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Abstract. Novel subcellular fractionation procedures 
and pulse-chase techniques were used to study the in- 
tracellular transport of the microvillar membrane 
hydrolases sucrase-isomaltase and dipeptidylpeptidase 
IV in the differentiated colon adenocarcinoma cell line 
Caco-2. The overall rate of transport to the cell sur- 
face was two fold faster for dipeptidylpeptidase IV 
than for sucrase-isomaltase, while no significant differ- 
ences were observed in transport rates from the site of 
complex glycosylation to the brush border. The 

delayed arrival of sucrase-isomaltase in the compart- 
ment where complex glycosylation occurs was only in 
part due to exit from the endoplasmic reticulum. A 
major slow-down could be ascribed to maturation in 
and transit of this enzyme through the Golgi appara- 
tus. These results suggest that the observed asyn- 
chronism is due to more than one rate-limiting step 
along the rough endoplasmic reticulum to trans-Golgi 
pathway. 

PITHELIAL cells are specialized to perform a variety 
of polarized functions that are in turn reflected by the 
polarized morphology and organization of their sur- 

face membrane domains, the basolateral and the microvillar 
(also termed brush border or apical) membranes. These do- 
mains possess unique sets of integral membrane proteins 
(34). Unraveling the biosynthesis of epithelial membrane 
proteins and the selective nature of their transport to the cell 
surface might therefore lead to an understanding of the 
processes underlying the biogenesis and maintenance of cell 
surface polarity. 

Membrane glycoproteins are synthesized on ribosomes 
bound to the endoplasmic reticulum and are in most cases 
cotranslationally inserted into the lipid bilayer (30, 42, 43). 
During translocation through the endoplasmic reticulum, 
N-linked glycosylation and immediate trimming of the oligo- 
saccharide side chains take place. The proteins are subse- 
quently transported to and through the Golgi apparatus (6) 
where further processing of the N-linked and, in some in- 
stances, the addition of O-linked sugars occurs (19). After 
completion of the biosynthesis in the Golgi apparatus, the 
proteins are then transported to their spatially correct plasma 
membrane domains by a mechanism which is at present only 
poorly understood. The intracellular transport of newly syn- 
thesized secretory and membrane proteins was found to be 
asynchronous in many instances (7, 10, 21, 32, 44). These 
studies have suggested that the exit from the endoplasmic 
reticulum was the rate-limiting step for efficient transport. 
Among the many glycoproteins that can be found in the 
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brush border membrane of intestinal epithelial cells, the 
hydrolases (in particular, peptidases and disaccharidases) 
are the major constituents (12, 18, 24, 33). Some of these 
hydrolases are expressed in the human intestinal epithelial 
cell line Caco-2 (14, 26). Using this cell line in studies of the 
biosynthesis of dipeptidylpeptidase IV (DPPIV)/ a repre- 
sentate peptidase, and sucrase-isomaltase (SI), a represen- 
tate disaccharidase, Hauri et al. (14) found that the time 
course of maturation of these two membrane proteins was 
asynchronous. Since the aim of the present study was to 
define the rate-limiting steps involved in this asynchronous 
intracellular protein transport, we found it necessary to de- 
sign novel methods for the isolation of brush border mem- 
branes and of membranes derived from the Golgi apparatus. 
Using these new isolation techniques in conjunction with 
pulse-chase experiments, we can now provide evidence that 
the asynchronous transport of microvillar proteins is due to 
at least two major rate-limiting steps along the rough en- 
doplasmic reticulum to trans-Golgi pathway. 

Materials and Methods 

Cell Culture and Labeling with psS]Methionine 
Caco-2 cells were grown in Optilux petri dishes (Falcon Labware, Oxnard, 
CA) as described (14) or on Millipore filters (HATF0025) in mini-Mar- 
brook chambers (11). The cells were subcultured weekly using the tryp- 

1. Abbreviations used in this paper: CCCP, carbonyl cyanide m-chlorophe- 
nylhydrazone; DPPIV, dipeptidylpeptidase IV; DPPIVc, complex-glycosyl- 
ated form of dipeptidylpeptidase IV; DPPIVh, high-mannose form of dipep- 
tidylpeptidase IV; SI, sucrase-isomaltase; Sic, complex-glycosylated form 
of sucrase isomaltase; SIh, high-mannose form of sucrase-isomaltase. 

© The Rockefeller University Press, 0021-9525/88/06/1853/9 $2.00 
The Journal of Cell Biology, Volume 106, June 1988 1853-1861 1853 



sin/EDTA method (26). Labeling with [35S]methionine was carried out 
with cells grown on filters 5-15 d after confluency (14). In all experiments, 
a pulse time of 15 min was used except for the experiments with carbonyl 
cyanide m-chlorophenylhydrazone (CCCP). Pulse-chase experiments in the 
presence of CCCP were performed essentially according to Fries and Roth- 
man (9) with the following modifications. The filter chambers were disas- 
sembled and the cells were pulse labeled with 250 I, tCi [3~S]methionine for 
5 min after a preincubation in methionine-free medium for 15 min. The 
filters were washed twice with 5 ml of ice-cold PBS containing 0.1 g/liter 
CaCI2 and 0.059 g/liter MgSO4. The cells were then incubated in 5 ml of 
the same buffer containing 10 or 100 I.tM CCCP. 10 min later the cells were 
transferred to fresh buffer containing CCCP and returned to the 37°C incu- 
bator for 45 rain before harvesting. 

Immunofluorescence, Immunoisolation of Antigens, 
and SDS-PAGE 

Microvillar hydrolases were localized by immunofluorescence on semithin 
cryosections (39) of filter grown Caco-2 cells using mAb HBB2/614/88 
against SI and mAb HBB3/775/42 against DPPIV, as described (14). (Na+/ 
K+)-ATPase was localized using mAb C 62.4 against the catalytic a-sub- 
unit of the dog enzyme (17) which was found to cross react with the human 
enzyme. Details of immunoisolation and SDS-PAGE were as described 
(14). SI was precipitated with a mixture of the four mAbs HBB2/614/88, 
HBB 3/705/60, HBB2/219/20, and HBB 1/691/79 directed against differ- 
ent epitopes, and DPPIV was precipitated with antibody HBB3/775/42. 
132S]Methionine-labeled proteins were visualized by fluorography using 
EN3HANCE (New England Nuclear, Boston, MA). Bands on fluorograms 
were quantified by using a Camag LTC Scanner II connected to a Camag 
SP 4290 integrator. Alternately, [35S]methionine-labeled proteins were ex- 
cised from dried gels. The gel slices were digested with H202 at 50°C for 
24 h followed by an overnight incubation in 2 ml Protosol (New England 
Nuclear). Finally, 8 ml of Instagel scintillation fluid were added and the ra- 
dioactivity was determined in a 460-CD liquid scintillation counter. Both 
methods of quantification were compared and gave identical results. 

Electron Microscopy 
Small samples of membrane suspensions were prefixed at room temperature 
by adding a stock solution of glutaraldehyde (8%) to a final concentration 
of 1%. After 15 rain, the samples were centrifuged in a Microfuge or Air- 
fuge (Beckman Instruments Inc., Palo Alto, CA). The supernatants were 
replaced by 1 or 2% glutaraldehyde in PBS. The fixed pellets were stored 
at 4°C until further processing. They were then washed with PBS and 
postfixed with 1% osmium tetroxide in PBS. The pellets were dehydrated 
and embedded in Epon BI2. Gray-silver sections were cut with an Ultracut 
E (Reichert Jung, Vienna), poststained with saturated uranyl acetate in 50% 
ethanol and lead citrate (40), and studied with a Philips 300 or 420 T elec- 
tron microscope. 

Isolation of Brush Border Membranes 
The method for the isolation of brush border membranes from Caco-2 cells 
was based upon procedures described by Lever (20) and Stieger and Murer 
(36). Cell monolayers were washed in situ once with 0.9% (wt/vol) NaCI 
and once with buffer A (300 mM D-mannitol, 5 mM EGTA, 12 mM Tris- 
HCI, pH 7.1, 40 I.tg/ml phenylmethylsulfonyl fluoride [PMSF] that was 
added from a stock solution, 40 mg/ml in ethanol). The cells were then 
scraped from the dish with a rubber policeman and suspended in 5 ml of 
buffer A (all volumes are given for one 100-mm dish) and centrifuged for 
5 min at 560 g~v. The cells were carefully resuspended in 1 ml of buffer A 
and the osmolarity of the homogenization medium was lowered by the addi- 
tion of 4 ml of ice-cold H20. The cells were equilibrated with nitrogen for 
30 rain at 35 bar in a minibomb cell disruption chamber (Kontes Co., 
Vineland, NJ) and then slowly released. The homogenate was degassed for 
l0 rain and MgCI2 was added to a fnal concentration of 10 mM. After 15 
rain on ice, the homogenate was centrifuged for 15 min at 5,000 rpm (2,300 
g~v) and the resulting supernatant for 30 min at 15,000 rpm (20,700 g~v) in 
an SS34 rotor (Sorvall Instruments Div., Newton, CT). The pellet was 
resuspended in 1 ml of 60 mM D-mannitol, 5 mM EGTA-Tris, pH 7.1, 40 
ttg/ml PMSE and then CaCI2 was added to a final concentration of 10 
raM. The suspension was left on ice for 15 rain followed by two centrifuga- 
tion steps as after addition of MgCI.,. The resulting brush border mem- 
brane vesicles (P4 fraction) were resuspended in the buffer required for the 
subsequent experiment. 

For pulse-chase experiments, metabolically labeled cells of a single filter 

culture were pooled with unlabeled cells of three 100-mm culture dishes be- 
fore subcellular fractionation. 

Isolation of a Fraction Enriched in 
Golgi-derived Membranes 
The cell monolayers were washed once with 0.9% (wt/vol) NaCI and once 
with 250 mM sucrose, 10 mM triethanolamine-acetic acid, pH 7.4 (buffer 
A). The cells were then scraped from the dish, suspended in 2 ml of buffer 
A per 100-mm dish, and centrifuged for 5 min at 560 g~. The cell pellet 
was gently resuspended in 2 ml of 250 mM sucrose, 1 mM EDTA, 10 mM 
triethanolamine-acetic acid, pH 6.5 (buffer B), and centrifuged as above. 
The cells were then resuspended in 3 ml buffer B and homogenized by pass- 
ing them 10 times through a ball-bearing homogenizer (2) with a clearance 
of 20 I.tm. The resulting homogenates were then pooled and centrifuged for 
10 rain at 2,000 rpm (370 g~) in an SS34 rotor (Sorvall Instruments Div.). 
The superuatant was brought to exactly 30 ml with buffer B, and 4.66 ml 
stock isoosmotic Pereoll (density of Percoll = 1.129, initial density = 1.048) 
was added. The Percoll gradient (see Fig. 5) was centrifuged for 41 rain at 
20,000 rpm (36,900 gay) in an RC 2B centrifuge (Sorvall Instruments Div.) 
and the resulting gradient fractionated as follows. About 1.9 cm below the 
top of the gradient a sharp band was present. The position of this band was 
measured and the corresponding volume plus 1 ml (usually 10 ml in total) 
was discarded. The next 8 ml were pooled and processed for two gradients 
as follows. 4 g of the fraction was mixed with 2 g 60% ([wt/wt] in 1 mM 
EDTA, 10 mM triethanolamine-acetic acid, pH 6.5) Metrizamide in a cen- 
trifuge tube and overlayed with 2.5 ml each of 17.5 and 11.5 % ([wt/wt] same 
buffer) Metrizamide and, finally, with buffer B. The gradient was run for 
7 h at 23,000 rpm (70,600 gay) at 8°C in a TST 41.14 rotor (Kontron Elek- 
tronik GmbH, Ziirich). The 17.5:11.5% interphase was enriched in Golgi- 
derived membranes. This fraction, if necessary, was diluted with the buffer 
needed for the subsequent experiment and centrifuged for 1 h at 38,000 rpm 
(99,800 gay) at 4°C in a TFT 75.13 rotor (Kontron Elektronik GmbH). 

For the pulse-chase experiments with filter-grown cells, unlabeled Caco- 
2 cells grown on petri dishes were used as carriers as in the isolation proce- 
dure for brush border membranes. 

Isolation of Pre-Golgi Membane Fraction 
This fraction was isolated from the same Percoll gradient as used for the 
isolation of the Golgi fraction (see Fig. 5). 1 ml at the bottom of the Percoll 
gradient (fraction V) was discarded. The next 8 ml (fraction IV) was col- 
lected and processed for 2 gradients. 4.0 g of the fraction was mixed with 
3.27 g 60% ([wt/wt] in 1 mM EDTA, 10 mM triethanolamine-acetic acid, 
pH 6.5) Metrizamide in a centrifuge tube and overlayed with 3 ml 22% 
([wt/wt] same buffeO Metrizamide followed by buffer B. The gradient was 
run for 7 h at 23,000 rpm (70,600 g~,) at 8°C in a TST 41.14 rotor (Kontron 
Elektronik GmbH). The 22:27 % interphase (E II fraction) was collected and 
designated pre-Golgi fraction. 

Enzyme Assays 

All measurements were performed at 37°C. Alkaline phosphatase (mea- 
sured according to reference 37) and sucrase (measured according to refer- 
ence 4) were used as marker enzymes for the brush border membrane. K +- 
stimulated p-nitrophenylphosphatase (measured according to reference 37; 
using buffers I and III) and KCN-resistant NADH oxidoreductase (deter- 
mined as in reference 35) were used as markers for the basolateral mem- 
brane and the endoplasmic reticulum, respectively. With the exception of 
sucrase, all of these enzymes were measured using an LKB reaction rate 
analyzer 2086 Mark II. Glucosaminidase (measured according to reference 
31) was used as a marker for lysosomes and galactosyltransferase (measured 
according to reference 40) with 0.5% (wt/vol) Triton X-100 and ovomucoid 
(as acceptor protein) was used to detect Golgi apparatus-derived mem- 
branes. Protein was determined with the Bio-Rad protein assay kit using 
protein standard 1 (Bio-Rad Laboratories, Cambridge, MA). 

Results 

Polarized Expression of Sl and DPPIV in the 
Microvillus Membrane of Caco-2 Cells 
Before undertaking biosynthetic studies, it was essential to 
establish the domain-specific location of DPPIV and SI in 
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Figure 1. Immunofluorescent labeling of 1-vtm cryosections of Caco-2 cell monolayers with mAb HBB 3/775/42 against DPPIV (a), mAb 
HBB 2/614/88 against sucrase-isomaltase (c), and mAb C62.4 against Na+/K+-ATPase (e). (b, d, and f )  Corresponding phase-contrast 
micrographs. Note that the hydrolases are restricted to the apical cell surface, while Na÷/K+-ATPase is confined to the lateral aspect of 
the cells. The lack of immunofluorescence for the latter enzyme of the basal cell surface may be due to the loss of this domain during 
scraping of the cells. Bar, 24 lain. 

Caco-2 cells grown on Millipore filters. In Fig. 1, immu- 
nofluorescent labeling of  Caco-2 cryosections with enzyme- 
specific mAbs clearly showed that SI and DPPIV were de- 
tectable exclusively in the brush border membrane while the 
Na+/K*-ATPase ct-subunit was associated only with the ba- 
solateral membrane. We conclude that the surface membrane 
of  Caco-2 cells is polarized with respect to these three en- 
zymes. 

Transport of  S l  and DPPIV  from the Golgi Apparatus 
to the Cell Surface 

Previous studies on the biogenesis of microvillar enzymes 
were performed with Caco-2 cells grown on petri dishes (14). 
Since surface polarity is more developed in cells grown on 
Millipore filters than on solid supports (1, 11), we applied the 
former system to Caco-2 cells. However, growth of the cells 
on Millipore filters might alter the biogenesis of the inves- 
tigated membrane proteins. Therefore, it was important to 
establish that the previously observed asynchronism of pro- 
tein transport also occurred in Millipore-grown cells. Fig. 2 
shows the time course of conversion of  the high-mannose to 
the complex-glycosylated forms of the two hydrolases in cell 
homogenates, an event that is mediated by the Golgi ap- 

paratus. Half maximal appearance of complex-glycosylated 
DPPIV and SI occurred at '~15-~20 min and 130-140 min, 
respectively. These results are similar to those of  our previ- 
ous study and therefore suggest that growth of  the Caco-2 
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Figure 2. Conversion of the high-mannose to complex-glycosylated 
forms of DPPIV (X) and SI (o) in homogenates of Caco-2 cells. 
Shown are results from pulse-chase experiments with [3SS]methio- 
nine (pulse, 15 min). After various time intervals of chase, the en- 
zymes were immunoprecipitated and separated by SDS-PAGE. Gel 
slices corresponding to high-mannose or complex-glycosylated 
forms of the enzymes were cut out of dried gels, solubilized, and 
radioactivity was measured in a 13-counter. 
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Table L Specific Activities and Enrichment Factors of Marker Enzymes in Brush Border Membrane Vesicles from 
Caco-2 Cells 

Specific activity 

Homogenate Isolated membrane Enrichment factor 

mU/mg protein 

Alkaline phosphatase 53.3* + 19.5 1,103.4 + 382.3 20.9 ___ 2.8 (n = 8) 
Sucrase 3.6 + 0,5 68.3 + 17.3 19.5 + 3.5 (n = 5) 
K+-stimulated p-nitrophenyl phosphatase 4.8 + 0,8 11.5 + 8,9 2.5 + 2.1 (n = 5) 
KCN-resistant NADH-oxidoreductase 174.4 + 22.3 62.4 + 29.5 0.4 + 0.1 (n = 8) 
Glucosoaminidase 58.5 + 30.9 61.2 + 41.7 1.0 + 0.3 (n = 7) 
Galactosyltransferase 0.18 + 0.01 0.08 + 0.04 0.4 + 0.2 (n = 5) 

*Mean + 1 SD. 
n, number of experiments. 

cells on filters rather than on petri dishes does not signifi- 
cantly alter the overall maturation pattern of the two enzymes 
under investigation. To determine whether transport of the 
two enzymes from the site of complex glycosylation in the 
Golgi apparatus to the cell surface is also asynchronous, we 
developed a method for the isolation of the brush border 
membrane from Caco-2 cells. Although seemingly similar 
to previously published methods for the isolation of brush 
border membranes from intact tissue, it is worth noting that 
homogenization conditions and the order of the precipitation 
steps (i.e., Mg ÷÷ before Ca ++) were found to be critical for 
obtaining highly purified brush border membranes from 
Caco-2 cells. Tables I and II show that the membrane frac- 
tion isolated using this method was enriched in brush border 
marker enzymes SI and alkaline phosphatase, while contam- 
ination by intracellular membranes was minimal. Due to the 
small number of labeled cells it was advantageous to use car- 
rier dishes (unlabeled Caco-2 cells grown in petri dishes) for 
the pulse-chase experiment. The clearly asynchronous ap- 
pearance of DPPIV and SI in the brush border fraction is il- 
lustrated in Fig. 3. It is also notable that the autoradiograms 
lacked any band in the region of the high-mannose form of 
these proteins, providing additional evidence for the purity 
of the membrane fraction. The kinetics of the appearance of 
DPPIV and SI in the brush border membrane of the Caco-2 
cells is shown in Fig. 4. The difference between the time of 

half-maximal appearance in the brush border membrane and 
the half-maximal appearance of the complex-glycosylated 
forms in the homogenate was used to calculate a transport 
rate of 40-60 min for SI and 60-75 min for DPPIV. Thus the 
transport kinetics from the site of complex glycosylation in 
the Golgi apparatus to the brush border membrane were 
similar for the two hydrolases. 

Table II. Yield and Recovery of Marker Enzymes in Isolated 
Brush Border Membranes from Caco-2 Cells* 

P4 Total~ 

Protein 0.33 + 0.03 82 +__ 10 (n = 6) 
Alkaline phosphatase 6.8 + 1.0 97 + 15 (n = 6) 
Sucrase 6.7 + 1.4 76 + 10 (n = 4) 
K+-stimulated p-nitrophenyl 

phosphatase 0.88 +_ 0.71 75 + 13 (n = 5) 
KCN-resistant NADH- 

oxidoreductase 0.10 + 0.03 88 + 4 (n = 6) 
Glucosaminidase 0.33 + 0.03 84 + 7 (n = 6) 
Galactosyltransferase 0.14 + 0.06 85 + 10 (n = 5) 

* The values are given as percentage of the amount determined in the 
hate and represent means + I SD. 
~: Sum of recoveries determined in each fraction. 
n, number of experiments. 

homoge- 

Figure 3. Appearance of newly synthesized DPPIV and SI in the 
brush border membrane fraction of Caco-2 cells. The cells were 
pulse labeled with [35S]methionine and the hydrolases were immu- 
noprecipitated from the subcellular fraction after various times of 
chase with a mixture of mAbs against SI and DPPIV. 
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Figure 4. Appearance of newly synthesized DPPIV and SI in the 
brush border membrane fraction of Caco-2 cells. The pulse-chase 
protocol and the quantification of the radioactivity of gel slices was 
as in Fig. 2. The maximal relative amount of radioactivity associ- 
ated with the enzymes (see Materials and Methods) was set to 
100%. 

Appearance and Maturation of  DPPIV and SI in 
the Golgi Apparatus 

To further dissect the asynchronous transport of SI and 
DPPIV, we developed a method for the isolation of a fraction 
enriched in Golgi-derived membranes (Fig. 5). Such a prep- 
aration, in conjunction with the pulse-chase technique, al- 
lows one to differentiate between pre-Golgi and intra-Golgi 
events. Caco-2 cells were homogenized under conditions 
that left the cisternae of the Golgi apparatus intact while most 
other membrane compartments vesiculated enabling us to 
isolate the Golgi elements on gradients. Fig. 6 shows a repre- 
sentative electron micrograph of the final fraction containing 
the expected drumstick profiles characteristic for the Golgi 
apparatus. The enzymatic characterization of this fraction, 
designated "Golgi fraction;' is given in Tables III and IV. The 
fraction was enriched in galactosyltransferase activity, a 
marker enzyme for the Golgi apparatus, while enzyme ac- 
tivities for other cellular membranes were not enriched. 

A pulse-chase protocol was used to study arrival at and 
transit through the Golgi fraction of the two hydrolases. A 
typical autoradiogram of such an experiment is given in Fig. 
7. The flow kinetics are drawn in Fig. 8, a and b. The time 
required for half-maximal labeling of the high-mannose 
forms of the enzymes in the Golgi fraction was defined as the 
rate of their transport from the endoplasmic reticulum to the 
cis side of the Golgi apparatus. This rate, designated "appar- 
ent transport rate" (see Discussion), was found to be <15 min 
for DPPIV and ~45 min for SI. Thus, arrival of SIh (the 
high-mannose form of SI) in this fraction was delayed. How- 
ever, this delay only in part accounted for the asynchronism 
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Figure 5. Flow diagram for the 
isolation of the Golgi fraction 
(FII) and a pre-Golgi mem- 
brane fraction (Ell). 

Figure 6. Representative electron micrograph of the FII Golgi frac- 
tion. Note the electron dense drumstick profiles characteristic for 
the Golgi apparatus. 

of maturation to Sic (the complex-glycosylated form of SI) 
in the homogenate (Fig. 2). Fig. 8 b shows that the conver- 
sion of SIh to Sic was also substantially delayed in the Golgi 
fraction when compared to that of DPPIV (Fig. 8 a). In the 
Golgi fraction a much higher percentage of total SI exists as 
high-mannose forms than is true for total DPPIV. At the 
same time this high-mannose SI appears in the Golgi fraction 
more slowly than the high-mannose DPPIV. Half-maximal 
appearance of Sic in the Golgi fraction was observed after 
'~100-110 min. The Sic in the Golgi fraction was maximally 
labeled after •180 min at which time the radioactivity of this 
enzyme in the brush border fraction was half-maximal. 
When the enzyme approached maximal levels in the brush 
border fraction (after 300 min) the Sic in the Golgi fraction 
had decreased by only ,~40%, suggesting the existence of a 
Sic pool that is not immediately exported from the Golgi 
apparatus. The kinetic behavior of DPPIV is strikingly dif- 
ferent from that of SI. Conversion of DPPIVh (the high- 
mannose form of DPPIV) to DPPIVc (the complex form of 
DPPIV) was rapid taking ~15 min only. The disappearance 
of DPPIVc from this fraction was biphasic. A rapid disap- 
pearance was observed up to 120 min at which time appear- 
ance of DPPIVc in the brush border fraction was close to 
maximal. This rapid disappearance is therefore most likely 
due to delivery of DPPIVc to the brush border. At later time 
points, the radioactivity in DPPIVc disappeared more slow- 
ly. Overall these results suggest that the intracellular trans- 
port of SI is delayed at a pre-Golgi as well as at an intra-Golgi 
stage. 

Pre-Golgi Events 

The above conclusion that the Golgi apparatus significantly 
contributes to the asynchronous protein transport critically 
depends on the purity of the Golgi fraction. For example, a 
copurification of a late endoplasmic reticulum compartment 
(i.e., transitional elements) with the Golgi fraction could 
lead to the above results even if exit from the endoplasmic 
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Table III. Specific Activities and Enrichment Factors of Marker Enzymes in a Fraction Enriched in Golgi-derived 
Membranes (FII) and in an Early Biosynthetic Fraction (Ell) 

Specific activity Enrichment factor 

Homogenate FII Ell FII Ell 

mU/mg 

Galactosyltransferase 0.281 + 0.009 8.183 ___ 0.811 0.024 +__ 0.013 29.1 ± 2.2 0.09 + 0.05 
K+-Stimulated p-nitrophenyl 

phosphatase 11.0 + 2.3 1.9 + 3.2 0.3 + 0.3 0.14 + 0.25 0.03 ± 0.03 
KCN-resistant  NADH-  

oxidoreductase 208.0 + 31.8 115.8 + 87.9 622.3 + 41.6 0.54 + 0.36 3.1 + 0.52 
Glucosaminidase 46.3 + 7.6 45.7 + 31.0 17.8 + 6.7 0.95 + 0.59 0.38 + 0.11 
Alkaline phosphatase 188.6 + 24.5 200.8 + 44.5 445.5 + 50.8 1.02 + 0.09 2.4 + 0.2 

The numbers indicate means + I SD of four independent experiments. 

reticulum would be the only rate-limiting step. Due to the 
lack of an established marker protein for transitional ele- 
ments, it is presently not possible to directly assess such a 
cross contamination. However, it appears unlikely that tran- 
sitional elements would cofractionate with our Golgi fraction 
since, depending on the homogenization procedure, they can 
be expected to have similar properties to the smooth en- 
doplasmic reticulum (i.e., if vesiculated) or to the rough en- 
doplasmic reticulum (i.e., if still attached to portions of the 
rough endoplasmic reticulum). Both these fractions are 
denser than the Golgi cisternae and were found to migrate 
to a lower position on metrizamide gradients. 

Assuming that at least part of the transitional elements 
would vesiculate under our homogenization conditions and, 
thus, probably cofractionate with smooth endoplasmic retic- 
ulum, we have isolated a crude membrane fraction which is 
enriched in the smooth endoplasmic reticulum marker KCN- 
resistant NADH-oxidoreductase but low in galactosyltrans- 
ferase (Tables III and IV). Pulse-chase experiments showed 
that this fraction contained high-mannose forms of both en- 
zymes, which had been labeled earlier than the correspond- 
ing high-mannose forms in the Golgi fraction (Fig. 9). While 
radioactivity in DPPIVh immediately decreased starting 
at the earliest chase time, the radioactivity in SIh only de- 
creased after a 60-min chase. These results indicate that this 
membrane fraction termed pre-Golgi fraction contains a 
compartment which is intermediate to rough endoplasmic 
reticulum and Golgi apparatus and therefore the data are in 
line with the suggestion that the delayed transport of SI is in 
part due to a pre-Golgi event. 

To further characterize the pre-Golgi and the Golgi frac- 
tions, pulse-chase experiments were performed in the pres- 
ence of CCCP. CCCP, an uncoupler of oxidative phosphory- 
lation, is known to block the exit of proteins from the 
endoplasmic reticulum without affecting Golgi morphology 
(38). CCCP had indeed no effect on the subcellular fraction- 
ation of Caco-2 cells (not shown). Fig. 10 shows that in the 
presence of CCCP, DPPIVh is not converted to the complex 
form in the pre-Golgi fraction (which also contains some 
brush border membranes; see Table III), while neither 
DPPIVh nor DPPIVc appeared in the Golgi fraction. Similar 
results were obtained with SI (not shown). These results sug- 
gest that the pre-Golgi fraction contains kinetically late endo- 
plasmic reticulum membranes, probably transitional elements, 
and that the Golgi fraction is not detectably contaminated by 
elements of the endoplasmic reticulum. 

Discussion 

The present study suggests that the observed asynchronous 
transport of SI and DPPIV to the cell surface is due to at least 
two rate-limiting steps; i.e., exit from the endoplasmic retic- 
ulum and transit through the Golgi apparatus. The transport 
from the site of complex glycosylation, an event that is as- 
sociated with the Golgi complex, to the brush border was 
similar for the two enzymes. We believe that the slightly 
different transport rates are in fact not significantly different. 
Furthermore, the data suggest that in the Golgi complex 
there is a slowly turning over pool of hydrolases, as indicated 
by the unexpectedly long residence time of a fraction of the 

Table IF. Yield and Recovery of Marker Enzymes in a Fraction Enriched in Golgi-derived Membranes (FII) 
and in an Early Biosynthetic Membrane Fraction (Ell) 

FII Eli Total 

Protein 0.43 + 0.08 6.1 ___ 1.6 91.6 + 11.9 
Galactosyltransferase 13.6 + 2.0 0.5 + 0.3 111.4 + 6.9 
K+-stimulated p-nitrophenyl- 

phosphatase 0.1 + 0.1 0.2 + 0.2 85.4 + 10.9 
KCN-resistant  NADH- 

oxidoreductase 0.2 + 0.1 18.6 + 3.2 83.7 + 5.5 
Glucosaminidase 0.4 + 0.2 2.3 + 1.1 87.0 + 11.1 
Alkaline phosphatase 0.5 + 0.1 14.1 + 3.1 105.4 + 16.3 

The numbers indicate means + 1 SD of four independent experiments. 

The Journal of Cell Biology, Volume 106, 1988 1858 



Figure 7. Appearance of new- 
ly synthesized DPPIV and SI 
in the Golgi fraction of Caco- 
2 cells. Golgi fractions were 
prepared after different time 
intervals of chase. The hydro- 
lases were immunoprecipitated 
with a mixture of anti-enzyme 
antibodies and the immuno- 
precipitates were separated by 
SDS-PAGE. Note that the ap- 
parent intensities of the bands 
are not necessarily compara- 
ble between individual lanes 
due to variability in overall in- 
corporation of radioactivity 
among the cultures. 

Table V. Apparent lntracellular Transport Rates of  Newly 
Synthesized Microvillar Hydrolases as Deduced from 
Pulse-Chase Experiments 

ER to site of Site of complex 
ER to brush complex glycosylation to 

Enzyme border* ER to Golgi~ glycosylation§ brush borderll 

min min min min 

SI 180-190 45 130-140 40-60 
DPPIV 80-90 < 15 15-20 60-75 

* Time for half-maximal appearance of mature enzyme in the brush border 
membrane fraction (Fig. 4). 

Time for half-maximal appearance of the high-mannose form in the Golgi 
fraction (Fig. 8). 
§ Time for half-maximal appearance of the complex-glycosylated form in the 
homogenate (Fig. 2). 
)l Transport rate from ER to brush border minus transport rate from ER to site 
of complex glycosylation. 

newly synthesized enzymes in this intracellular com- 
partment. 

Conclusions drawn from subcellular fractionation studies 
critically depend on the extent of cross contamination by 
membranes of other organelles. For instance, contamination 
of our brush border fraction with Golgi membranes would 
affect the observed transport rates. The high enrichment fac- 
tor of marker enzymes for brush border membranes and 
the low enrichment factor for galactosyltransferase provide 
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Figure 8. Arrival and maturation of newly synthesized DPPIV (A) 
and SI (B) in the Golgi fraction of Caco-2 cells deduced from 
pulse-chase experiments (quantification from fluorograms). The 
highest amount of radioactivity (high-mannose plus complex 
forms) in either DPPIV or SI in the Golgi fraction relative to the 
amount of radioactivity in the enzymes in the corresponding ho- 
mogenate was set to 100%. (x) High-mannose forms; (o) com- 
plex forms. 

strong evidence that cross contamination by Golgi mem- 
branes in our preparations is negligible. It has recently been 
shown that the brush border of the human small intestine can 
be labeled with polyclonal antibodies raised against galac- 
tosyltransferase (28). However, it was not determined in that 
study whether or not the immunoreacting material had galac- 
tosyltransferase activity. It is important to note that we were 
unable to measure significant galactosyltransferase activity 
levels in Caco-2 brush border membranes (Table I) while in 
the galactosyltransferase-enriched Golgi fraction the brush 
border enzyme activities were low. We therefore believe that 
galactosyltransferase is still valuable as a marker enzyme for 
detecting Golgi-derived membranes (see also reference 3). 
The transport rate of SI to the brush border has most recently 
been confirmed by pulse-chase experiments in conjunction 
with a novel surface protease assay (Eilers, U., and H.-P. 
Hauri, manuscript in preparation). 

Our suggestion that the Golgi apparatus significantly con- 
tributes to the asynchronous transport is only valid if the 
Golgi fraction is not significantly contaminated by elements 
of the endoplasmic reticulum that are involved in protein bio- 
synthesis and transport. This was indeed the case as shown 
in experiments in which protein exit from the endoplasmic 
reticulum was blocked by CCCP. Under these conditions no 
newly synthesized DPPIV was detectable in the Golgi frac- 
tion. This shows that the Golgi fraction was sufficiently pure 
to study the arrival of brush border enzymes in the Golgi ap- 
paratus. 
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Figure 9. Appearance at newly synthesized high-mannose DPPIV 
(zx, A) and SI (o, e) in the pre-Golgi fraction ( ) as com- 
pared to the Golgi fraction ( -  - - ) .  For purposes of clarity the 
maximal relative amount of radioactivity in the high-mannose 
forms was set to 100%. 
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Figure 10. Effect of CCCP on the appearance of DPPIV in subcel- 
lular fractions of Caco-2 cells. Shown is a fluorogram from a 
pulse-chase experiment carried out as described under Materials 
and Methods. After a 45-min chase the cells were processed for 
subcellular fractionation. Fractions were solubilized and the en- 
zyme was immunoprecipitated and separated by SDS-PAGE. 
(Lanes I and 2) Homogenate; (lanes 3 and 4) pre-Golgi fraction 
(Eli); (lanes 5 and 6) fraction FIE (lanes 7and 8) Golgi fraction 
(FII); (lanes 9 and 10) fraction FI. 

The apparent rates calculated for the endoplasmic reticu- 
lum to cis-Golgi transport and for the transport from the en- 
doplasmic reticulum to the site of complex glycosylation are 
probably somewhat lower than the actual rates. Actual rates 
could only be determined under conditions that would com- 
pletely prevent complex glycosylation and protein exit from 
the Golgi apparatus but that would not affect transfer from 
the endoplasmic reticulum to the Golgi complex. Such condi- 
tions have not been found yet. However, in the Golgi fraction, 
a much higher percentage of the total SI exists as high-man- 
nose forms than is true for total DPPIV. This high-mannose 
SI appears in the Golgi complex more slowly than the high- 
mannose DPPIV. These results clearly indicate an intra- 
Golgi rate-limiting step of the conversion of high-mannose 
to complex SI. 

An unexpected but interesting observation is the long ap- 
parent residence time of part of the complex-glycosylated 
hydrolases in the Golgi fraction. This is not likely due to 
cross contamination by brush border membranes since the 
corresponding marker enzyme activities are low in the Golgi 
fraction. In particular, the radioactivity corresponding to 
DPPIVc in this fraction continues to decrease at a time when 
there is no further concomitant increase in the brush border 
membrane. Since the turnover of brush border enzymes in 
cell culture is slow (Hauri, H.-P., unpublished data), this 
suggests that part of the newly synthesized enzymes of this 
pool never reaches the cell surface but is either degraded in 
the Golgi apparatus or transported to other intracellular or- 
ganelles like the lysosomes. Fransen et al. (8) have demon- 
strated by immunoelectron-microscopy that in human small 
intestinal biopsies a mAb against SI could label lysosomes 
in addition to organeUes of the biosynthetic pathway. How- 
ever, it is not known whether this lysosomal SI was directly 
imported from the Golgi apparatus and hence bypassed the 
cell surface or whether it originated from endocytosis. 

Some of the present data are in line with the suggestions 

of Danielsen and Cowell (5) who postulated that SI and 
aminopeptidase N in hog intestinal organ cultures are syn- 
chronously transported from the site of complex glycosyla- 
tion to the brush border membrane. However, we disagree 
with the conclusions of these authors that a pre-Golgi event 
is the only rate-limiting step for the efficient transport of the 
hydrolases to the cell surface. Our results strongly suggest 
that the asynchronous transport of these hydrolases is also 
due to intra-Golgi events. In the study of Danielsen and 
Cowell (5), the rate of conversion from transient (high man- 
nose) to mature (complex-glycosylated) form was assumed 
to be a measure for transport to the Golgi apparatus. How- 
ever, this event clearly is a medial- (29) to trans-Golgi func- 
tion (27) and therefore does not reflect initial arrival at the 
Golgi apparatus. 

It is currently unknown to what extent the present observa- 
tions on the role of the Golgi apparatus in the asynchronous 
transport can be generalized for endogenous membrane pro- 
teins. To our knowledge there is only one previous study 
dealing with the asynchronous migration to the cell surface 
of endogenous membrane glycoproteins (44). Although the 
authors of that study concluded that the different transport 
rates of two closely related histocompatibility antigens are 
due to an event associated with the endoplasmic reticulum, 
their subcellular fractionation data do not strictly rule out the 
contribution of an intra-Golgi event. It is important to note 
that for secretory proteins, the endoplasmic reticulum rather 
than the Golgi apparatus was found to be the rate-limiting 
step for migration (10, 21, 25, 32). Thus, it is likely that fun- 
damental differences exist between the transport of secretory 
and membrane proteins. 

The molecular basis for asynchronous protein transport is 
unknown. In intestinal epithelial cells, slowly transported 
microvillar glycoproteins like SI (14), lactase-phlorizin 
hydrolase (23), or maltase-glucoamylase (22) share a num- 
ber of common properties that are distinct from the rapidly 
migrating peptidases. These three enzymes are disacchari- 
dases that are synthesized as single-chain, two-active-site 
polypeptides (33). At least one of them, SI, but probably all 
three, appear to have evolved by partial duplication of ances- 
tor genes coding for one-active-site enzymes (16). Gene 
duplication may have interfered, to some extent, with the 
efficient maturation of the enzymes by making protein fold- 
ing and/or glycosylation more complicated. This speculation 
is supported by results from studies on patients suffering 
from hereditary sucrase-isomaltase deficiency. Minor altera- 
tions in sucrase-isomaltase (probably point mutations) that 
are not detectable by SDS-PAGE were found to lead to an in- 
hibition of transport at the level of the Golgi apparatus (13). 
The rapidly transported peptidases, on the other hand, in- 
cluding DPPIV, aminopeptidase N, angiotensin I-converting 
enzyme, and PABA-peptide hydrolase are synthesized as sin- 
gle-chain, one-active-site polypeptides (12, 33, Sterchi, E., 
H. Naim, and H.-P. Hauri, unpublished data). Furthermore, 
they are in general smaller (up to twofold) than the major 
disaccharidases. 

In conclusion, the present study suggests that transit 
through the Golgi apparatus in addition to exit from the en- 
doplasmic reticulum is rate limiting in the migration of two 
microvillar hydrolases to the cell surface. The molecular ba- 
sis of the asynchronous enzyme transport remains to be elu- 
cidated. Furthermore, the Golgi apparatus may play an im- 
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portant role in regulating the surface expression of these 
enzymes at a posttranslational level. 
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