match to the V2 texture
sensitivity data. Other studies have also indicated the
necessity of model training (Cichy et al., 2016; although
see also Jarrett, Kavukcuoglu, Ranzato, & LeCun,
2009; Saxe et al., 2011). We found that one trained layer
did go some way in obtaining correspondence, but both
layers trained performed the best (echoing our average
results in the Differentiating L2 neurons from L1 in
CNNs subsection).

CNN fits improve in L2 after rectification and improve
further with pooling, but not local normalization

An important question regarding the CNN is how
the various computations influence the compatibility of
the model to the data.

One way to tease apart the different computations
(conv, rectification as in the ReLU operation, pool,
norm) involved in L2 is to consider the intermediate
outputs of the CNN trained on the ImageNet database
as in Figure 1b, and to quantify the impact of each
of these on the compatibility with the V2 data. This
gives us a sense of how much each of the computations
contributes to capturing the texture sensitivity.
We therefore generated outputs from each of the
intermediate points in L2.

Outputs from conv2 (i.e., after only the convolution in
the second layer) had high fitting errors. This is because
the response from the conv layers can be negative before
the ReLU. We found that compatibility to the V2 data
starts to develop already after the rectification in the
second layer (i.e., ReLU2). This is indicated by the
Euclidean fitting error (greedy: from 0.62 in L1 to 0.33
in L2; full population: from 0.59 in L1 to 0.31 in L2;
subset regularized: from 0.62 in L1 to 0.34 in L2). The
fitting errors after pooling improved (subset greedy 0.22;
full population 0.20; subset regularized 0.24). After
the local normalization (i.e., the point in L2 that we
initially referred to in all our measurements), the fitting
errors were subset greedy 0.22, full population 0.19,
and subset regularized 0.24. The main improvement in
the fit appeared to be at the L2 rectification (ReLU)
stage.

We also see the same trend in the Spearman
correlations. The main improvement in the correlation
happens after the ReLU2 stage (greedy: from 0.03 in L1
to 0.48 in L2; full population: from 0.04 in L1 to 0.48
in L2; subset regularized: from 0.09 in L1 to 0.55 in
L2). Compatibility keeps increasing in the pooling stage
in L2 (greedy subset 0.75, full population 0.82, and
regularized subset 0.74). If we go to the next stage and
take the output from the normalization operation, the
correlations remain almost the same but with a slight
improvement in all the fitting techniques (greedy subset
0.80, full population 0.86, and regularized subset 0.75).
Overall, we obtained the best fit to the neurophysiology
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data by incorporating the L1 computations, followed
by the L2 convolution, rectification, and pooling.

In the local response normalization in L1 and L2,
each neuron response is divisively normalized by the
responses of five neurons (including the self) that
spatially overlap. This loosely mimics the divisive
suppression in cortical V1 neurons (Albrecht & Geisler,
1991; Geisler & Albrecht, 1992; Heeger, 1992). Since
normalization is widely used in V1 models, we wanted
to further investigate its impact on the result for the
textures: For instance what happens to the sensitivity if
we ignore the local normalization of L1 (norm1) and L2
(norm2) layers altogether?

As one way to gauge what happens when we
remove normalization from the network, we retrained
AlexNet on the ImageNet database but with the
local normalization layers removed. From an object
recognition perspective, removing the normalization
layers in the CNN model decreased the accuracy
with a small margin (from 57.0% to 55.71%), echoing
previous observations. Fitting errors with and without
normalization were subset greedy: 0.22 versus 0.30; full
population: 0.19 versus 0.27; and subset regularized:
0.24 versus 0.30. This indicated that the trained model
with local normalization resulted in a better fit than the
model trained without normalization.

We also examined removing normalization from
the CNN with random L2 weights, following the
approach of the previous subsection. We found that
the local normalization had a mild impact on the
compatibility with the neuronal data. This can be
seen in Figure 9a (rand 2 vs. rand 2 noN; p < 0.001 in
greedy, p = 0.70 in full population, which was high
and did not pass significance, and p < 0.009 in subset
regularized; independent sample t test). Taken together,
our results suggest that normalization had only a
mild role in improving compatibility for the texture
data.

Higher layers of the CNN further, though modestly,
improve the V2 data fits

So far, our main focus has been when sensitivity
to textures first develops, strongly differentiating L1
from L2. However, it is interesting to consider how this
changes across higher levels of the deep network.

On one hand, an improvement in higher layers
might be expected, since the CNN learns progressively,
and computations in visual cortex may be better
approximated by multiple layers. There need not be a
one-to-one fit between the CNN layers and the cortical
areas. On the other hand, an increase in error might
be expected at high layers, similar to the observation
that area V4 better discriminates synthesized “jumbled
image” textures than area IT (Okazawa et al., 2015;
Rust & DiCarlo, 2010).

Figure 10. Fitting errors and Spearman’s rank-order correlations
for all the layers in AlexNet. Both the decrease in error (a) and
increase in correlation (b) are most prominent from L1 to L2,
with modest improvement thereafter.

The modulation index values for L3, L4, and L5
are −0.12, 0.05, and 0.01, respectively. Even though
higher layers show lower mean modulation index, there
is enough diversity in the distribution of modulation
indices for these layers to produce a good fit with the
subset selection approaches.

The results for both Euclidean errors (greedy: 0.17,
0.09, 0.16; full population: 0.11, 0.07, 0.09; regularized:
0.24, 0.14, 0.19) and Spearman’s rank-order correlations
(greedy: 0.92, 0.97, 0.89; full population: 0.95, 0.97,
0.96; regularized: 0.92, 0.99, 0.86) are summarized
in Figure 10. We found that for higher layers of the
CNN beyond L2, the fit modestly improved, as seen by
both the Euclidean error and Spearman’s correlation.
However, it then decreased again in the highest layer.
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VGG net

Approach L1 L2 L3 L4 L5

Subset greedy 0.63 0.42 0.15 0.10 0.21
Full population 0.61 0.33 0.12 0.06 0.03
Subset regularized 0.62 0.43 0.17 0.20 0.35

Table 1. Euclidean error distances between the model fits and
V2 neurophysiology data, in all layers of VGG net
(cross-validated). The most significant reduction in fitting errors
(hence increase in correspondence with V2) happens in L3
when the RF size becomes more compatible with V2.

The VGG network, with smaller RF sizes, develops
compatibility to the V2 data more gradually

We have thus far focused on the AlexNet CNN, and
showed that L2 (but not L1) model neurons develop
texture sensitivity similar to what was found for the
V2 data. Our main approach was to take a single
popular base model and its computational building
blocks, and examine how manipulating certain pieces
impacts the compatibility of the CNN model with
the V2 neurophysiology data. We also applied our
methodology to the VGG16 model (Simonyan &
Zisserman, 2015) (which we denote VGG), trained
on the same ImageNet data set. In the VGG model,
the receptive field sizes are smaller than in AlexNet
and develop more gradually; we wondered if that
would influence when texture sensitivity emerges in the
network.

We found that the VGG develops texture sensitivity
more gradually than AlexNet. Starting from L1, the fit
kept improving, with the largest reduction in the error
between L3 and L2 (similar to the L2 to L1 comparison
in AlexNet). The Euclidean errors quantify this trend
(Table 1). In particular, between L2 and L3, the errors
reduced from 0.42 to 0.15 in greedy, from 0.33 to 0.12
with the full population, and from 0.43 to 0.17 in the
subset regularized technique. The fit for L4 remained
similar to L3, with some increase in error for L5 with
the subset selection methods.

Since the VGG neurons have a smaller receptive
field size than AlexNet, we wondered if further
downsampling the textures to obtain a more realistic
RF size match between L2 and V2 would improve the
result. However, downsampling further to make the L2
receptive field size more compatible with V2 showed
unreasonably high fitting errors, perhaps because in this
case, the images become too blurry and partially lose
their texture properties.

This means that L3 in VGG becomes more
comparable with L2 in AlexNet (and to V2 in the
brain). This is probably because the increase of the
RF size in AlexNet is more rapid than in the VGG.
L2 RF size in AlexNet is 39 × 39 (with stride = 2 in

L1), but the same in the VGG net is only 16 × 16; in
contrast, the RF size in L3 of the VGG net is 44 ×
44. This is also consistent with the observation that
the modulation index for the texture images computed
over the Portilla and Simoncelli (2000) parameters
is weaker and more variable at small sizes (Ziemba,
Freeman, Simoncelli, &Movshon, 2018; Ziemba, Perez,
Simoncelli, & Movshon, 2017). The VGG also does not
include normalization, but based on our manipulations
with AlexNet, we believe that its effect is small for the
trained network in terms of compatibility with the V2
data.

In sum, for the VGG network, texture sensitivity
developed more gradually; compatibility with the
texture data first emerged in L3, and the change
between L2 and L3 was the most striking. Overall, we
found that middle layers in the VGG showed better
compatibility with the biology.

Summary of results

We focused on the neurophysiology data in Freeman
et al. (2013) & Ziemba et al. (2016), which showed that
texture sensitivity develops at the level of V2 but not
V1. To compare the CNN model and cortical data in
terms of texture sensitivity, we initially examined some
qualitative approaches (without any fitting), including
visualization of the texture class clustering (Figure 2)
and examination of the mean modulation index (Figure
3). This then prompted our quantitative approach for
fitting the cortical data, by determining model neurons
that best fit the data.

Our main goal was to quantify the compatibility
between the CNN and the cortical texture data, and
to understand what factors and computations impact
this compatibility. We wanted to both pinpoint when
(in terms of layer and computation) the compatibility
first emerges, how it changes across layers, and what
other factors (e.g., training, receptive field sizes) are
important. Our main findings were as follows:

• The CNN L1 was not compatible with the V2
texture data (Figures 7a–c), as revealed by the large
Euclidean error and small Spearman’s rank-order
correlation in the model fits (see Figures 9a and 9b).

• The CNN L2 showed a marked decrease in error
and increase in the Spearman’s correlation in fitting
the V2 data (see Figures 9a and 9b).

• The compatibility between L2 and V2 was first
observed following rectification and improved with
pooling; local normalization only had a mild effect.

• The compatibility between L2 and V2 showed
some modest improvement for higher layers of the
CNN and then slightly decreased again in L5, as
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quantified by the Euclidean error and Spearman’s
correlation (see Figures 10a and 10b).

• The CNN training on natural images was important
to obtain compatibility between L2 and V2;
randomizing or shuffling the weights reduced this
compatibility (see Figures 9a and 9b).

Discussion

We chose the CNN class of model for our
comparison to brain neurophysiology data because it
stacks some of the same basic building blocks as other
cortical models, because previous visualizations have
shown that it learns rather rich structure in the second
layer, and because recent work has shown intriguing
compatibility with cortical data along the hierarchy.
Our goal was not just to find compatibility with V2
data but rather to use the CNN model as a tool with
which to explore these computational building blocks
and other aspects of the model.

Here, we specifically focused on the transformation
between V1 and V2. Since this is early along the cortical
hierarchy, we were particularly interested in getting
a handle on the layers and respective computations
(e.g., convolution, rectification, spatial pooling,
normalization) for which the CNN model can develop
texture sensitivity and obtain better compatibility with
the V2 neurophysiology data.

In this sense, we are thinking of the CNN as going
beyond a black box. Rather, we would like to know
when compatibility first emerges in the CNN, how it
progresses along the layers, and what are the important
computations and factors (e.g., having the model
trained, keeping the RF size similar) that impact our
results. We specifically focused on texture processing
in early areas of visual cortex, for which Freeman
et al. (2013) have compellingly shown develops in
V2 but not in V1. This provided a rich data set to
quantitatively compare the CNN and other related
classes of hierarchical models.

We presented initial versions of this work and the
ability of deep neural networks to qualitatively capture
some of the V2 versus V1 texture data in abstract form
(Laskar, Sanchez Giraldo, & Schwartz, 2017). Ziemba
et al. have shown that a descriptive model of V2 can
capture some of the qualitative results on the increased
sensitivity to naturalistic textures (Ziemba, Goris,
Movshon, & Simoncelli, 2015; Ziemba, 2016). Zhuang
et al. showed increased sensitivity to textures versus
noise in higher layers of deep neural networks, and
related this to sparsity (Zhuang, Wang, Yamins, & Hu,
2017). The work described here, in contrast, focuses on
quantitatively fitting the experimental data to changes
that develop across the first two cortical areas.

We first asked at what layer and for what
computations texture sensitivity first emerges in the
AlexNet. We found that L2 (but not L1) of AlexNet
could well fit the V2 data. More specifically, we found
that texture sensitivity first emerged in the second layer
of AlexNet following the rectification (i.e., ReLU2;
Figure 1b) stage of L2 and that this was improved
by pooling. Local response normalization did not
significantly impact the emergence of the texture
sensitivity in the model.

What factors are important for better compatibility
between the CNN and the cortical V2 data already in the
second layer? We found that training on natural images
was necessary for the model to develop compatibility
with the cortical data. Various manipulations of
random or shuffled weights could partly account for the
modulation index data but lead to a reduced fit between
the CNN model and the V2 data relative to the learned
weights. This indicated that the architecture by itself
was not sufficient to obtain good compatibility.

Incorporating a trained first layer but random
weights in the second layer still did not yield as much
texture sensitivity or compatibility with the V2 data
as when both layers were trained (see Figures 4 and
8). However, when the first layer was trained, the
compatibility was much better than when both layers
were random. The importance of retaining the trained
weights (rather than random weights) in the first layer
may be because the model neurons need to be matched
to the frequencies and orientations that appear more
often in the natural images in order to pick out the
higher-order structure of the textures in the subsequent
layer.

In addition, we found that the receptive field size
needed to develop sufficiently fast (comparing AlexNet
and the VGG) and that the local normalization in
AlexNet only had a limited role in obtaining good fits
to the texture data.

Although the AlexNet CNN showed compatibility
with the V2 data, it too had some deviations from the
cortical data. For instance, according to the qualitative
results in Figure 2, it is intriguing that, with the same
amount of model neurons, the brain V2 outperforms
the CNN L2 at grouping together different texture
families (for the brain data, refer to Figure 4 in Ziemba
et al., 2016). In addition, as indicated by the modulation
index, the CNN on average was more sensitive to the
textures versus the noise than the V2 population. Its
rank order of the sensitivity to the textures on average
also deviated from the data. This suggests that the CNN
still has room for improvement in terms of capturing
the cortical data.

Local response normalization is a computation
prevalent in visual cortex (Carandini & Heeger, 2012).
It is possible that the limited role of normalization
in obtaining compatibility with the V2 data is due
to the homogeneous nature of the textures. Divisive
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normalization may play a more important role in
capturing data for nonhomogeneous images. Therefore,
future work should test compatibility with V2 data over
a broader range of natural stimuli and tasks.

In addition, the local normalization model we
implemented is based on AlexNet and limited to an
equally weighted normalization of groups of five
filters. Divisive normalization models of cortex have
been studied extensively (Albrecht & Geisler, 1991;
Geisler & Albrecht, 1992; Heeger, 1992; Carandini
& Heeger, 2012). Future studies should incorporate
richer biologically inspired models into hierarchical
architectures and consider their compatibility with
cortical data. For example, in cortical studies,
normalization is strongest for the same orientation as
the RF (see Geisler & Albrecht, 1992, for measuring
normalization with stimuli at the optimal orientation;
Günthner et al., 2019, for recent CNN model fitting
to V1). Weighted divisive normalization has been
incorporated in models of image statistics (see, e.g.,
Schwartz & Simoncelli, 2001), including multilayer
models (Ballé, Laparra, & Simoncelli, 2015). One
possibility for improvement of the V2 modeling in
future work is incorporating into CNNs rich models
of surround normalization (i.e., going beyond a local
normalization within the classical receptive field; see,
e.g., the range of surround normalization models
used for modeling V1 data in Coen-Cagli, Kohn, &
Schwartz, 2015). Models of surround normalization
have been recently incorporated in CNNs (see e.g., Ren,
Liao, Urtasun, Sinz, & Zemel, 2016; Sánchez Giraldo
& Schwartz, 2019).

More broadly, we have compared supervised
learning to no learning at all. Based on our results,
we do not expect that a single layer of unsupervised
sparse coding followed by random weights into the
second layer would sufficiently account for the V2
texture data. This also in and of itself does not lead
to rich second-layer receptive field structure. However,
two-layer unsupervised hierarchical models have led to
more interesting receptive field structure in the second
layer and have shown some compatibility to V2 data
(e.g., Lee, Ekanadham, & Ng, 2008; Coen-Cagli &
Schwartz, 2013; Hosoya & Hyvarinen, 2015). There
is indeed much room and interest to examine such
more sophisticated unsupervised learning models in
the future and their compatibility with the texture
data. A thorough comparison between supervised and
unsupervised learning models is an important future
direction.

In addition, adding more neurons per layer may
also play a role, and we found that choosing from a
larger spatial neighborhood could improve the CNN
fit. However, larger spatial neighborhoods did not
reveal a good fit for the L1 neurons in the AlexNet,
and the first layer of all models was not compatible
with the V2 data. This also resonates with the original

texture model of (Portilla & Simoncelli, 2000) that
was actually used to generate the experimental stimuli;
although the model does not have an explicit V2
neuron representation, the textures are generated by
joint statistics between V1 model neurons, that is, by a
two-layer model. Though we have not exhausted all the
possible hierarchical models, our method is pragmatic
enough to be applied to any hierarchical models to test
and find correspondence with the neurophysiology
data.

While we have focused on texture sensitivity in V2,
there is room to explore compatibility of CNNs with
changes across the early cortical hierarchy for other
stimulus properties. For instance, neurophysiology
studies have found selectivity in V2 to conjunctions of
orientations and to figure ground (Ito &Komatsu, 2004;
El-Shamayleh & Movshon, 2011; Zhou, Friedman, &
Von Der Heydt, 2000), with some aspects addressed
in computational models of V2 (Lee et al., 2008;
Coen-Cagli & Schwartz, 2013; Hosoya & Hyvarinen,
2015; Heeger, Simoncelli, & Movshon, 1996; Zhaoping,
2005; Hegde & Essen, 2000). There may not be one
unique CNN architecture that explains the neural data,
but we believe that testing across fairly early visual
areas (e.g., V1 and V2) with less stacked computations,
and for a wider range of stimuli and tasks, can
facilitate understanding of the critical factors (e.g.,
training) and computations (e.g., convolution, pooling,
rectification). Beyond area V2, studies have examined
the compatibility of CNN model neurons across the
different layers with shape tuning properties in visual
area V4 (Pospisil et al., 2016).

In the quantitative comparisons between the
modeling and data, we developed approaches for
subset selection. These were more appropriate for the
given cortical data than a linear combination of the
neural population responses, which is typically used in
fitting data. This is because the subset approach more
faithfully represented the data analysis, which included
an equally weighted average modulation index. This
approach also allowed us to ask the question about
whether there exists a population of model neurons
in the CNN that can well represent the experimental
data. We therefore chose a neural population from the
representation itself rather than a linear transform
of the representation. By finding a subset of model
neurons that are most compatible with the data, it may
be possible in the future to drive new experiments in
which stimuli are generated from this population of
model neurons and tested on the data. This may be
applied more generally in the future to modeling other
data sets and neural areas.

On one hand, our results add to the intriguing
findings that CNNs trained on natural images have
some compatibility with neurophysiology data, and
moreover, we found that this holds across low levels
of the cortical hierarchy. But we believe that our
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approach goes beyond showing compatibility, by
providing a direction for manipulating these early
layers and teasing apart what aspects of CNNs, the
training, and computational building blocks are most
critical. Our approach can also be applied to other
related architectures, computational building blocks,
stimuli, and neural areas (code is available in GitHub).
This creates the opportunity for more discussion
and systematic study of the various building blocks
of deep networks and opens the door to answer the
long-standing research question about correspondence
between primate and machine vision.

Technical methods

Texture generation

For the CNN simulations, we used the same ensemble
of synthetic texture images as in Freeman et al. (2013)
and Ziemba et al. (2016). The synthetic images were
grayscale images of size 320 × 320 and generated from
an original set of 15 texture images. From each original
texture, multiple synthetic texture images that matched
the statistics of the original image were generated.
Naturalistic textures for a given family were generated
each with a different random seed, using an iterative
process of constraining Gaussian white noise images
to have similar marginal and joint statistical properties
of the original textures (Portilla & Simoncelli, 2000).
Spectrally matched noise images were generated by
randomizing the phase, that is, computing the Fourier
transform and inverse Fourier transform after phase
randomization. From the 15 original textures, we have
15 different samples from each family, resulting in a
total of 225 images of naturalistic textures and 225
images of spectrally matched noise, as used in Freeman
et al. (2013) & Ziemba et al. (2016). For cross-validation,
we generated extra images per texture family from the
model of Portilla & Simoncelli (2000)).

Matching receptive fields with the physiology
data

We wanted to match as much as possible the spatial
extent of the images that the model receptive field
(versus the typical experimental neuron) is sensitive to.
The input images were size 256 × 256, and the average
receptive field size for V2 was approximately 150 ×
150 (with the V1 receptive field approximately half
that size). The receptive field size of model neurons
in AlexNet is 39 × 39 for L2 and 15 for L1. We
downsampled the input images by a factor of 4 to
obtain images of size 64 × 64, so that the effective

size of the L2 receptive field was closer to the neurons
recorded from in the experiment. We could not get an
exact match, due to the constraint of downsampling
by factors of 2. We also originally ran the whole set of
simulations without downsampling the images at all,
and the results remained qualitatively similar, except
that there were light improvements in the compatibility
to the data with the appropriate downsampling.

Following the experiments, we contrast normalized
the images before feeding them to the networks. The
luminance (l) is given by the mean pixel intensity of the
downsampled image (Id). The contrast (c) is given by
the standard deviation. The contrast normalized images
(In) are then defined as follows:

In = α
Id − l
c

+ β, (3)

where the desired contrast α defines the range of the
input pixels and the desired luminance β defines the
intensity centered on the range. We use 0.22 as the value
of α and since the desired luminance is gray, we use 0.5
as the value for β.

Deep CNN models for texture simulations

In our simulations, we mostly used the pretrained
AlexNet model, trained on natural images and
specifically on the ILSVRC 2012 ImageNet
(Russakovsky et al., 2015) data set. We also retrained
the network on ImageNet, or on the Places365 database
(Zhou, Lapedriza, Khosla, Oliva, & Torralba, 2017),
yielding similar results. We also contrasted this with an
equivalent model architecture that included random
weights (in the interval [−1, 1]) rather than pretrained
weights. AlexNet consists of five convolution followed
by three fully connected layers. The first and second
convolution layers are followed by local response
normalizations and max-pooling. We used CaffeNet,
which is a variant of AlexNet, where normalization
follows the pooling. We refer to this as AlexNet for
convenience. We examined the outputs from the first
and second normalization layers (along with a more
exhaustive examination of other layers) and compared
them to the experimental data for V1 and V2 neuron
outputs.

We used a modified version of AlexNet by changing
the stride at L1 from 4 to 2. This allowed us to
significantly reduce the receptive field size in L2 (from
67 × 67 to 39 × 39; with L1 of size 15 × 15), making it
more comparable with the neurophysiological ratio of
V2 to V1 RF size. This modification also matched the
experimental data better in our simulations.

In addition, we simulated the response of the first 48
(instead of 96) L1 model filters as they are the ones that

https://github.com/nasirml/DeepNetAndBrain
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show orientation selectivity; the remaining are more
color selective. These 48 filters are the input to the first
128 (out of 256) filters in Layer 2, so we considered
these first 128 filters from L2. We focused mostly on
the center four (2 × 2) spatial positions from each of
these selected CNN filter responses. This was to include
filters that cover the center of the input stimuli. We also
tested our method on larger spatial neighborhoods and
obtained qualitatively similar results.

We later considered the VGG16 network (Simonyan
& Zisserman, 2015), trained on the same ImageNet data
set as AlexNet. VGG16 is a 16-layer network stacked
with multiple (usually 2 or 3) convolution-rectification
layers with 3 × 3 filters and then followed by a pooling
layer. We examined outputs from those five pooling
layers, which we refer to as L1 through L5.

CNN population fitting and subset selection
approaches

We considered the total number of neurons in the
CNN as the number of filters in a given layer (e.g.,
48 for Layer 1 and 128 for Layer 2), times a center
2-by-2 spatial neighborhood. The rationale was that
experimental data can be collected for receptive fields
at different spatial positions. We chose a 2-by-2 spatial
neighborhood, and did not find a significant difference
when exploring larger spatial neighborhoods. We
selected 103 model neurons from L2 and 102 from L1 to
match the population numbers in the neurophysiology
experiments of Freeman et al. (2013). Before starting
the subset selection procedure, we removed from
consideration the CNN model neurons that had zero
response to any family. This amounted to 432 out of a
total of 512 neurons from which we selected the subset
of size 103.

Subset greedy approach
We consider the subset greedy technique known

as forward selection to choose a subset of 103 model
neurons that best match the data from the cortical
neurons. In the greedy approach, the goal is to build a
subset incrementally by adding neurons, one at the time,
that in conjunction with previously selected neurons
minimizes the Euclidean distance between the neural
data and the CNN model modulation indices. This
incremental process continues until we have chosen 103
neurons from the available CNN layer population. The
approach is greedy, because it optimizes the selection
of the next neuron as best it can given the current set
of neurons. However, it does not guarantee a globally
optimal solution.

Formally, let t be a 15-dimensional vector containing
the average modulation indices per texture family

from the 103 recorded neurons in the physiological
experiments, A be the set of n CNN model neurons,
and m j the average modulation indices per texture
family of the jth simulated neuron in A. Starting from
S (0) = ∅, the greedy algorithm adds a neuron to the
current set of selected model neurons that minimizes
the squared Euclidean distance between the neuronal
data and model average modulation indices:

S (k) = S (k−1)
⋃

argmin
j∈A\S (k−1)

∥∥∥∥∥∥t − 1
k

∑
j′∈S (k−1) ⋃ j

m j′

∥∥∥∥∥∥
2

2

.

The above procedure is repeated until the desired
number of model neurons is obtained. In particular,
we stop at 103 neurons. Fitting of this subset selection
technique is shown in Figure 7 (first column).

Optimal weighted average or full population
In this approach, we find a weighted average of

the set of simulated model neurons that best fit
the neurophysiology data by solving a constrained
optimization problem. The constraint guarantees that
the sum of the weights add to 1. This approach does
obtain an optimal solution and therefore shows the best
one can do. However, note that it does not as faithfully
capture the analysis of the neural data, since for the
data analysis, an equally weighted average of 103 neural
responses give rise to the modulation index data.

Formally, we have

minimize
w

‖Mw − t‖22
subject to wi ≥ 0, i = 1, ..., n and

n∑
i=1

wi = 1,
(4)

where M = [m1,m2, · · · ,mn] is the matrix of average
modulation index values for all families computed
according to (2), and w is the vector of weights for all
the n simulated model neurons. In terms of Euclidean
distance, this is the best fit that could be attained
by considering a weighted average on the simulated
neurons. Nevertheless, note that the solution need
not be sparse since there is no mechanism forcing the
weights to become zero, and the disparity of the weight
values can be hard to interpret. Fitting results of this
technique is shown in Figure 7 (second column).

Subset-regularized average followed by threshold
As noted above, for the optimal weighted average,

weights wi can be very disparate. Since we seek to select
a subset of the simulated neurons whose regular average
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(all weights are equal) follows closely the physiological
experiments, we relax the selection problem by solving
a regularized version of the optimization problem (5)
as follows:

minimize
w

‖Mw − t‖22 + λ ‖w‖22
subject to wi ≥ 0, i = 1, ..., n and

n∑
i=1

wi = 1,
(5)

where λ > 0 is the trade-off parameter that promotes
weight equalization. For λ = 0, which is equivalent to
solving (4), we found that only 14% of the simulated
model neurons have the weights wi ≥ 2e−3 with only a
handful of them containing large values that account
for

∑n
i wi = 1. As λ increases, the regularization term

pushes the weights towards the center of the simplex.
For instance, for λ = 0.8, we found that approximately
40% of the model neurons have weights wi ≥ 2e−3.
The subset of model neurons is selected by applying
a threshold to the estimated weights, as proposed in
Li, Sundar Rangapuram, and Slawski (2016), and then
choosing the 103 neurons with the highest weights.
However, a main difference from Li et al. (2016) is that
our two-stage procedure is applied to the solution of
(5) instead of (4). This approach also yields an excellent
fit to the V2 data for L2 model neurons, as shown in
Figure 7 (third column). We used λ = 0.8 for all fits;
lower λ increased the fitting error but did not alter the
trends (and vice versa).

Cross-validation

For the cross-validation, we extended the image data
set. In the original data, there were only 15 images
generated in each family. We therefore extended the
set by generating 210 additional images (texture and
noise) from each of the texture families. We optimized
the learning, assuming that each group of 15 images,
out of the 225 in each family, should yield an average
modulation index that is as close as possible to the mean
modulation index for that family in V2. Therefore,
for 225 images in each family, we randomly divided
the images into groups of 15. This yielded 15 data
points per family and a total of 225 data points for all
15 families. We then applied a 225-fold leave-one-out
technique, training on 224 points and leaving out one
point (corresponding to leaving out one set of 15
images). We thus learned the population (e.g., of 103
neurons in the greedy subset selection method) with the
224 training data points and made a prediction of the
mean modulation index for the left-one-out set of 15
images.

Euclidean distance as the measurement of
correspondence

To quantify the error between the CNN model
and the neurophysiology data, we use the Euclidean
distance metric. We calculate the Euclidean distance
between the values computed from the CNNs and the
neurophysiology V2 data. For the CNNs, the computed
values include the modulation indices obtained from
the various fitting and subset selection techniques,
or predicted modulation index in the case of the
cross-validation.

Given two vectors x = {x1, x2, · · · , xn} and
y = {y1, y2, · · · , yn} are two points in Euclidean
n-space, the Euclidean distance d(x, y) is computed
using the 2-norm as follows:

d(x, y) =
√√√√ n∑

i=1

(yi − xi)2. (6)

In all our experiments, n is usually 15, the number of
texture families, as we take the average over samples
and/or model neurons. Lower Euclidean distances
indicate a better fit of the model to the V2 data and
therefore higher correspondence of the model to the
brain.

Keywords: deep learning, mid-level vision, deep neural
network, texture perception, visual area V2, visual cortex
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