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Abstract: Computer-aided polyp segmentation is a crucial task that supports gastroenterologists in
examining and resecting anomalous tissue in the gastrointestinal tract. The disease polyps grow
mainly in the colorectal area of the gastrointestinal tract and in the mucous membrane, which has
protrusions of micro-abnormal tissue that increase the risk of incurable diseases such as cancer. So,
the early examination of polyps can decrease the chance of the polyps growing into cancer, such
as adenomas, which can change into cancer. Deep learning-based diagnostic systems play a vital
role in diagnosing diseases in the early stages. A deep learning method, Graft-U-Net, is proposed
to segment polyps using colonoscopy frames. Graft-U-Net is a modified version of UNet, which
comprises three stages, including the preprocessing, encoder, and decoder stages. The preprocessing
technique is used to improve the contrast of the colonoscopy frames. Graft-U-Net comprises encoder
and decoder blocks where the encoder analyzes features, while the decoder performs the features’
synthesizing processes. The Graft-U-Net model offers better segmentation results than existing deep
learning models. The experiments were conducted using two open-access datasets, Kvasir-SEG and
CVC-ClinicDB. The datasets were prepared from the large bowel of the gastrointestinal tract by
performing a colonoscopy procedure. The anticipated model outperforms in terms of its mean Dice
of 96.61% and mean Intersection over Union (mIoU) of 82.45% with the Kvasir-SEG dataset. Similarly,
with the CVC-ClinicDB dataset, the method achieved a mean Dice of 89.95% and an mIoU of 81.38%.

Keywords: segmentation; convolutional neural network; deep learning; gastrointestinal tract;
health informatics

1. Introduction

The stomach, small intestine, and large intestine (which include the colon, rectum,
and anus) are the parts of the gastrointestinal tract (GI tract) [1,2]. The GI tract is the core
part of the digestive system of the human body where mucosal findings vary from mild to
extremely lethal diseases [3,4]. The mucous membrane has protrusions of abnormal tissue
referred to as polyps. Polyps can grow in the GI tract in any place, but most are found in the
colorectal area. Non-neoplastic and neoplastic are the two categories of colorectal polyps [5].
Non-neoplastic polyps can be divided into subcategories—hyper-plastic, hamartomata’s
polyps, and inflammatory—which are recognized as non-cancerous diseases. On the other
hand, neoplastic polyps can become cancerous depending upon the size of the polyps. The
growth of polyps mostly takes place in the colorectal area (inner tissue lining); they are
non-cancerous but indorse colorectal cancer (CRC), which is a very dangerous and lethal
disease. The scope of CRC across the world accounts for nearly 10%, of all cancer-related
deaths [6]. The colorectal polyps are analyzed and removed after examining the colon using
a standardized colonoscopy procedure. There are different endoscopy methods to examine
the GI tract, but Confocal Laser Endomicroscopy (CLE) is a cutting-edge and microscopic-
level endoscopic technique that allows for subcellular imaging and optical biopsies to be
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performed while the patient is being examined. The Colonoscopy expert can use CLE to
observe real-time histology images, as well as examine the GI tract, connective tissue, and
mucosal cell structure [7]. Histopathology examination (HE) is manually performed by a
gastroenterologist for polyp or tumor removal. Neoplastic lesions (adenomatous polyps)
are resected to reduce CRC [8]. Similarly, the survival rate is increased by diagnosing
colon cancer at its early stage. Endocytoscopy is used in the NBI mode, which allows the
endoscopist to acquire real-time microvascular photos with a magnification of 520 [9]. The
colonoscopy procedure depends on the operator, who can make mistakes that increase the
chance of a higher miss rate of the adenomatous polyps. The size of the polyp can be on a
macroscopic level in the tissue of the colon, which provides a hindrance to manual disease
detection. Additionally, manually screening is a time-consuming task that requires the
doctor to have experience and ability [10]. A procedural colonoscopy is a time-demanding,
expensive, and aggressive process whereby air insufflation and a high-quality bowel are
required during examination [11]. Colonoscopy data are collected in the form of videos
by the clinical centers. The endoscopist captures data in tough routines that are not
used efficiently for clinical diagnosis procedures [12]. The number of frames captured
in video colonoscopy cannot be observed properly in real-time, which increases the miss
rate. CADx systems are employed resourcefully for disease detection and the delineation
of polyps. Computer vision and system design are successfully led in medical fields to
develop accurate and efficient systems that mainly depend on well-organized data [13–19].
Similarly, there is a big bottleneck of public data available for accelerating the development
of robust algorithms in this realm [20]. Automatic polyp segmentation has become a
thought-provoking task because of the disparities in the shapes, positions, sizes, colors,
appearances of polyps, and their masking with mucosa, stool, and other materials that are
a hindrance in the correct diagnostics [21]. In the previous studies, different methods of
feature extraction (feature map, patterns, color, etc.) were employed for polyp detection,
semantic segmentation, localization, and classification [22,23]. Previous studies have
found a high rate of missed detection. Recently, emerging convolutional neural network
(CNN) deep learning methods have offered a solution to overcome the above-addressed
challenges and also improve polyp detection accuracy during colonoscopy. Automatic
polyp segmentation is crucial in the medical field. The computer-based identification and
localization of polyps using frames of colonoscopy can save time for clinicians, and it also
helps them to concentrate on more severe cases. A recent study revealed that deep learning-
based automatic polyp segmentation has become a crucial research area that has achieved
high accuracy using colonoscopy images and videos [24]. Preferably, a consistent, reliable,
and robust computer-aided diagnostics (CADx) system is needed for polyp detection and
segmentation.

In this manuscript, a CADx system is proposed for disease segmentation that com-
prises three phases: preprocessing, encoder, and decoder. In the preprocessing phase,
the Contrast-Limited Adaptive Histogram Equalization (CLAHE) technique is performed
for contrast improvement, which helps to extract more sophisticated features from the
frames of the colonoscopy. A CNN-based deep learning model named Graft-U-Net is
proposed, which consists of encoder and decoder blocks that explore and synthesize the
features, respectively. The advised model is trained and evaluated using two publicly
available datasets, CVC-ClinicDB and Kvasir-SEG. The results are matched to the existing
results of UNet [25], ResUNet models [26], and ResUNet++ [27], which shows that the
suggested method outperforms the existing methods. The contribution of this manuscript
is summarized as follows:

• The CLAHE technique is applied at the preprocessing stage over the Kvasir-SEG
dataset for improving the contrast of the frames, which has an impact on the overall
execution of the deep learning model.

• A CNN-based 74-layer Graft-U-Net architecture is proposed, which is composed of an
encoder (analyzing) and decoder (synthesizing) block. In the encoder and decoder
blocks, different depth sizes of the filters are employed: 8,16,32,48, and 64. The encoder
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is modified by the inclusion of the grafting layers parallel to the conventional UNet
layers in the encoder block. The derivations of the features of parallel networks are
added and forwarded to the next layers. The results of the model are improved by
including a graft network layer in the encoder block.

The organization of this document is as follows: The associated work is stated after
the introduction in Section 2. In Section 3, the materials and methods for the proposed
Graft-U-Net structure and polyp detection and segmentation are addressed. In Section 4,
the results of the performed experiments and discussion are presented. In Section 5, the
final remarks, consisting of a conclusion and discussion of future work, are summarized

2. Related Works

Automatic disease detection and segmentation have become active research areas in
the past decade [28–35]. Several algorithms and efficient methods have been developed
for polyp detection. With the development of methods and algorithms, the texture and
color of the polyps were focused on in one research paper by applying handcrafted de-
scriptors for learning features [36]. An existing study reveals that CNN has become a very
famous method in the research industry for the accomplishment of public challenges in the
computer vision field [37]. By using CNN, software modules and algorithms have been
designed for edge and polyp detection in the frames [38]. Colonoscopy images and videos
have been used for polyp detection via region-based CNN methods, including transfer
learning (Inception and ResNet) and post-processing techniques [39]. The framework has
been performed for disease detection and segmentation problems using the Generative
Adversarial Network (GAN) model [40]. Real-time performance and high-sensitivity algo-
rithms, including the YOLO algorithm, have been developed for polyp segmentation [41].
Transfer learning for polyp segmentation has been evaluated in terms of specificity and
sensitivity [42]. The computer vision approaches have been improved due to the inclusion
of data-driven methods for polyp segmentation [43]. Object segmentation has been per-
formed using the down- and up-sampling techniques for the pixel-wise classification of
polyps [44]. The fully convolutional network (FCN) has been suggested by Long et al. for
polyp dissection [45].

UNet is the modified and extended architecture of the FCN [46]. Unet comprises
an analysis path and a synthesis path that are recognized as an encoder and a decoder,
respectively. The analysis part provides the detail of the deep features, while the synthesis
part offers segmentation based on learned features. The encoder–decoder network is a very
core component in terms of semantic segmentation in UNet and the FCN [30]. Multiple
variants of UNet for biomedical segmentation are found in the literature. The encoder–
decoder in UNet applies convolution layers whereby the encoder extracts essential semantic
features ranging from down- to up-level. Table 1 depicts a summary of the existing models
that are used for polyp segmentation using the Kvasir-SEG dataset.

Table 1. A review of the existing models employed for polyp segmentation on the Kvasir-SEG dataset.

Refs. Years Type of CNN Dataset Results (mDice)

[47] 2022 AMNet

Kvasir-SEG

91.20%

[48] 2022 BSCA-Net 91.00%

[49] 2022 SwinE-Net 93.80%

[50] 2021 MSNet 90.70%

[51] 2021 SANet 90.40%

[52] 2021 UACANet 90.50%

The decoder generates the required segmentation mask by using extracted features
from the encoder. The up-sampled (decoder) features are concatenated with the down-
sampled (encoder) features using a skip connection. The final output binary masks are
produced by the convolutional layers. The pre-trained network, including VGG16 and
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VGG19 [53], is replaced by the encoder stage of the UNet model for polyp segmentation
tasks. The residual networks are very successful in transfer learning, such as ResNet50
for disease detection and localization [54]. Identity mapping and 3 × 3 convolutional
layers are used by the residual network [55]. Vanishing gradients and exploding gradients
are eliminated in a deeper neural network using identity mapping [56]. Several clinical
endoscopy and colonoscopy image datasets are publicly available, and researchers can use
them. In the proposed work, two datasets, CVC-ClinicDB and Kvasir-SEG, are employed
for model evaluations.

3. Materials and Methods

A model, Graft-U-Net for polyp detection, is proposed, which comprises three main
phases, including preprocessing, the encoder (analysis path), and the decoder (synthesis
path). The CLAHE technique is used in the preprocessing stage, which enables the features
to be more clearly visualized in the frames. The frames are given as an input to the encoder
block, which explores the context of the frame without determining the location of the
disease. The decoder follows the encoder for synthesizing the frames. The location is
determined by using the skip connection initiated from the encoder block. The segmented
mask and ground truth mask are outlined over the original frame with blue and red colors,
respectively, for the analysis of the model. The block diagram of the method for polyp
segmentation is demonstrated in Figure 1. A detailed description of each block is provided
in the upcoming section.
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Figure 1. Block diagram of the proposed method for polyp segmentation.

3.1. Preprocessing

Preprocessing is the first and most important stage of the presented approach for
enhancing the intensity of pixels in the images. The CLAHE method is applied over the
complete Kvasir-SEG dataset. The controlled intensity level of the pixels provides the local
details in the image. The image is separated into corner areas, border, and inner regions,
with the non-overlapping regions of equal size. The noise in the frames is clipped by setting
the threshold of the clipper, which is not an easy task where the maximum redistribution
level of the clipping and histogram levels are kept equal. The clip limit is defined by
Reza [35], and the form of the equation is represented as below.

β =
M
N

(
1 +

α

100
(Smax − 1)

)
(1)

where in each region of the image, M and N are the gray levels and resolution of the frame,
respectively. α is a clipping factor with a range of [0− 100] and Smax shows the limited
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slope of the transformation function; thus, [1− Smax ] represents the slop range in each
mapping. Figure 2 illustrates the preprocessed frames using the CLAHE method.
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Figure 2. Flow diagram of CLAHE preprocessing method. (a) Original frames and (b) preprocessed
frames.

3.2. Proposed Graft-U-Net Model

Graft-U-Net is composed of encoder and decoder blocks whereby each encoder block
includes the down-sample blocks (DSB). The five DSBs are created in the encoder block,
passing feature maps one after another up to the fifth DSB. In every DSB, grafting blocks
are proposed, parallel to the conventional layers in the encoder of UNet. Thus, the name
Graft-U-Net is given to the network, which is a modified form of UNet. The decoder
consists of five up-sampling blocks (USB) that are used for synthesizing the information
using a skip connection. The architecture of Graft-U-Net’s composed encoder–decoder is
depicted in Figure 3.
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The USB receives the explored information from the DSB block and synthesizes the in-
formation to localize the disease location information by using a skip connection. The early
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information is determined by skip connections from the encoder to the decoder block. The
whole set of USBs provides the disease location and also improves the model performance
through advanced feature construction. A detailed explanation of each encoder (analysis)
and decoder (synthesis) block is addressed in Sections 3.2.1 and 3.2.2, respectively.

3.2.1. Encoder DSB Blocks (Analysis Blocks)

The encoder block of the proposed Graft-U-Net consists of five DSBs. Each phase
of the encoder block is distributed with two parallel networks, including the grafting
layers network and a conventional network. Each network is created with different layers
(convolution, batch normalization, and activation). The convolution layers provide a set of
feature maps. Feature maps, after the activation of the layers of each network in every phase
of the encoder block, are added and forwarded to the max-pooling layer. The sequence of
the operation in the encoder block, with mathematical derivation, is defined as follows.

The size of the input frames is kept at 512 × 512 and provided to the network; then,
the convolutional operation is performed with two input variables: three-channel color
images, with the dimensions of the n and c channels being (n × n × c), and a 3D volume
filter (Kernel) with a size of (f × f × c). The relationship between the input (images) and
output (feature maps) is described below:

Goutput =

⌊
Isize − fsize + 2p

S

⌋
+ 1 (2)

After the convolution operation, the batch normalization (BN) technique is imple-
mented. After the feature normalization technique, BN is used to measure the variance and
average in chunks for every feature. Additionally, channels of neurons are rationalized by
setting the feature value of the small batches. The standard deviation is determined for
splitting and extrapolating the average of the characteristics [57]. The average of the batch
is represented mathematically as:

AverageBatch =
1
N

N

∑
i=1

fi (3)

where Batch = { f1, f2 . . . , fi}b, f is a feature of the batch set, and the variance of the
small-batch is represented as:

VarianceBatch =
1
N

N

∑
i
( fi − AverageBatch)

2 (4)

Then, the features are normalized as:

f̂i =
fi − AverageBatch√
VarainceBatch + σ

(5)

where constant σ represents the steadiness of the features. The features are scaled between
0 and 1 using the activation function. The mathematical equation of ReLU is given as:

ReLUout = max(0, x) (6)

where x is the feature set of the frames. The complete set of features undergoes the
application of convolution operation, BN, and the ReLU activation function, and is and
passed to the next convolution layer network, which is represented by the equation below:
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(f(wx) )b = +  (8) 

where   is the output of the grafted convolution layer,   represents the batch normal-

ization layer of the graft network, f is the activation function, w and x represent the weight 

and the input feature maps to the convolutional layers, respectively, and b determines the 
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, ,, ,
(x)

N N

i j i ji j i j
H  = +

  
 

(9) 

= α( f (wx) + b) (7)

where
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is the output feature set that is obtained across the graft layer network, α represents
batch normalization, f is the activation function, and w and x represent the weight and the
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input feature maps to the convolutional layers, respectively. Bias is represented by b. The
feature set of the first convolution layer network is forwarded to the graft layer network.
The graft layer network is composed of the convolution layer, BN, and activation layer. The
obtained information from the graft layer network is presented below:

ϑ = β( f (wx) + b) (8)

where ϑ is the output of the grafted convolution layer, β represents the batch normalization
layer of the graft network, f is the activation function, w and x represent the weight and the
input feature maps to the convolutional layers, respectively, and b determines the bias of
the neuron. The collected information from the graft layer network is added to the parallel
convolution layer network and is presented in the equation below:

H(x) =
[
∑N

i,j
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i,j + ∑N
i,j ϑi,j

]
(9)

where H(x) is the obtained feature map after the addition of the feature maps of two
networks, including the graft network and the parallel convolution layer network. After
the inclusion of the layer, the feature set is passed to the max-pooling layer. The convolution
operation decreases the resolution of the frames but increases the receptive field (context)
information, which is covered by the filter at any given time. Channel-wise attention is
given via the squeeze and excitation layers. It is formed of a two-step approach: a max-
pooling operation squeezes the n number of feature vectors, and n shows the feature map
count. In the upcoming step, the feed-forward network obtains the global feature vector
from the squeeze net onward. After that, the features are reduced, and then, expanded to
the original size n.

In the whole encoder block, the convolution, BN, activation, and max-pooling opera-
tions are performed, and the depth of the frame is increased. In the convolution operation,
different numbers of filters are employed (8, 16, 32, 48, and 64) with a filter size of 3 × 3.
The number of filters is increased gradually from the upper to lower blocks, which helps to
explore more detailed features in the frames. The information on polyp disease is analyzed,
with in-depth analysis of the features. The encoder block provides overall context informa-
tion, but not actual information on the location of the disease. For obtaining information on
the location, a decoder block is required that uses the skip connection for collecting disease
location information and increasing the resolution of the frames. Figure 4 depicts the visual
information obtained from the different convolution layers (C1, C4, C7, C10, C13 in color,
and C13 in grayscale) of the encoder block of Graft-U-Net using the kvasir-SEG dataset.
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Figure 4. Visualization of various layers of Graft-U-Net. (a) C1, (b) C4, (c) C7, (d) C10, (e) C13, and
(f) C13 (gray level).

3.2.2. Decoder USB Blocks (Synthesis blocks)

The decoder obtains the feature maps from the encoder and reconstructs the statistics
of the polyp disease. In the decoder, the five up-sampling blocks containing 64, 48, 32,
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16, and 8 filters are created. Each block contains many layers, including the convolution
layer, batch normalization (BN), activation layer, up-sampling layer, and concatenation
layer (CNC), which are used for synthesizing the information using a skip connection.
A layer detail summary of the complete model is shown in Table 2. The notation used
in Table 2 is defined as A—activation, C—convolution layer, BN—batch normalization,
UP—up-sampling, MP—max pooling, CNC—concatenation layer.

Table 2. Detailed layer information on the Graft-U-Net Architecture.

Layer No Network Layers Feature Map
Dimension

Sliding Window
Size

Stride
Information Padding Size Pooling Window

Details

1 Input 512 × 512 × 3 3 × 3 × 3 × 8 [1 1] [0 0 0 0] -

2,3,4 C1, BN1,A1 512 × 512 × 8 3 × 3 × 3 × 8 [1 1] Same -

5,6,7 C2,BN2,A2 512 × 512 × 8 3 × 3 × 3 × 8 [1 1] Same -

8,9,10 C3,BN3,A3 512 × 512 × 8 3 × 3 × 3 × 8 [1 1] Same -

11 MP 256 × 256 × 8 3 × 3 × 3 × 8 [1 1] Same Max pooling 3 × 3

12,13,14 C4,BN4,A4 256 × 256 × 16 3 × 3 × 3 × 16 [1 1] Same -

15,16,17 C5,BN5,A5 256 × 256 × 16 3 × 3 × 3 × 16 [1 1] Same -

18,19,20 C6,BN6,A6 256 × 256 × 16 3 × 3 × 3 × 16 [1 1] Same -

21 MP 128 × 128 × 16 3 × 3 × 3 × 16 [1 1] Same Max pooling 3 × 3

22,23,24 C7,BN7,A7 128 × 128 × 32 3 × 3 × 3 × 32 [1 1] Same -

25,26,27 C8,BN8,A8 128 × 128 × 32 3 × 3 × 3 × 32 [1 1] Same -

28,29,30 C9,BN9,A9 128 × 128 × 32 3 × 3 × 3 × 32 [1 1] Same -

31 MP 64 × 64 × 32 3 × 3 × 3 × 32 [1 1] Same Max pooling 3 × 3

32,33,34 C10,BN10,A10 64 × 64 × 48 3 × 3 × 3 × 48 [1 1] Same -

35,36,37 C11,BN11,A11 64 × 64 × 48 3 × 3 × 3 × 48 [1 1] Same -

38,39,40 C12,BN11,A12 64 × 64 × 48 3 × 3 × 3 × 48 [1 1] Same -

41 MP 32 × 32 × 48 3 × 3 × 3 × 48 [1 1] Same Max pooling 3 × 3

42,43,44 C13,BN13,A13 32 × 32 × 64 3 × 3 × 3 × 64 [1 1] Same -

45,46,47 C14,BN14,A14 32 × 32 × 64 3 × 3 × 3 × 64 [1 1] Same -

48,49,50 C15,BN15,A15 32 × 32 × 64 3 × 3 × 3 × 64 [1 1] Same -

51 MP 16 × 16 × 64 3 × 3 × 3 × 64 [1 1] Same Max pooling 3 × 3

52,53,54 C16,BN16,A16 16 × 16 × 64 3 × 3 × 3 × 64 [1 1] Same -

55 UPS1 32 × 32 × 64 3 × 3 × 3 × 64 [1 1] Same -

56 CNC1 32 × 32 × 128 - - - -

57,58,59 C17,BN17,A17 32 × 32 × 64 3 × 3 × 3 × 64 [1 1] Same -

60 UPS2 64 × 64 × 64 3 × 3 × 3 × 64 [1 1] Same -

61 CNC2 64 × 64 × 112 - - - -

62,63,64 C18,BN18,A18 64 × 64 × 48 3 × 3 × 3 × 48 [1 1] Same -

65 UPS3 128 × 128 × 48 3 × 3 × 3 × 48 [1 1] Same -

66 CNC3 128 × 128 × 80 - - - -

67,68,69 C19,BN19,A19 128 × 128 × 32 3 × 3 × 3 × 32 [1 1] Same -

70 UPS4 256 × 256 × 32 3 × 3 × 3 × 32 [1 1] Same -

71 CNC4 256 × 256 × 48 - - - -
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Table 2. Cont.

Layer No Network Layers Feature Map
Dimension

Sliding Window
Size

Stride
Information Padding Size Pooling Window

Details

72,73,74 C20,BN20,A20 256 × 256 × 16 3 × 3 × 3 × 16 [1 1] Same -

75 UPS5 512 × 512 × 16 3 × 3 × 3 × 16 [1 1] Same -

76 CNC5 512 × 512 × 24 - - - -

77,78,79 C21,BN21,A21 512 × 512 × 8 3 × 3 × 3 × 8 [1 1] Same -

80,81 C22,A22 512 × 512 × 1 3 × 3 × 3 × 1 [1 1] Same -

In each phase of the USB, the convolution operation is performed and features from
the feature maps are normalized by the BN layer. The activation function is applied on the
normalized feature maps. Similarly, the information of each frame is forwarded to the next
USB up to the last convolution layer, as shown in Figure 3. The dimensionality of the feature
maps is kept the same across layers in the decoder block for the addition of the feature map
at each stage in terms of skip connection. The skip connection provides the hidden infor-
mation, which is misplaced due to the deepness of the encoder block network. It assists in
better reconstruction of the semantic feature maps to the encoder, where the following resid-
ual block helps to learn the necessary features using backpropagation by repeating it many
times. After the last convolution operation, the sigmoid activation function is performed,
which provides the segmented frame as the final output of the Graft-U-Net model.

4. Results and Discussion

In this section, an explanation of the two datasets is given and performance evaluation
protocols are addressed. A detailed description of the experiments is provided with the
two datasets. The training and testing of the model were performed using the NVIDIA
GTX 1070 GPU. Windows 10 was used with a core i5 machine with 8 GB of inbuilt RAM.
Python Spyder IDE was used for the compiling of results and model evaluation. This
section addresses the model’s performance evaluation protocols, visualizations of features,
and experimental setup.

4.1. Datasets

Medical-image analysis is a highly demanding task whereby pixel-wise image seg-
mentation is performed using medical-imaging datasets. An open-access dataset such as
Kvasir-SEG is an annotated medical-image dataset with a corresponding segmentation
mask. The size of the file containing polyp frames was 46.2 MB. The original frames and
their corresponding ground truth frames were verified by a qualified gastroenterologist.
The resolution of the frames varied from 332 × 487 to 1920 × 1072 pixels in the whole
dataset, which was stored in two folders—the actual images folder and the ground truth
images folder—where the name of each frame was kept the same as the name of the original
images in folder 1. The Kvasir-SEG dataset [58] was used for the evaluation of Graft-U-Net,
which consisted of 1000 polyp images. The dataset was prepared by an expert endoscopist
from Oslo University Hospital Norway (OUHN). An open-access CVC-ClinicDB dataset
was employed as the state-of-the-art, and had 612 images with a 384 × 288 resolution from
31 colonoscopy sequences [59]. CVC-ClinicDB was also composed of two folders—one
folder for original images and the other for ground truth images (containing a mask) corre-
sponding to the polyp area covered in the original frame. A comprehensive summary of
both datasets that are used in the proposed model is given in Table 3. Figure 5 illustrates
the sample of the original images with corresponding ground truth images.
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Table 3. Summary of the Datasets.

Datasets Organs Diseases Modalities Original Images Ground Truth

CVC-ClinicDB [60] Bowel Colon Polyps Colonoscopy 612 images 612 images

Kvasir-SEG [58] Bowel Colon Polyps Colonoscopy 1000 images 1000 images
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4.2. Performance Evaluation Measures

The standard computer vision methods for semantic segmentation were used for the
evaluation of model performance using the Kvasir-SEG dataset in terms of precision, mean
Dice coefficient (mDice), recall, accuracy, mean intersection of union (IoU), and F2-score.
Each evaluation protocol provides specific information relevant to the experiment. A
false-positive (fp) determines the information about a predicted class as positive when
it is actually found to be negative, a true-positive (tp) provides a correct prediction, a
false-negative (fn) considers the predicted class as negative while it is actually positive, and
for a true-negative (tn), the actual class and predicted class are found to be negative. Test
score accuracy is measured by the F2 scores that are used in binary classification problems.

Mean Dice =
2× tp

2 ∗ tp + fp + fn
(10)

mIoU =
tp

tp + fp + fn
(11)

Recall =
tp

tp + fn
(12)

Precision =
tp

tp + fp
(13)

F2 =
5p× r
4p + r

(14)

Accuracy =
tp + tn

tp + tn + fp + fn
(15)

4.3. Experiment 1: Results of Kvasir-SEG Dataset Using Graft-U-Net

The experiment was performed using the Kvasir-SEG dataset where the ratio of the
sample was set as 70% training and 30% testing. In the training, the number of epochs was
set as 40 on 1000 frames of the dataset. The results were collected from the model in terms
of performance evaluation metrics as the mIoU (82.45%), mDice (96.61%), F2 score (95.25%),
Precision (99.11%), Recall (94.33%), and Accuracy (85.11%). The results of the Graft-U-Net
model were obtained using the Kvasir-SEG dataset and are displayed in Figure 6, which
makes the results of the model more noticeable.
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Figure 6. Results of Graft-U-Net with Kvasir-SEG dataset.

The results of Graft-U-Net (0.9661) in terms of mDice are compared with the pre-
study models of UNet (0.7147), ResUNet (0.5144), and ResUNet++ (0.8133). The analysis
declares that the suggested model performs better in terms of mDice when using the Kvasir-
SEG dataset. The Graft-U-Net architecture performs marginally well against the baseline
architecture. The outcome of mDice on the Kvasir-SEG dataset is shown in Figure 7.
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Figure 7. Comparison of Graft-U-Net on Kvasir-SEG dataset in terms of mDice.

The results of Graft-U-Net (0.8245) in terms of mIoU are compared with the pre-study
models of UNet (0.4334), ResUNet (0.4364), and ResUNet++ (0.7927). The comparison
result of mIoU is depicted in Figure 8.
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Figure 8. Comparison of Graft-U-Net on Kvasir-SEG dataset in terms of mIoU.

The results of Graft-U-Net (0.9433) in terms of Recall are compared with the pre-study
models of UNet (0.6306), ResUNet (0.5041), and ResUNet++ (0.7064). The outcome shows
that recall is enhanced when using the Kvasir-SEG dataset. The outcome of the recall is
illustrated in the form of a table and a graph in Figure 9.
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Figure 9. Comparison of Graft-U-Net on Kvasir-SEG dataset in terms of recall.

The results of Graft-U-Net (0.9911) in terms of precision are compared with the pre-
study models of UNet (0.9222), ResUNet (0.7292), and ResUNet++ (0.8774). The result of
the precision is improved. The combined form of the Precision results, including a table
and a graph, are presented in Figure 10.
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Figure 10. Comparison of Graft-U-Net on Kvasir-SEG dataset in terms of precision.

The illustrated results are compiled on the Kvasir-SEG dataset and input images
(original images) with the corresponding ground truth masks, model-predicted output
masks, and a combined form of the ground truth masks and predicted masks, which are
compared with a blue outline and a red outline, respectively, in Figure 11.
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Figure 11. Comparison of ground truth and output mask on the Kvasir-SEG dataset. (a) Original
Image; (b) ground truth; (c) output mask; and (d) combined.
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4.4. Experiment 2: Results of the CVC-ClinicDB Dataset Using Graft-U-Net

An in-depth performance analysis and additional experiments were performed for
automatic polyp segmentation. The CVC-ClinicDB dataset is considered the one that
can make the model clinically acceptable. The results of Graft-U-Net (0.8995) in terms of
mDice are compared with the pre-study models of UNet (0.6419), ResUNet (0.4511), and
ResUNet++ (0.7955). The analysis declares that the proposed model provides improved
results in terms of mDice when using the CVC-ClinicDB dataset. Figure 12 represents the
result of the mDice.
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Figure 12. Comparison of Graft-U-Net on CVC-ClinicDB Dataset in terms of mDice.

The results of Graft-U-Net (0.8138) in terms of mIoU are compared with the pre-study
models of UNet (0.4711), ResUNet (0.4571), and ResUNet++ (0.7962). The comparison that
is shown in Figure 13 declares the model to be better in terms of mIoU when using the
CVC-ClinicDB dataset.
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Figure 13. Comparison of Graft-U-Net on CVC-ClinicDB Dataset in terms of mIoU.

The results of Graft-U-Net (0.8785) in terms of Recall are shown in Figure 14. The
results are compared with the pre-study models of UNet (0.6756), ResUNet (0.5775), and
ResUNet++ (0.7022) and are provided in the form of a table and a graph. The recall is
improved using the CVC-ClinicDB dataset.
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Figure 14. Comparison of Graft-U-Net on CVC-ClinicDB Dataset in terms of Recall.
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The results of Graft-U-Net (0.9211) in terms of Precision are compared with the existing
work of UNet (0.6868), ResUNet (0.5614), and ResUNet++ (0.8785). The model outper-
forms in terms of precision when using the CVC-ClinicDB dataset. The integrated results,
including a table and a graph, are presented in Figure 15.
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Figure 15. Comparison of Graft-U-Net on CVC-ClinicDB Dataset in terms of precision.

The illustrated results are compiled on the CVC-ClinicDB dataset and the input images
(original images) with the corresponding ground truth masks, model-predicted output
masks, and a combined form of the ground truth mask and predicted masks, which are
compared with a blue outline and a red outline, respectively, in Figure 16.
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Figure 16. Comparison of ground truth and output mask on the CVC-ClinicDB dataset. (a) Original
Image; (b) ground truth; (c) output mask; and (d) combined.

4.5. Discussion

Semantic segmentation is a crucial segmentation technique that is employed for polyp
detection from the frames of the GI tract. Deep learning plays a decisive role in the
computer vision field for feature learning using CNN techniques. The challenges mostly
occur in data acquisition, such as the appearance of the polyps fluctuating under the
same lighting conditions and variable texture, and varying angular views under different
lighting conditions. Graft-U-Net is the proposed method for polyp segmentation in our
manuscript, and overcomes the addressed challenges attractively. The proposed model
comprises main two blocks (encoder and decoder) where a graft network is proposed in the
encoder block, as shown in Figure 3. The encoder analyzes the information in the frames
while the decoder synthesizes the visual information using skip connections. Graft-U-Net
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outperforms in terms of mDice (96.61%), the mIoU (82.45%), precision (94.33%), and recall
(99.11%) using the Kvasir-SEG dataset. Similarly, model performance was analyzed using
the CVC-ClinicDB dataset, which provides better results in terms of mDice (89.95%), the
mIoU (81.38%), precision (87.85%), and recall (92.11). Consequently, the algorithm can be
made more generalized by using small-sized polyps for semantic segmentation. In this
regard, Graft-U-Net is proposed to handle small polyps and shape information, and to
incorporate artifacts separately to improve the model’s overall efficiency.

5. Conclusions and Future Work

The proposed Graft-U-Net model performs semantic segmentation better than existing
models. The model achieves accurate segmentation of colorectal polyps using the two
polyp datasets described in the manuscript. During the preprocessing phase, the CLAHE
technique is used to enhance the intensity level of the frames of the Kvasir-SEG dataset.
The proposed Graft-U-Net model is composed of encoder and decoder blocks where five
DSBs and five USBs are made. The graft network is proposed in each DSB block in the
encoder to obtain better feature maps. The decoder block constructs the feature maps for
finding the location of the mask, which is the area covered in the original frame. So, the
proposed model outperforms with respect to mDice (96.61%), the mIoU (82.45%), precision
(94.33%), and recall (99.11%) using the Kvasir-SEG dataset; similarly, on the CVC-clinicDB
dataset, the model achieves better results with mDice (89.95%), the mIoU (81.38%), precision
(87.85%), and recall (92.11%). The performance evaluations are compared with the existing
state-of-the-art models UNet, ResUNet, and ResUNet++.

The encoder block can be replaced by models including resNet, VGG, InceptionNet,
AlexNet, etc. The proposed model can serve as a strong baseline for additional exploration
to establish a useful technique, which will help to achieve the generalizability goal.
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