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High-fat diet disturbs lipid raft/TGF-β
signaling-mediated maintenance of hematopoietic
stem cells in mouse bone marrow
François Hermetet1,2, Anne Buffière1,2, Aziza Aznague1,2, Jean-Paul Pais de Barros2,3, Jean-Noël Bastie1,2,4,

Laurent Delva1,2 & Ronan Quéré 1,2

Despite recent in vivo data demonstrating that high-fat diet (HFD)-induced obesity leads

to major perturbations in murine hematopoietic stem cells (HSC), the direct role of a HFD

is not yet completely understood. Here, we investigate the direct impact of a short-term

HFD on HSC and hematopoiesis in C57BL/6J mice compared with standard diet-fed mice.

We detect a loss of half of the most primitive HSC in the bone marrow (BM) cells of HFD-

fed mice, which exhibit lower hematopoietic reconstitution potential after transplantation.

Impaired maintenance of HSC is due to reduced dormancy after HFD feeding. We discover

that a HFD disrupts the TGF-β receptor within lipid rafts, associated to impaired Smad2/

3-dependent TGF-β signaling, as the main molecular mechanism of action. Finally, injecting

HFD-fed mice with recombinant TGF-β1 avoids the loss of HSC and alteration of the

BM’s ability to recover, underscoring the fact that a HFD affects TGF-β signaling on HSC.
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In the hematopoietic system, hematopoietic stem cells (HSC)
reside at the top of the hematopoietic hierarchy and have
capacities of self-renewal and differentiation which are

essential for the lifelong sustenance of the stem cell pool and
the production of all types of blood cells, respectively1,2. Both of
these abilities are finely regulated by both cell-intrinsic and cell-
extrinsic mechanisms involving cytokines, transcription factors
and cell–cell contacts3, as well as epigenetic regulation4. More
recently, several metabolic pathways have been recognized as
regulatory elements of HSC self-renewal, commitment, and spe-
cification to the different lineages5. Concerning bioenergetic sig-
naling in HSC, glucose and amino-acid-mediated metabolic
networks are now well known for regulating HSC potential6–8,
while the lipid-dependent regulation of HSC remains uni-
dentified. Although mammalian regenerative tissues9–11, includ-
ing hematopoietic tissue12–14, are known to respond to dietary
signals, little is known about how high-fat diets (HFD), collec-
tively known as pro-obesity or Western diets, regulate tissue
stem/progenitor cell function. Some recent studies on wild type
rodent models have shown that HFD-induced obesity triggers
significant perturbations of HSC and homeostasis of the hema-
topoietic system14–18, but it is difficult to ascertain whether these
alterations are the result of a direct effect such as changes in
lipid metabolism in HSC, or only related to the pathophysiology
of obesity, inflammation or diabetes. Fatty acid metabolism
supports both the biosynthetic and bioenergetic requirements of
cell proliferation and survival while lipids are essential compo-
nents of plasma and organelle membranes. Lipid rafts (LR) are
cholesterol-enriched patches located in the plasma membrane,
and the dynamic protein assembly in these LR can be modified by
a disturbance in the lipid composition of cells19. As platforms for
membrane trafficking and signal transduction, LR are master
regulators of cytokine function, cell cycle activity and are also
involved in the retention/dormancy of HSC in bone marrow
(BM)20–22.

In this study on mice, we found that ingesting a HFD for
as little as 4 weeks can affect the organization of LR on the
surface of HSC, which in turn disturbs the LR/TGF-β signaling-

mediated quiescence of HSC and affects their maintenance
in mouse BM. Here, we build upon the growing body of
literature implicating dietary and metabolic control as important
regulators of stem cell populations with a special focus on
hematopoietic tissue.

Results
HSC expresses high level of lipid rafts. We stained various
hematopoietic cell populations with the cholera toxin subunit B
that binds to the ganglioside GM1 (one of the main components
of LR). We then observed that HSC had high level of LR, but
the levels decreased in more mature progenitor cells (99.1%
for lineage negative (Lin−) Sca1+ c-Kit+ (LSK) CD48− CD150+

(SLAM) and 36.6% for the Lin− cells) (Fig. 1a). We identified
two distinct populations of LSK-CD34− cells: half displayed
high levels of LR (LRhi), while the other half had low detectable
levels of LR (LRlo) (Fig. 1b). LRhi cells were enriched with
the most primitive HSC (SLAM; 46% versus 2% for LRlo)
(Fig. 1c). When we characterized the propensities of both types
of cells to engraft in lethally irradiated recipient mice, only LRhi

cells (among LSK-CD34− cells) showed a marked ability
to reconstitute 16 weeks after the transplantation (Fig. 1d),
meaning that this population was enriched in long-term recon-
stituting HSC.

HFD induces loss of HSC expressing a high level of lipid rafts.
LR are small platforms that float freely within the lipid-bilayer
of cell membranes and are composed of sphingolipids and
cholesterol in the inner cytoplasmic leaflet of the lipid bilayer.
A perturbation in the lipid composition of cells can modify the
dynamic assembly of proteins and lipids in LR19. We therefore
decided to study the direct impact of a short term HFD on
hematopoiesis in comparison with a control diet (CD; 4% kJ of
fat). Accordingly, we fed mice a modified diet with a 42%
fat content for a period of 4 weeks. This HFD led to the loss of
LRhi cells only among HSC (LSK-CD34−) and early progenitors
(LSK), while LRhi cells among more mature progenitors (such as
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Lin− and Lin− c-Kit+ (LK)) were not affected (Fig. 2), meaning
that a HFD may disturb the maintenance of hematopoiesis in
primitive HSC.

Maintenance of primitive HSC is affected when mice are fed a
HFD. Food consumption was identical for CD and HFD over the
4-week period (~3 g/day/mouse, Supplementary Fig. 1a). While
the HFD led to an increase in plasma LDL-cholesterol levels
(Supplementary Fig. 1b), the short feeding period did not induce

major weight gain (Supplementary Fig. 1c). Furthermore, 6-h
fasting blood glucose testing suggested an absence of prediabetes
in the HFD mice (Supplementary Fig. 1d). When we investigated
the impact of the HFD on hematopoiesis in BM, we detected a
marked decrease in the number of HSC (LSK-CD34−) and the
SLAM population (Fig. 3). Conversely, we found an increase
in the LSK population, which was enriched in early progenitors
(Fig. 3), but there was no impact on the distribution of other
mature progenitors such as mega-erythroid progenitor (MEP),
common myeloid progenitor (CMP), granulocyte/macrophage
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progenitor (GMP), and common lymphoid progenitor (CLP)
(Supplementary Fig. 2a, b). In peripheral blood (PB), the HFD
had no detectable hematological consequences on leukocyte,
erythrocyte, and platelet count, or on hematocrit and hemoglobin
levels (Supplementary Fig. 2c). Therefore, only primitive HSC
were affected by the HFD.

Loss of HSC following a HFD is dependent on intrinsic
alteration. To confirm that HFD affects maintenance of HSC, we
performed competitive transplantation assays. Total BM isolated
from CD-fed Ly.2 mice and HFD-fed Ly.1 mice (200,000 cells
each) was transplanted into lethally irradiated mice (Fig. 4a). The
HFD affected HSC homeostasis in primary mice, and the total
BM cells isolated from HFD-fed mice exhibited lower long-term
reconstitution potential in PB and BM, 16 weeks after the
transplantation. Indeed, the BM of HFD-fed Ly.1 mice only
reconstituted below 25% of the hematopoiesis system (Fig. 4b, c).
Furthermore, we observed that BM cells isolated from HFD-fed
mice reconstituted more mature PB cells in the myeloid lineages
(monocytes and granulocytes), with a reduced reconstitution of
T-lymphocytes, while the B-lymphocytes were unaffected. When
we transplanted 1000 SLAM from CD-fed or HFD-fed Ly.1 mice
in competition with 200,000 support BM Ly.2 cells, they exhibited
equal long-term reconstitution potential in PB and BM, 16 weeks
after the transplantation (Supplementary Fig. 3). Therefore, HFD
only affected the number of HSC in primary recipient mice, but
did not have an impact on the potential of the remaining HSC to
reconstitute hematopoiesis.

In the obese, the accumulation of fat cells (adipocytes) within
the BM has been shown to impair HSC functions, highlighting
the role of the niche on homeostasis of HSC15,23,24. As assessed
using paraffin-embedded, hematoxylin and eosin-stained BM,
short-term intake of a HFD had no effect on the structure of the
BM, with the same number of adipocytes observed and no change
in size (Supplementary Fig. 4a–c). Nevertheless, in order to study
how a HFD may affect the ability of the BM niche to retain HSC
reconstitution potential, we fed Ly.2 host mice with a CD or HFD
for 4 weeks and then lethally irradiated the animals prior to
transplantation with fresh Ly.1 BM cells (200,000 cells). Both
CD and HFD-fed mice exhibited the same ability to reconstitute
hematopoiesis in PB and BM, 16 weeks after the transplantation

(Supplementary Fig. 4d–f). In conclusion, the HFD did not affect
the ability of the BM niche to engraft HSC, and the loss of HSC
can only be the result of loss of maintenance through an intrinsic
mechanism.

HFD alters the TGF-β mediated quiescence of HSC. Con-
sidering that the majority of HSC are quiescent in homeostatic
conditions25,26, we next evaluated the effect of the HFD on cell
cycles. Using the Ki67 proliferation marker and DAPI staining,
we observed a decrease in the proportion of cells in G0 among
LSK-CD34− primitive HSC, indicating that the HFD had pro-
moted the re-entry of HSC into the cell cycle (Fig. 5a). This was
further confirmed by a CFU assay, which showed that HSC from
HFD-fed mice produced colonies more rapidly than did control
HSC on semisolid medium (Fig. 5b). Therefore, loss in main-
tenance of HSC following a HFD is linked to altered dormancy.

Previous studies have shown that TGF-β signaling is involved
HSC subtype modulation27 and quiescence28–30, partly by
preventing HSC re-entry into the cell cycle21. When we analyzed
the transcription of different genes involved in HSC homeostasis,
LSK-CD34− from HFD-fed mice displayed reduced transcription
for p21Cip1 (P < 0.01; t-test) and p57Kip2 (P < 0.05; t-test) cyclin-
dependent kinase inhibitor genes known to be upregulated by
TGF-β for quiescence of HSC21,31, as well as an increased
transcription of c-Myc (P < 0.001; t-test) inactivated by the TGF-
β32,33, while the transcription of several key transcription factors
was not perturbed (Fig. 5c). Using flow cytometry, we
furthermore observed a relevant decrease in the phosphorylation
of Smad2/3 (pSmad2/3), downstream from the TGF-β receptor
pathway30 (Fig. 5d) in HSC from HFD-fed mice, while the
phosphorylation of other important proteins (Akt, Stat3, or Stat5)
were not affected by the exposure to a HFD (Supplementary
Fig. 5). Hence, the TGF-β signaling-mediated quiescence of HSC
seems to be specifically disturbed by a HFD.

HFD affects quiescence of HSC due to LR/TGF-β disturbance.
We found that HSC expressing higher levels of LR were more
affected following a HFD (Fig. 1). LRhi cells showed a more sig-
nificant activation of the TGF-β pathway as assessed by a correla-
tion between CTB and pSmad2/3 levels on LSK-CD34− cells from
CD mice, and, in addition, HFD induced a loss of LRhi/pSmad2/3+
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cells (Fig. 6a). We therefore decided to analyze the LR structure on
the cell surface of HSC among LSK-CD34− LRhi cells. When LRhi

cells were observed under the microscope following a HFD, LR
organization was modified. The LR had more diffused distribution
on HSC from CD-fed mice, whereas they appeared more clustered
and formed larger platforms on HSC from HFD-fed mice (Fig. 6b),
which can exhibit one, two, three, or more LR macrodomains
(Supplementary Fig. 6). As a HFD might have perturbed the LR
dynamic assemblies of proteins on HSC, we did a microscopy
analysis of the TGF-β receptor 1 (Tgfbr1, ALK5) localization on the
cell surface. Interestingly, the Tgfbr1 was more strongly condensed
in LR clusters on LRhi cells isolated from LSK-CD34− cells taken
from HFD-fed mice (P= 0.0426; t-test) (Fig. 6c). While HFD did
disturb clustering of Tgfbr1 within LR, flow cytometry revealed that
HFD did not change expression of the Tgfbr1 receptor on the
surface of LSK-CD34− cells (Supplementary Fig. 7). We also
investigated whether HFD might affect the localization of several
other membrane receptors (c-Kit, IL3Rα, and IL6Rα) involved in
cytokine signaling in HSC, but found no perturbation when we
analyzed LR organization and protein localization by microscopy
(Supplementary Fig. 8).

Injection of TGF-β1 in HFD-fed mice prevents loss of HSC. In
an attempt to rescue the phenotype, we injected 1.3 µg/kg of
recombinant TGF-β1 (rTGF-β1) twice per week into the tail vein
of mice while they were on the diet. The injection of rTGF-β1
led to the compensation of HFD-mediated HSC depletion
(P= 0.0057; t-test) (Fig. 7a), which confirmed that loss of HSC
when mice were fed a HFD is due to TGF-β signaling alteration.
We also assessed whether rTGF-β1 injection compensated HSC
function in transplantation assays (Fig. 7b). The findings sup-
ported our hypothesis that the disruption of lipid raft/TGF-β
signaling leads to a loss of HSC function after a short-term HFD.

In addition, BM cells isolated from mice fed with a HFD and
injected with rTGF-β1 can reconstitute hematopoiesis in BM
(Fig. 7c) and PB (Fig. 7d) of secondary recipients, similar to the
reconstitution in BM cells isolated from CD-fed mice. When mice
were fed a HFD, the injection of rTGF-β1 did not change the
distribution of LR clustering on the cell surface of LSK-CD34−

cells. Meanwhile, we continued to observe the clustering of Tgfbr1
within LR, as assessed by immunofluorescence microscopy
(Fig. 8). However, we discovered a relevant recovery in the
phosphorylation level of Smad2/3 using immunofluorescence
microscopy and flow cytometry (Fig. 9) after injection of rTGF-β1.
Therefore, when HSC were isolated ex vivo and cell division was
assessed with an in vitro system28,34, HSC isolated from HFD-fed
mice showed an increased proportion of cycling cells that, addi-
tionally, exhibited the ability to divide more rapidly (Supple-
mentary Fig. 9a–b). In addition, the injection of rTGF-β1 in HFD-
fed mice decreased HFD-mediated division in LSK-CD34− LRhi

HSC (Supplementary Fig. 9a–b), and rTGF-β1 treatment of freshly
isolated HSC cells inhibits cell growth for each diet condition
(Supplementary Fig. 9c), indicating that the HFD did not influ-
ence cell sensitivity to cytokine signals. Finally, a relevant recovery
of the quiescence cell distribution (Supplementary Fig. 10) was
also observed after the injection of rTGF-β1 in HFD-fed mice.

Therefore, we can conclude that injecting rTGF-β1 prevents a
HFD-induced loss of HSC by reactivating the pSmad2/3-dependent
TGF-β signaling involved in quiescence/maintenance of HSC, but
without changing LR clustering on those particular HSC.

Discussion
Several studies have described the essential role of lipids in
hematopoiesis. A breakdown in HSC homeostasis contributes to
inflammation in obese low-density lipoprotein receptor knockout
mice35. Obesity activates myeloid cell production from BM
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significant (P > 0.05); *P < 0.05; **P < 0.01; ***P < 0.001 (two-tailed unpaired Student’s t-test)
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progenitors to potentiate inflammatory responses in metabolic
tissues17, and inflammation is known to affect the homeostasis
of HSC, seeing as IFNα activates dormant HSC in vivo36. How-
ever, in our study, feeding mice a HFD over a period of 4 weeks
had no consequences on inflammation; there was no modulation
of pro-inflammatory (TNF-α, IL-1β, CCL2) or anti-inflammatory
(TGF-β1, IL-10) cytokines detected in BM by enzyme-linked
immunosorbent assay (Supplementary Fig. 11a), and inflamma-
tory monocytes (Ly6G− Mac1+ Ly6Chi) were not found to
be increased in BM (Supplementary Fig. 11b).

Lipid intake can produce microenvironment-dependent defects
which can perturb stem and progenitor cells37. For instance,
HFD in pregnancy has been reported to compromise fetal
hematopoiesis16. Lipids can also affect hematopoiesis through
modulation/alteration of the support cells present in the BM
microenvironment. For example, a mouse with deficiencies in
the ATP binding cassette transporters ABCA1 and ABCG1 dis-
played a dramatic increase in HSC and progenitor cell mobili-
zation and extramedullary hematopoiesis38. This is consecutive
to elevated serum levels of G-CSF due to the generation of IL-23
by splenic macrophages and dendritic cells, which favors hema-
topoietic lineage decisions toward granulocytes rather than
macrophages in the BM, leading to impaired support for osteo-
blasts and decreased specific cytokine production by mesenchy-
mal progenitors. Obesity has also been described as affecting
the homeostasis of HSC through a disturbance in the BM
microenvironment. For example, obesity has been shown to

suppress B lymphopoiesis by disrupting the supportive capacity
of the IL-7 secretion mediated by supportive cells in the BM
niche15. In obese mice fed a HFD, an increased number of adi-
pocytes has been observed in BM which enhances hematopoi-
esis18. Various murine models of obesity have furthermore
suitably shown that adipose tissue macrophages in obesity can
promote proliferation of BM myeloid progenitors24. More
recently, the interactions between adipocytes and HSC in BM
have been identified39, and the accumulation of adipocytes has
been found to impair HSC function23. In the present study,
we fed mice with a HFD only for a short period and the mice
were not obese. To study if a HFD can influence the niche
reconstitution within 4 weeks, BM cells isolated from CD-fed
mice were transplanted into HFD-fed recipient mice. However
there was no detectable defect in myeloid or lymphoid recon-
stitution. Conversely, transplantation of BM cells from HFD-
fed mice in CD-fed recipient mice reproduced a defect in the
reconstitution of hematopoiesis. These experiments prove that
loss of HSC following a HFD, even after a short period of 4 weeks,
is essentially dependent on intrinsic alteration rather than niche
perturbation.

Nagareddy et al. have also described an expansion of hema-
topoietic stem and progenitor cells (HSPC; LSK cells) observed
directly in a murine model of obesity, as well as in transplantation
of obese BM into lean wild type mice recipients24. In another
study Van den Berg et al. also described that diet-induced obesity
in mice following 18-weeks induced a shift in HSC toward
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maturing multipotent progenitor (MPP) cells14. Our study cor-
roborates the increased expansion of progenitors, but we high-
light here that this is due to an exhaustion of the most primitive
HSC (LSK-CD34− or SLAM cells). Our study also shows that
this switch from quiescent to differentiating cells might not be
only related to an obesogenic environment, because, within as
little as 4 weeks, there is an exhaustion of HSC in the BM of mice
fed a HFD.

Several previous studies have shown that a HFD induces major
perturbations in murine HSC and in homeostasis of the hema-
topoietic system. These alterations are frequently in relation to
the pathophysiology of obesity after the extended consumption of
a HFD over several weeks/months15–18 or observed on mice

models with gene deficiencies to study obesity and the influence
on hematopoiesis24,35,38. Our study revealed that a short-term
HFD can rapidly (within 4-weeks) generate exhaustion of HSC in
mouse BM, and we more fully described the direct impact that
a HFD can have on LR organization on the cell surface of HSC
in mouse BM. LR staining was found spread across the surface of
HSC isolated from CD-fed mice, while LR were clustered on HSC
isolated from mice fed a HFD. The TGF-β receptor 1 (Tgfbr1)
was found more condensed within LR on HSC after a HFD,
which affects TGF-β stimulated quiescence of HSC (Fig. 10). Our
data confirms a previously described study indicating that LR
clustering is essential for HSC emergence from quiescence and re-
entry into the cell cycle21. While Yamazaki et al. have reported
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that LR clustering induced by cytokine stimulation is critical for
promoting HSC and progenitor cell division, our study confirms
that LR reorganization is indispensable for HSC to emerge from
hibernation and to re-enter the cell cycle, and that HFD induces
LR clustering in HSC and decreases downstream TGF-β signaling
pathways, as reflected by reduced phosphorylation of the Smad2/
3 downstream pathway, an important determinant in TGF-β
signaling30, and reduced or increased transcription of genes
known to be upregulated (p21Cip1and p57Kip2) or inactivated
(c-Myc) by TGF-β, respectively. Our findings highlight that HFD-
induced recruitment and concentration of Tgfbr1 signal trans-
ducers into LR clusters yield inefficient and impaired transduc-
tion of TGF-β-mediated signals leading to HSC quiescence. We
further assessed other key receptors known to be regulated by
LR19–22, such as c-Kit, IL3Rα, and IL6Rα, but failed to observe
changes in their LR clustering on HSC following HFD (Supple-
mentary Fig. 8).

Moreover, a HFD led to the loss of LRhi cells among HSC
(LSK-CD34−), whereas LRhi cells among more mature progeni-
tors (such as LK and Lin−) were not affected. Interestingly, LSK-
CD34− cells expressed more Tgfbr1 (Supplementary Fig. 7), so,
consequently, we can suggest that the LR/TGF-β signaling is
probably more sensitive to HFD intake. Finally, injection of
recombinant TGF-β1 in HFD-fed mice twice weekly for 4 weeks
prevents HSC loss and the alteration of BM’s ability to recon-
stitute. This injection of recombinant TGF-β1 into mice under a
HFD regimen reactivates the Smad2/3 downstream pathway in
HSC, indicating that HFD-induced HSC erosion is supported by
alteration of TGF-β signaling.

Studies on the effects of a HFD on the homeostasis of human
HSC and progenitors is rather difficult to conduct, and rodent
models are therefore often used. The Western diet contains 42%
fat and is therefore comparable to “fast food” which contains an
estimated 35–45% fat. Our study has not only generated valuable
insight into how stem cells are controlled by diet-dependent
pathways, but also establishes that consuming a HFD for as little
as 4 weeks can disturb the LR constituents on primitive HSC,
leading to the alteration of the TGF-β signaling-mediated HSC
quiescence and to exhaustion of HSC in mouse BM.

Methods
Mice. C57BL/6J (Ly.2) and congenic B6.SJL (Ly.1) mice were provided by Envigo
and kept in the Animal Facility at the University of Burgundy. Doses of 1.3 µg/kg of
rTGF-β1 (7666-MB, R&D Biosystems) were injected twice per week into the tail
vein (i.v.) of mice during the 4 weeks when mice were fed a HFD or a CD. The
Ethics Committee for Animal Welfare of the University of Burgundy and the
French Ministry of Higher Education and Research approved all animal experi-
ments (references 01333.02 and 01318.02).

Peripheral blood analyses. Peripheral blood (PB) was collected from the tail vein,
and erythrocytes were lysed with a hemolytic buffer (150 nM NH4Cl, 10 mM
KHCO3, 0.1 mM ethylene-diamine-tetra-acetic acid). The remaining cells were
stained with conjugated antibodies for flow cytometry analysis. After tail vein PB
sampling, hematopoietic cells were counted using a hemocytometer (SCIL Vet
ABC+, Oostelbeers, The Netherlands). After tail vein PB sampling and cen-
trifugation (10,000×g, 10 min), plasma low density lipoprotein (LDL) was deter-
mined (Indiko, Thermo Fisher Scientific). Four weeks after the start of the diet,
plasma glucose levels were measured in tail blood (Glucometer-One Touch Ultra)
in mice fasted for 6 h.

Food. Control mice were maintained on an ad libitum 4% fat rodent chow diet
(CD). 8 to 14-week-old mice were fed for 4 weeks with a 42% fat HFD (MD. 88137,
Envigo RMS Division, Indianapolis, IN). The crude lipid extract from CD and HFD
pellets was analyzed with mass spectrometry and results are shown in Supple-
mentary Table 1. The procedure was performed by a Lipidomic Analytical Platform
(Université Bourgogne-Franche-Comté, Dijon, France).

BM analyses and transplantation. Hind limb bones were crushed in a mortar and
total BM cells were filtrated (30 µm). Magnetically lineage-depleted BM cells
(Lineage Cell Detection Cocktail-Biotin, 130-092-613, Miltenyi Biotec) were

stained in phosphate-buffered saline (PBS), pH7.2, with combinations of antibodies
for flow cytometry. For the transplantation study, Ly.2 and Ly.1 mice were fed with
a CD or HFD, respectively, for 4 weeks and sacrificed for BM transplantation
(200,000 cells). Cells were transplanted in competition into the tail vein of lethally
irradiated (900 cGy) recipients. PB and BM reconstitutions were analyzed 16 weeks
after the transplantation. Further information regarding transplantation were
described on the supplementary Methods section.

Flow cytometry and fluorescent-activated cell sorting (FACS). For the lineage
staining in PB, CD4-PE-CF594 (562285, dilution ratio 1:100), CD8-AF647
(557682, dilution ratio 1:100), Mac1-APC-Cy7 (557657, dilution ratio 1:100),
Mac1-PE-Cy7 (552850, dilution ratio 1:100), Mac1-AF647 (557686, dilution ratio
1:100), GR-1-FITC (553127, dilution ratio 1:100), GR-1-PE (553128, dilution ratio
1:100) antibodies (BD Biosciences) and CD19-PE (557399, dilution ratio 1:100),
CD3-PB (558214, dilution ratio 1:100), B220-AF647 (103226, dilution ratio 1:100)
antibodies (Biolegend) were used. Total BM cells and magnetically lineage-depleted
BM cells (Miltenyi Biotec) were stained in PBS with combinations of the following
antibodies conjugated to fluorochromes: c-Kit-PE-Cy7 (558163, dilution ratio
1:100), CD34-AF647 (560230, dilution ratio 1:50), CD34-FITC (553733, dilution
ratio 1:50), CD135-PE (553842, dilution ratio 1:100), CD48-PE (557485, dilution
ratio 1:50), CD48-BV421 (562745, dilution ratio 1:50), CD45-PE-Cy5 (561870,
dilution ratio 1:100), CD45-PE (553081, dilution ratio 1:100), CD16/32-FITC
(553144, dilution ratio 1:100), IL7Rα-PE-CF594 (562419, dilution ratio 1:100),
Mac1-AF647 (557686, dilution ratio 1:100), Ly6C-PE-CF594 (562728, dilution
ratio 1:100) (BD Biosciences) and c-Kit-PB (105820, dilution ratio 1:100), CD150-
APC (115910, dilution ratio 1:100), CD150-BV421 (115925, dilution ratio 1:100),
Sca-1-APC-Cy7 (108126, dilution ratio 1:100), Ly6G-FITC (127605, dilution ratio
1:100) (Biolegend). To separate donor cells from support and recipient cells,
CD45.1 (Ly.1)-FITC (553775, BD Biosciences, dilution ratio 1:100) antibody was
used. AF488- (C-34775, 1 µg/mL) or AF555- (C-34776, 1 µg/mL) conjugated
cholera toxin subunit B (Thermo Fisher Scientific) were used to stain LR. For
studies on cell cycle and quiescence, Ki67-FITC antibody (556026, BD Biosciences,
dilution ratio 1:6) was used. Tgfbr1 was stained with anti-Tgfbr1-PE antibody
(FAB5871P, R&D Systems, dilution ratio 1:100). For intracellular protein staining,
anti-phospho-Smad2(S465/S467)/Smad3(S423/S425)-PE-CF594 (562697, BD
Biosciences, dilution ratio 1:20), anti-phospho-Stat5(Y694)-PE-Cy7 (560117,
BD Biosciences, dilution ratio 1:6), anti-phospho-Akt(S473)-APC (130-105-293,
Miltenyi Biotec, dilution ratio 1:11) and anti-phospho-Stat3(Y705)-FITC (651019,
Biolegend, dilution ratio 1:20) antibodies were used after cell surface staining
and fixation/permeabilization using BD Cytofix/Cytoperm Plus Fixation/
Permeabilization Kit (BD Biosciences). All events were acquired by a FACS
Canto10 flow cytometer (BD Biosciences) equipped with BD FACSDiva software
(BD Biosciences). LSK-CD34− cells were sorted on a FACS Aria cell sorter
(BD Biosciences) equipped with BD FACSDiva software (BD Biosciences). Data
were analyzed using FlowJo software (TreeStar Inc). Flow cytometry-gating
strategies are presented in the Supplementary Figs. 12–17.

Colony-forming unit (CFU) assays. BM was isolated and 1 × 104 FACS-sorted
LSK-CD34− cells were cultured in 3 mL semisolid methylcellulose medium
supplemented with growth factors (Methocult M3434; Stem Cell Technologies)
at 37 °C in 98% humidity and 5% CO2 for 15 days. CFU were counted at different
time points.

Immunofluorescence and microscopy. LSK-CD34− cells were stained with
cell surface antibodies prior to cell sorting on glass slides and microscopy. For
colocalization of LR and Tgfbr1, we used AF555-conjugated CTB (C-34776,
Thermo Fisher Scientific, 1 µg/mL) and anti-Tgfbr1 (PA5-38718, Thermo Fisher
Scientific, dilution ratio 1:100) with secondary anti-rabbit AF488 (A27034, Thermo
Fisher Scientific, dilution ratio 1:1000) antibodies. For the phospho-Smad2/3
microscopy, cells were stained with the cell surface markers (LSK-CD34−) and
AF555-conjugated CTB (C-34776, Thermo Fisher Scientific, 1 µg/mL), prior to
fixation/permeabilization using BD Cytofix/Cytoperm Plus Fixation/Permeabili-
zation Kit (BD Biosciences), then we stained with an anti-phospho-Smad2(S465/
S467) antibody (AB3849, Merck, dilution ratio 1:250) and with secondary anti-
rabbit AF488 (A27034, Thermo Fisher Scientific, dilution ratio 1:1000) antibody.
Cells were sorted on glass slides and fixed with ProLong Gold Antifade reagent
containing DAPI (P36931, Thermo Fisher Scientific). Images were acquired with
an Axio Imager M2 (Zeiss) coupled with an Apotome.2 (×63 objectives) and
processed for colocalization studies (Fiji, NIH software). Further information
regarding immunofluorescence assays are described in the supplementary
Methods section.

Quantitative real-time (RT)-PCR. After mRNA isolation from LSK-CD34− cells
with the RNeasy kit (Qiagen), M-MLV reverse transcriptase (Promega) was used to
synthesize cDNA according to the manufacturers’ recommendations. The follow-
ing TaqMan assays (Qiagen) were then used for qPCR: Mm00432448 (p21),
Mm00438170 (p57), Mm00438168 (p27), Mm00487804 (c-Myc), Mm00432359
(Ccnd1), Mm03053308 (Bmi1), Mm00439364 (Hoxa9), Mm01179235 (Mll),
Mm00514283 (Cebpa), Mm00843434 (Cebpb), Mm00474845 (Foxp1),
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Mm01211940 (Moz), Mm004881α (PU1), Mm00486762 (Runx1), Mm03024075
(Hprt1). Samples were run in triplicate using the ABI ViiA 7 Real Time PCR
System (Applied Biosystems, Foster City, CA).

Statistics. All measurements were taken from distinct samples. Animals were
randomized to diet experimental groups. Data are expressed as a mean ± SD
or represented in box-and-whisker plot format. The differences between
experimental groups were assessed with two-tailed unpaired Student’s t-tests
(t-test). Statistics were done with Prism 6 software (GraphPad). A P-value of
less than 0.05 was considered statistically significant and significance is indicated
on the figures with the following symbols: *P < 0.05; **P < 0.01; ***P < 0.001;
$P < 0.0001.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corre-
sponding author upon reasonable request.
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