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Gizejewski Z (2021) Rumen Ciliated

Protozoa of the Free-Living European

Bison (Bison bonasus, Linnaeus).

Front. Microbiol. 12:658448.

doi: 10.3389/fmicb.2021.658448

Rumen Ciliated Protozoa of the
Free-Living European Bison (Bison
bonasus, Linnaeus)
Svetlana Kišidayová 1*, Dominik Durkaj 2, Katarína Mihaliková 1, Zora Váradyová 1,

Julia Puchalska 3, Małgorzata Szumacher-Strabel 3, Adam Cieślak 3* and
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This study aims to perform population analysis of the rumen ciliated protozoa of the

free-living European bison (wisent, Bison bonasus, Linnaeus). The samples of the

rumen fluid from the 18 bison subjected to the controlled culls within the free-ranging

population in the Bialowieza primeval forest in Poland were collected and examined.

The examined ciliates population consisted of the species of the families Isotrichidae

and Ophryoscolecidae. There were 12 genera (Isotricha, Dasytricha, Diplodinium,

Elytroplastron, Entodinium, Eodinium, Epidinium, Eremoplastron, Eudiplodinium,

Metadinium, Ophryoscolex, and Ostracodinium) and 32 morphospecies of the ciliates.

We observed the prevalence of a type B protozoan population (56% animals) with

the typical Epidinium and Eudiplodinium genera members. Other examined animals

possessed the mixed A–B population with Ophryoscolex genus, distinct for type A ciliate

population. The average total ciliates count was 2.77± 1.03× 105/ml (mean± SD). The

most abundant genera were Entodinium, 83%, and Dasytricha, 14%. The abundance of

other genera was <1% of the total count. Within the 16 Entodinium species determined,

the most abundant species was Entodinium nanellum (16.3% of total ciliates count).

The average Shannon–Wiener diversity index was 2.1 ± 0.39, evenness was 0.7 ±

0.11, and species richness was 24 ± 3.0 (mean ± SD). Our study is the first report

on the population composition and diversity of rumen ciliates of European bison. The

composition and counts of ciliate genera and species were similar to the composition

and counts of the rumen ciliated protozoa of American bison and many other kinds of

free-living and domestic ruminants. Our European bison ciliate population analysis has

shown medium ciliate density and high diversity typical for large free-living ruminants

with mixed feeding behavior.
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INTRODUCTION

The European bison (wisent, Bison bonasus L.) is the largest
terrestrial mammal in Europe. The European bison has been
successfully restored after the extinction in the wild at the
beginning of the twentieth century. The total area of European
bison habitat covers about 130,000 ha in Poland. Due to
herd management of growing free-ranging wisent population
in the Bialowieza Forest (northeast Poland), the annual culls
have been conducted since 1971 (Krasińska and Krasiński,
2013). They aim to reduce the population on average by
11%. The most frequent reasons for bison selections were
various injuries, entering fields, aggression toward people, and,
after 1980, changes in the genitourinary system caused by
posthitis/balanoposthitis illness (Krasińska and Krasiński, 2013).
The free-living ruminants are interesting from a scientific
perspective because few studies describe their complex rumen
microbial ecosystems (Ishaq et al., 2015). The complex rumen
microbial population comprises prokaryotes (eubacteria and
archaea) and eukaryotes (fungi and protozoa). The dominant
component of rumen protozoa is ciliated protozoa (Williams and
Coleman, 1992), which contribute to the breakdown of plant
and microbial carbohydrates and proteins. Protozoa influence
the rumen microbial population by predation on other protozoa,
prokaryotes, and fungi, suggesting that protozoa are still
attractive from a scientific point of view (Williams et al., 2020).
In general, the number of rumen ciliates species in different host
animals is about 45 or less, influenced mainly by host feeding
behavior and seasonal variation in the diet (Dehority, 2004). The
studies on the rumen ciliates population revealed twomain types,
types A and B. Type A population is characterized by the presence
of genera of Polyplastron and Ophryoscolex (Eadie, 1962, 1967).
Type B population is characterized by the presence of genera of
Epidinium and Eudiplodinium. On the other hand, some other
genera are commonly present in most ruminants (Entodinium
spp. and Isotrichids). Rumen ciliates were described in many
ruminants’ species; however, their description of the genus Bison
is limited only to American bison (A. bison, Bison bison). All
protozoan species found in A. bison have also been reported
in domestic livestock. The type B population predominated in
free-living A. bison without contacts with cattle. The mixed A–
B population occurred in bison in areas inhabited by domestic
livestock (Towne et al., 1988b). The percentage distribution
of rumen ciliate species among A. bison varies among the
geographical regions, depending on the type and quantity of
consumed feed and on the contact with other animals in the
group. The present study aimed to examine and describe the
ciliate population of the rumen fluid of European bison obtained
from culled animals of the free-ranging population in Bialowieza.
The description of rumen ciliate protozoa of the European bison
contributes to our knowledge of the ecology and diversity of
rumen ciliates of the free-living European ruminants.

MATERIALS AND METHODS

The material was obtained from culled European bison
originating from the free-ranging population in the Bialowieza

Forest (northeast Poland; longitude between 23◦31′ and 24◦21′

E and latitude 52◦29′ and 52◦57′ N). Samples were collected
immediately after death (1–3 h) from 18 animals of both sexes
of various ages during February and March 2007 (Table 1). For
the microscopic counts, about 10 g/animal of the rumen contents
were preserved with an equal amount of 8% formaldehyde
solution (w/w), strained through four layers of cheesecloths
into 10 ml polypropylene tubes with screw cups and stored
at 8◦C in a refrigerator until analysis. Ciliates were counted
microscopically in an aliquot of the suitably diluted sample
(Williams and Coleman, 1992). At least four replicates were
counted per sample and per ciliate species. The protozoan genera
and species were identified according to the size and the shape
of cells, skeletal plates (if present), macronucleus, and ciliature
arrangement (Dogiel, 1927; Ogimoto and Imai, 1981; Williams
and Coleman, 1992; Ito and Imai, 1998; Ito et al., 2001; Cedrola
et al., 2017a,b, 2018). Different staining procedures were used
to stain skeletal plates (iodine solution), nuclei (methyl green-
formalin-saline and chrome-alum-carmine), and infraciliature
(pyridinated silver carbonatemethod) (Ogimoto and Imai, 1981).
The pictures of ciliates were taken under bright field illumination
by Moticam Pro CCD Camera (Motic Incorporation Ltd., Hong
Kong) mounted on a BA400 microscope (Motic Incorporation
Ltd., Hong Kong). The images were processed and analyzed using
ImageJ software according to ImageJ software documentation
(Abramoff et al., 2004; Siritantikorn et al., 2012; Choudhry, 2016).
Morphometric measurements were performed by image analysis
of at least 20 cells. Only ciliates of the families Isotrichidae and
Ophryoscolecidae were present in the samples. Differentiated
count of species of genus Entodinium was performed in 13
samples (animals). Direct bacterial count estimated the total
bacteria count through image analysis of pictures taken under
bright field illumination of dried smears of formaldehyde-fixed
samples (Siritantikorn et al., 2012; Choudhry, 2016). Two smears
stained with methylene blue and known dimensions and known
volumes per sample (animal) were prepared according to the
Breed method (Horáková, 1988). Twenty randomly selected
pictures per smear were taken at an objective magnification of
×100 by the Moticam Pro CCD Camera (Motic Incorporation
Ltd., Hong Kong) mounted on a BA400 microscope (Motic
Incorporation Ltd., Hong Kong). The images were processed
and analyzed using ImageJ software (Selinummi et al., 2005).
Ciliates and bacteria counts per milliliter were expressed as
geometric means of log natural transformed values ± geometric
standard deviation and arithmetic means ± standard deviations.
We evaluated bison age and sex effects on the total count
of bacteria and ciliates by nonparametric Kruskal–Wallis test
(GraphPad Prism, GraphPad Software, Inc., San Diego, CA,
USA). The biodiversity indices (Shannon–Wiener diversity
index, evenness, and species richness) (Spellerberg and Fedor,
2003; Jost, 2006) were calculated with an Excel calculator
(Microsoft Office Professional, 2007, Microsoft, Redmond, WA,
USA). The Shannon–Wiener (SW) diversity index was computed
to explain the entropy, taking into account the species richness
and evenness of the community. The species richness was
evaluated by counting the number of taxa per sample (animal).
Correlation analysis on counts of ciliates genera was calculated

Frontiers in Microbiology | www.frontiersin.org 2 June 2021 | Volume 12 | Article 658448

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Kišidayová et al. Rumen Ciliates of European Bison

TABLE 1 | Average weight, age, rumen ciliates, and bacteria counts of European bison (wisent, Bison bonasus, L.).

Bison counts Weight (kg) Age (year) Ciliate count (Ln/ml) Bacteria count (Ln/ml)

n Mean SD Mean SD Geom-mean Geom-SD Geom-mean Geom-SD

Males 5 309 92.3 2.6 0.89 12.32 1.714 23.81 1.410

Females 6 395 73.1 12.4 8.32 12.25 1.679 23.81 1.254

Young females 7 108 16.1 0.6 0.18 12.34 2.498 23.92 1.168

TABLE 2 | The analysis of rumen ciliated protozoa population of European bison (Bison bonasus. L.).

Family, genus, species Prevalence

(%)

Percentage of total

count

(%)

Count (C/ml)

Mean SD n Median Min Max

Ophryoscolecidae

Entodinium spp. 100 82.86 229,537 94,228.29 18 217,333 90,666 404,000

Epidinium

Epidinium parvicaudatum 100 0.29 812 1,116.28 18 402 13 4,870

Eremoplastron

Eremoplastron rostratum 72 0.30 831 1,188.05 13 350 100 3,950

Diplodinium

Diplodinium dentatum 100 0.86 2,390 1,578.42 18 2,120 13 5,180

Metadinium

Metadinium esalqum 100 0.13 366 331.67 18 264 60 1,307

Eudiplodinium

Eudiplodinium maggii 100 0.23 636 598.50 18 310 13 2,040

Elytroplastron

Elytroplastron bubali 100 0.12 345 409.64 18 270 7 1,727

Ostracodinium

Ostracodinium gracile 61 0.01 32 44.21 11 20 7 160

Ophryoscolex

Ophryoscolex purkynei 44 0.03 92 135.33 8 30 5 400

Isotrichidae

Dasytricha

Dasytricha ruminantium 100 14.36 39,787 33,637.57 18 42,800 400 144,000

Isotricha

Isotricha prostoma 78 0.48 1,317 1,399.83 14 707 253 4,013

Isotricha intestinalis 83 0.39 1,071 1,543.91 15 440 40 5,520

Total count 100 100 277,022 103,503.93 18 274,620 105,279 463,181

with Prism 5 (GraphPad Software, Inc., San Diego, CA, USA).
Probability value p < 0.05 was considered significant. Principal
component analysis was performed on counts of ciliates genera
with the aid of the STATISTICA (Data Analysis Software System),
version 9.0. (StatSoft, Inc., Tulsa, OK, USA, 2009).

RESULTS

Age, weight, and sex of hosts and the total count of ciliates and
bacteria are summarized in Table 1. The abundance of bacteria
was estimated to be 235.108 ± 43 × 108/ml (arithmetic mean
± SD). The mean count of ciliates was 2.77 × 105 ± 1.03 ×

105/ml (arithmetic mean ± SD). We observed no effects of sex

and age of host on the abundance of bacteria (P = 0.809) and
ciliates (P = 0.412). We determined 12 genera and 32 ciliates
species by microscopic examination (Tables 2, 3). All examined
bison ciliates populations can be classified as type B, although
the Ophryoscolex genus was present in eight individuals. We
observed the following genera and morphospecies of the
family Isotrichidae: Isotricha (Isotricha prostoma, Isotricha
intestinalis) and Dasytricha (Dasytricha ruminantium). We
observed the following genera and morphospecies of the family
Ophryoscolecidae: Diplodinium (Diplodinium dentatum),
Entodinium (Entodinium brevispinum, Entodinium caudatum,
Entodinium dubardi, Entodinium exiguum, Entodinium furca,
Entodinium lobosospinosum, Entodinium longinucleatum,
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TABLE 3 | The counts of rumen Entodinium species of European bison (Bison bonasus. L.).

Species Prevalence % Percentage of

total count %

Count C/ml

Mean SD n Median Min Max

E. brevispinum 92 2.6 7,300 5,345 12 5,000 400 17,200

E. caudatum 77 0.7 1,880 1,544 10 1,600 200 4,800

E. dubardi 100 3.5 9,660 6,144 13 9,200 1,000 19,200

E. exiguum 100 4.6 12,740 8,060 13 9,600 3,800 32,000

E. furca monolobum 92 1.6 4,430 2,885 12 3,800 200 8,800

E. lobosospinosum 92 1.4 4,020 2,680 12 3,900 600 9,400

E. longinucleatum 100 1.3 3,520 2,385 13 3,600 1,000 8,200

E. nanellum 100 16.3 45,060 25,686 13 41,800 11,800 95,800

E. nanum 100 5.0 13,862 7,744 13 12,800 3,600 28,200

E. ovinum 8 0.1 200 1 200 200 200

E. ovoideum 92 2.7 7,450 4,408 12 6,500 2,000 17,000

E. parvum 100 4.6 12,750 7,683 13 11,400 800 23,800

E. rostratum 77 1.4 3,980 6,275 10 1,900 400 21,600

E. simplex 100 1.7 4,830 3,513 13 4,200 200 11,600

E. triacum 85 1.3 3,530 3,501 11 1,400 200 11,200

E. yunnense 92 0.3 820 679 12 600 200 2,000

Entodinium nanellum, Entodinium nanum, Entodinium ovinum,
Entodinium ovoideum, Entodinium parvum, Entodinium
rostratum, Entodinium simplex, Entodinium triacum, and
Entodinium yunnense), Elytroplastron (Elytroplastron bubali),
Eodinium (Eodinium posterovesiculatum), Epidinium (Epidinium
caudatum, Epidinium ecaudatum, Epidinium parvicaudatum,
Epidinium quadricaudatum, and Epidinium tricaudatum),
Eremoplastron (Eremoplastron rostratum), Eudiplodinium
(Eudiplodinium maggii), Metadinium (Metadinium esalqum),
Ostracodinium (Ostracodinium gracile), and Ophryoscolex
(Ophryoscolex purkyniei), (Figures 1, 2). The most abundant
genera were Entodinium (83%, 2.22 × 105/ml) and Dasytricha
(13%, 0.33 × 105/ml). The remaining genera were <1%
abundant. The genera of Entodinium, Epidinium, Diplodinium,
Eudiplodinium, Elytroplastron, and Dasytricha were present in
all rumen samples. The E. posterovesiculatum was infrequent
and not countable. The Epidinium species of E. caudatum,
E. ecaudatum, E. quadricaudatum, and E. tricaudatum were
infrequent and not countable. The dominant Epidinium species
was E. parvicaudatum. Within other large ciliates, the least
abundant species were E. bubali and O. gracile. Within the
Entodinium species, the most numerous were E. nanellum,
with 16.3% of total ciliates count (Table 3). Other Entodinium
species were abundant <5% of the total ciliates count. Table 4
shows the evaluation of the population variability of rumen
ciliates of European bison with diversity (Shannon–Wiener
index) of 2.1, evenness (Peliou index) of 0.7, and species
richness of 24. Correlation analysis is summarized in Table 5

(the numbers within brackets are r and P, respectively).
Analysis revealed the positive correlation of Isotricha counts
with counts of Entodinium (0.73, 0.001), total counts (0.72,
0.001), Ostracodinium (0.68, 0.02), Eudiplodinium (0.63, 0.007),
Eremoplastron (0.66, 0.01), and Elytroplastron (0.62, 0.008).

Entodinium counts correlated positively with total counts (0.94,
0.001), counts of Eremoplastron (0.83, 0.001), Isotricha (0.73,
0.01), Eudiplodinium (0.72, 0.01), and Ostracodinium (0.62,
0.04). Epidinium counts correlated positively with counts of
Eremoplastron (0.66, 0.01) and negatively with animal weight
(−0.47, 0.05). Eremoplastron counts correlated with counts of
Entodinium (0.83, 0.001), totals (0.78, 0.002), Eudiplodinium
(0.75, 0.003), Ostracodinium (0.75, 0.03), Epidinium (0.66, 0.01),
and Isotricha (0.66, 0.01). Eudiplodinium counts correlated with
counts of Eremoplastron (0.75, 0.003), Entodinium (0.72, 0.001),
Isotricha (0.63, 0.01), and totals (0.63, 0.005). Elytroplastron
counts correlated with the counts of Ostracodinium (0.93, 0.001)
and Isotricha (0.62, 0.008). Ophryoscolex counts correlated only
with animal age (0.73, 0.04). Ostracodinium counts correlated
with the counts of Elytroplastron (0.93, 0.001), Eremoplastron
(0.75, 0.03), Isotricha (0.68, 0.02), and Entodinium (0.62,
0.04). No significant correlations were observed on counts of
Dasytricha, Diplodinium, andMetadinium. No correlations were
observed on animal gender. Animal weight was associated with
animal age (0.70, 0.001). These relationships are illustrated with
a PCoA plot of the variables, which shows similar relationships
(Figure 3).

DISCUSSION

The rumen protozoal population of free-living ruminants is
influenced mainly by host feeding behavior and seasonal
variation in the diet (Kamler, 1999; Dehority and Odenyo, 2003;
Booyse and Dehority, 2011; Clauss et al., 2011; Obidziński et al.,
2017). European bison can be considered mixed feeders with
68–97% of herbaceous plants in their natural diet (Gebczyńska
et al., 1991; Kowalczyk et al., 2019). In some other references,
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FIGURE 1 | Photomicrographs of some ciliates observed in the rumen of European bison. (A) Elytroplastron bubali; (B) Eudiplodinium maggii; (C) the illustration of

two extreme sizes of E. maggii; (D,E) Ophryoscolex purkyniei; (F) (from left to right) Dasytricha ruminantium, Isotricha prostoma, Diplodinium dentatum, and

Entodinium exiguum; (G,I) Isotricha intestinalis; (H,I) Epidinium parvicaudatum; (J) Metadinium esalqum; (K) Elytroplastron with engulfed Epidinium; (L) Eodinium
posterovesiculatum; (M) Dasytricha ruminantium and Eremoplastron rostratum. Samples were colorized by (A,B,F,G,I–L) methyl-green formalin, (D,E,H,M) iodine

solutions, and (C) pyridinated silver carbonate. Scale bars are 20 µm in all pictures.

the European bison are considered as grazers with 68% of grass
in their natural diet (Pucek et al., 2002; Clauss et al., 2006;
Przybyło et al., 2019). The population of rumen ciliated protozoa
of grazers (e.g., cattle) is generally more diverse in comparison
with typical browsers, selectors (e.g., roe deer and blue duiker),
but this is not a rule (Kofoid and Christianson, 1934; Sládeček,
1946; Prins and Geelen, 1971; Giesecke and Gylswyk, 1975; Imai,
1988; Williams and Coleman, 1992; Dehority, 1994; Robbins
et al., 1995; Dehority andOdenyo, 2003; Clauss et al., 2011).More
generically diverse ciliate populations of grass and roughage

eaters may result from a slower passage rate and higher rumen
pH (Dehority and Odenyo, 2003). However, in the Bialowieza
forest, other food (hay) is available to bison during winter
(Gebczyńska et al., 1991; Pucek et al., 2002; Kowalczyk et al.,
2011). Therefore, the differences in both summer and winter
rumen ciliate populations are likely small. To our knowledge,
this is the first study describing the population of protozoa in
the rumen of European bison of the Białowieza region. Generally,
the species composition of rumen ciliates of European bison was
similar to the composition of rumen ciliates populations of many
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FIGURE 2 | Photomicrographs of some entodiniid ciliates observed in the rumen of European bison. (A) Entodinium brevispinum; (B) E. caudatum; (C)

E. lobosospinosum; (D) E. simplex; (E) E. nanellum; (F) E. rostratum; (G) E. parvum; (H) E. yunense; (I) (from left to right) E. simplex, E. nanellum, and E. yunense; (J)
E. orbicularis; (K) E. exiguum; and (L) E. dubardi. Samples were colorized by (A–J) chrome-alum-carmine and (K,L) methyl-green formalin solutions. Scale bars are

10 µm in all pictures.

other species of free-living and domesticated ruminants (Kofoid
and Christianson, 1934; Sládeček, 1946; Crha, 1972; Towne et al.,
1988a,b; Ito et al., 1994; Moon-van der Staay et al., 2014). Recent
research pointed to the existence of a core rumen microbiome
across a wide geographical range, which is modified by the diet
and the host (O’Kelly and Spiers, 1992; Guan et al., 2008; Shi et al.,
2008; Moon-van der Staay et al., 2014; Henderson et al., 2015;
Ishaq et al., 2015; Tapio et al., 2017; Reis et al., 2019; Furman et al.,
2020; Xue et al., 2020). These studies indicate that dietary and
animal feeding strategies dominate over host species. In the study
of Henderson et al. (2015), the variability of protozoa between
and within animal groups was much greater than that of bacteria
and archaea. Analyses of different 18S ribosomal RNA (rRNA)

genes showed extremely complex but related ciliate communities,
which occur in the rumen of cattle, sheep, goats, and red
deer (Moon-van der Staay et al., 2014). Although individual
host genetic characteristics might influence the composition
of the rumen prokaryotes (Shi et al., 2008; Xue et al., 2020),
it seems that ciliates’ feed preferences and relationship within
ciliates contribute remarkably to their composition in the rumen
(Eadie, 1967; Dehority, 1998; Martinele and D’Agosto, 2008).
In vitro and in vivo experiments revealed the competitive
relationship between certain starch preferring Entodinium
species (Entodinium caudatum) and the fibrolytic ciliates
Eudiplodinium maggii and Epidinium ecaudatum (Michalowski
et al., 2003; Bełzecki et al., 2004; Zeitz et al., 2012). Both
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TABLE 4 | Evaluation of population variability of rumen ciliates of European bison.

Mean SD Median Min Max n

Diversity (SW index) 2.1 0.39 2.3 1.4 2.6 13

Evenness (Peliou index) 0.7 0.11 0.7 0.5 0.8 13

Species richness 24 3.0 24 15 27 13

American bison and European bison have a similar ciliates
genera composition with the prevalence of a type B protozoan
population. Typical members of the type B population are
Epidinium, Eudiplodinium, Metadinium, and Elytroplastron. On
the other hand, typical antagonistic types A population members
are Polyplastron, Ophryoscolex, and Diploplastron (Eadie, 1962,
1967). It is known that Polyplastron multivesiculatum grazes
on Epidinium, resulting in the vanish of Epidinium from the
rumen (Williams and Coleman, 1992). We noted 44% of
animals with a mixed A–B population. The prevalence of type
B protozoan population was observed in many species of free-
living ruminants, e.g., deer, ibex, mouflon, chamois, moose,
reindeer, muskox, gaur, antelopes, and giraffe (Kofoid and
Christianson, 1934; Sládeček, 1946; Kleynhans and van Hoven,
1976; Kleynhans, 1982; Crha et al., 1985; Dehority, 1985, 1986;
Dehority et al., 1999; Dehority and Odenyo, 2003; Karnati et al.,
2003; Imai et al., 2004; Korchagina, 2006, 2012; de la Fuente et al.,
2009). In contrast to A. bison, we observed only Ophryoscolex
spp. (O. purkyniei) and no Polyplastron spp. in animals with
mixed A–B protozoan population. Therefore, Epidinium species
prevalence was not influenced in animals with mixed A–B
protozoan populations (Table 2). Besides, the predatory behavior
of rumen ciliates was observed not only in the type A population.
In the type B population, the predatory behavior of E. bubali
on Epidinium, Enoploplastron, and Entodinium was observed
in sheep rumen (Martinele and D’Agosto, 2008). However, the
predatory activity of E. bubali in our bison samples was low.
Our correlation analysis revealed the prevalence of the positive
correlations among the individual rumen protozoal genera
counts. Most numerous positive correlations were observed on
Isotricha spp. (with total counts, Entodinium, Eremoplastron,
Eudiplodinium, Elytroplastron, and Ostracodinium counts). We
can speculate that the growth of Isotricha can be promoted by
solublemetabolic products of hydrolytic and proteolytic activities
of Entodinium, Eremoplastron, Eudiplodinium, Elytroplastron,
and Ostracodinium species. Isotricha is known to prefer
soluble substrates (Williams, 1986). On the other hand,
Entodiniomorphid ciliates prefer solid substrates (plant and
bacterial particles) (Williams and Coleman, 1992). On the other
hand, we have observed no correlations of Dasytricha and
Metadinium with other ciliate genera. Differences in metabolic
activities were observed between Isotricha and Dasytricha.
They remarkably differ in carbohydrate fermentation (Howard,
1959). Dasytricha has greater metabolic versatility than Isotricha.
Therefore,Dasytricha is probably less dependent on intermediate
metabolic products of other members of the ciliate population.
We can speculate on similar features ofMetadinium species. For
example, Metadinium medium could degrade starch, amylose,
amylopectin, and hemicellulose (Naga and El-Shazly, 1968).The T
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comparison with other studies is difficult because of different
analysis methods, different animal diets, and different ciliate
population structures observed. In Tan et al. (2020), the
correlation of molecular data revealed the positive association of
the Metadinium with Eudiplodinium, Isotricha with Dasytricha,
and Polyplastron with Ostracodinium and Ophryoscolex. In our
study, those associations were not observed. The influence of the
seasonmay also contribute to these differences. Our samples were
taken in the winter when the animals eat a predominantly fibrous
diet with a lack of green fodder rich in soluble nutrients. Our
ciliate population analysis has shown medium ciliate density and
high diversity typical for large free-living ruminants with mixed
feeding behavior. We observed a similar total number of rumen
ciliates of European bison (277.103/ml) and American bison
(328.103/ml) (Towne et al., 1988a,b). A similar ciliate density was
also observed in domestic ruminants (cattle and goats) (Imai,
1988; Ito et al., 1994, 1995; de la Fuente et al., 2009;Mishima et al.,
2009). On the other hand, the domestic ruminants have the lower
average number of ciliate species per host (8–18; Imai, 1988; Ito
et al., 1994, 1995; de la Fuente et al., 2009; Mishima et al., 2009).
It is considered that species evenness decreases in the ruminants
on high concentrate feed (Ito et al., 1994). On the other hand,
when ruminants are fed on high forage, the number of species
per host increases to more than 30 (Mishima et al., 2009). There
were considerable variations in the counts of all examined ciliates
species (genera). The animal-to-animal variations in both the
differential counts of ciliate species and total counts were also
observed in A. bison and other ruminants (Towne et al., 1988a,b;
Kittelmann and Janssen, 2011). Purser and Moir (Purser and
Moir, 1966a,b) showed that rumen volume could be a factor
involved in individual animal differences in rumen parameters
of sheep fed the same diet. The significant differences in the
total ciliates counts were removed after the counts’ adjustment
for rumen volume (Dehority, 1978). The same author observed
decreased rumen volume of sheep fed concentrate diet than the
forage (alfalfa) diet. The changes in the rumen volume regarding
the feed changes were also observed in other ruminants (Kamler
et al., 2003). Some studies also suggest the effects of animal age,
sex, and weight on the ciliate population (Clauss et al., 2011;
Duarte et al., 2018). Our correlation analysis revealed no effects
of animal sex on ciliates counts. However, sex in our bison
collection was not evenly represented among age groups. No
effects of host age and sex on rumen protozoa were observed on
Spanish ibex and domestic goats (de la Fuente et al., 2009). We
have observed a positive correlation of Ophryoscolex counts with
animal age and a negative correlation of Epidinium counts with
host weight. Those relationships’ physiological backgrounds are
unclear, as analysis revealed the positive correlation of animal age
and weight. It can point to the possible antagonistic relationship
between O. purkyniei and E. parvicaudatum. This phenomenon
needs more not only microscopic but also molecular and in vitro
physiological studies.

CONCLUSION

Our study is the first report on the population composition and
diversity of rumen ciliates of European bison. The population

FIGURE 3 | Principal component analysis of the European bison ciliates

population. Metadinium (Metad), Ostracodinium (Ostracod), Epidinium (Epid),

Eremoplastron (Eremopl), Entodinium (Entod), total count (TC), Eudiplodinium
(Eudiplod), Isotricha (Iso), Elytroplastron (Elytropl), Ophryoscolex (Ophryo),
Diplodinium (Diplod), and Dasytricha (Das).

structure and counts of ciliate genera and species of European
bison were similar to the composition and counts of the rumen
ciliated protozoa of American bison and many other kinds
of free-living and domestic ruminants. Our European bison
ciliate population analysis has shown medium ciliate density and
high diversity typical for large free-living ruminants with mixed
feeding behavior.
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