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Abstract

Clamp loaders are pentameric AAA+ assemblies that use ATP to open and close circu-

lar DNA sliding clamps around DNA. Clamp loaders show homology in all organisms,

from bacteria to human. The eukaryotic PCNA clamp is loaded onto 3′ primed DNA by

the replication factor C (RFC) hetero-pentameric clamp loader. Eukaryotes also have

three alternative RFC-like clamp loaders (RLCs) in which the Rfc1 subunit is substi-

tuted by another protein. One of these is the yeast Rad24-RFC (Rad17-RFC in human)

that loads a 9-1-1 heterotrimer clamp onto a recessed 5′ end of DNA. Recent struc-

tural studies of Rad24-RFC have discovered an unexpected 5′DNA binding site on the

outside of the clamp loader and reveal how a 5′ end can be utilized for loading the 9-1-
1 clamp onto DNA. In light of these results, new studies reveal that RFC also contains

a 5′ DNA binding site, which functions in gap repair. These studies also reveal many

new features of clamp loaders. As reviewed herein, these recent studies together have

transformed our view of the clamp loader mechanism.
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INTRODUCTION

The first protein discovered to encircle DNA was the Escherichia coli

β-clamp, thus identifying a new class of protein referred to as a DNA

polymerase sliding clamp.[1,2] The β clamp cannot get onto DNA by

itself; for this it requires a pentameric clamp loader that uses ATP

hydrolysis to open and close the clamp aroundDNA.Once onDNA, the

β clamp binds the DNA polymerase and holds it to DNA, sliding along

behind it for exceedingly high processivity during replication.[2] The

structure of the β-clamp revealed an expected C2 symmetry but unex-

pected pseudo six-fold symmetry in the dimer because each monomer

is composed of three nearly identical domains (Figure 1A).[1] With

development of the SV40 in vitro replication system, two protein
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factors, PCNAand replication factorC (RFC),were observed in eukary-

otes that might function as a clamp and clamp loader (Table 1).[3,4]

Because eukaryotic PCNA is approximately two thirds the lengthof the

β-clamp, PCNAwas intuited to be comprised of three two-domain sub-

units toprovide a trimerofC3 symmetry that also contains six-domains

that produce a pseudo six-fold symmetric ring like the E. coli β-clamp,

with RFC being the loader.[1] Indeed, the structures of eukaryotic and

archaeal PCNA clamps confirmed this prediction (Figure 1A).[5–7]

The similarity of bacterial and eukaryotic sliding clamps extends to

their respective clamp loaders. All organisms utilize a clamp loader that

requires five subunits for activity; the subunits are homologous to one

another and from bacteria to human.[8,9] Each subunit contains the

AAA+ fold (ATPases associatedwith diverse cellular activities) that has
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F IGURE 1 Clamps and illustration of clamp loader function for replication factor C (RFC) and Rad24-RFC. (A) Comparison of clamp structures
from a bacterium (E. coli), PCNA (eukaryote), and PCNA (archaea). The PDB entries are given in parentheses. (B) Illustration of PCNA clamp loading
by RFC for function with a DNA polymerase in contrast to (C), which illustrates 9-1-1 clamp loading by Rad24-RFC and use of 9-1-1 to activate the
ATR kinase. Panels B and C are adapted from figure 2 of Zheng et al.[46] See text for details

TABLE 1 The four distinct clamp loaders in eukaryotes

Clamp loader A subunit Common subunits Other subunits Clamp Function

RFC Rfc1 Rfc2-5 PCNA Replication, Pol δ

Ctf18-RFC Ctf18 Rfc2-5 Ctf8, Ddc1 PCNA Replication, Pol ε

Egl1-RFC Egl1 Rfc2-5 PCNA Unloading PCNA fromDNA

Rad24-RFC Rad24 Rfc2-5 9-1-1 DNA damage checkpoint activator

The nomenclature is the same in human, except for yeast Rad24, which is referred to as RAD17 in human. The unique subunit, or large subunit, is referred to

as the A subunit. The smaller subunits, Rfc 2-5, are common among the four clamp loaders. Only the Rad24-RFC is known to utilize a separate clamp at this

time (i.e., 9-1-1 heterotrimer). All clamp loaders have five essential clamp loading subunits, but the Ctf18-RFC has two additional subunits that bind other

factors, including Pol ε. RFC, replication factor C.

two subdomains, the Lid domain and the ATP binding fold.[10] The five

subunits are arranged in a spiral, C-shape to form a DNA binding “cen-

tral chamber”. The five subunits are referred to as A through E, with

the A subunit at the base of the spiral. There is a lateral gap between

the A and E subunits for DNA entry into the central chamber, and the

clamp is bound just below the DNA binding central chamber.[11,12] The

binding of ATP drives the clamp opening reaction such that the gap in

the clamp is aligned with the gap in the clamp loader, thus positioning

the DNA through the lumen of the open clamp. This is illustrated

for the canonical clamp loader of eukaryotes in Figure 1B. In typical

fashion for AAA+ oligomers, the ATP sites of the clamp loaders are at

subunit interfaces.[13] ATP hydrolysis results in the clamp loader eject-

ing from the clamp−DNA complex, leaving the clamp to function with

DNA polymerase (or other factors). These steps are general among
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F IGURE 2 Domain architecture of clamp loader subunits in replication factor C (RFC) and Rad24-RFC. Illustration of the domain architecture
of clamp loader subunits. (A) The small subunits, Rfc2-5, are each composed of only two regions, the AAA+ domain having the ATP binding and lid
subdomains, and the C-terminal collar domain that tightly holds clamp loader subunits into one pentameric particle. The large “A” subunits of Rfc1
and Rad24 also contain the domains of the small subunits but have additional domains. Rfc1 contains an N-terminal BRCT domain to bind the 5′
end of a recessed DNA gap, and a C-terminal A′ domain that binds the clamp and fills in the “A-gate” between the Rfc5 and Rfc1 subunits. Opening
of the A-gate is needed for dsDNA binding and is coupled to PCNA opening (see text for details). Likewise, the Rad24-RFC contains a similar A′
domain that likely fulfills the same function as the A′ domain of Rfc1. However, Rad24 also contains a C-terminal coiled-coil domain known to bind
RPA, whichmay provide it with additional functionality. Adapted from figure 1a of Zheng et al.[46] (b) Domain structure of Rfc1 adapted from
figure 2 of Zheng et al.[32] (C) Domain structure of Rfc24 adapted from figure 2 of Zheng et al.[46]

all three domains of life[7] and are summarized in the illustration of

Figure 1B.

The canonical clamp loader of eukaryotes for DNA replication is

the RFC pentamer. Unlike bacteria and archaea, eukaryotes contain

three other “RFC-like clamp loaders” or RLCs (RFC-like complexes).[14]

These RLCs are: Rad24-RFC (Rad17-RFC in human), Ctf18-RFC, and

Egl1-RFC (Table 1). One of these RLCs – Rad24-RFC – assembles

a different trimeric ring, the 9-1-1 heterotrimer clamp (yeast Ddc1-

Mec3-Rad17; human Rad9-Hus1-Rad1) onto DNA which functions in

the S-phase DNA damage response.[15–17] The function of the other

two alternative clamp loaders is not yet fully defined, although they are

suggested tobePCNAunloaders.[18,19] However, aPCNA loading func-

tion is recently suggested for Ctf18-RFC.[20,21] This review will focus

on important new findings of the canonical RFC and a surprising new

finding about Rad24-RFC, as illustrated in Figure 1C.

THE CANONICAL RFC EUKARYOTIC CLAMP
LOADER

The canonical eukaryotic clamp loader of PCNA is the RFC hetero-

pentamer. Four of the eukaryotic clamp loader subunits, subunits

(Rfc2-5) are present in all the alternative clamp loaders. The unique “A

subunit” is larger than the other subunits and distinguishes each of the

different clamp loaders from each other (Table 1). The Rfc2-5 subunits

are sometimes referred to as the small subunits because the A sub-

units are much larger and contain extra N-terminal and/or C-terminal

extensions compared to the small subunits. We illustrate this and the

extra domains of Rfc1 and Rad24 in Figure 2. Importantly, the A sub-

unit (Rfc1 and Rad24) contains a C-terminal domain, referred to as A′,
thatwill be explained further below. Each of the four Rfc2-5 “small sub-

units” has three domains that are homologous to those present in the

A subunit, including the “motor” domain of the ATP-dependent clamp

loading reaction. The two N-terminal subdomains of Rfc 2–5 comprise

the AAA+motor domain, consisting of the ATP binding and AAA+ Lid

subdomains that interact with ATP, and the C-terminal domain that

forms a pentameric “collar” that tightly holds the five clamp-loading

subunits together. There is a wide gap in the side of the clamp loader

of E. coli for passage of DNA,[12] but the unique Rfc1 C-terminal A′
domain mostly fills this gap,[22] and this narrowed gap is referred to

as the A-gate (composed of the A′ domain and the AAA+ domains of

the A subunit).[23] This region of Rfc1 is also mimicked in the T4 clamp

loader, although their primary sequences and3-dimensional structures

are quite different.[23,24]

The first structures of RFC–PCNA–ATPγS in both yeast and human

systems showed that only two PCNAprotomers are contacted by RFC,

and the PCNA ring remains closed.[22,25] This closed RFC structure

obstructs the central chamber, thereby preventing DNA binding. Addi-

tionally, a structure of the T4 phage clamp loaderwith its trimeric gp45

clamp and DNA indicated an opening in the clamp that was not wide

enough for dsDNA to pass.[26] The absence of a structure with a wide

enough opening for dsDNA passage implicated a “screw-cap” process,

inwhich the clamp is first placed onto ssDNAand then “screwed” down

around dsDNA before the ATPase clamp loader is ejected.[23]

New cryoEM results have provided information that changes the

“screw cap” model to a “direct DNA insertion” model. CryoEM stud-

ies of yeast RFC–PCNA–ATPγS identify a new structure in which RFC

undergoes a large conformational change and contacts all three PCNA

protomers, opening them about 20 Å in a right handed lock-washer

spiral, sufficiently wide to accommodate dsDNA.[24] The large confor-

mation change of RFC is sometimes referred to as a “crab claw”motion

because the expansion of the pentamer, while it latches onto the three

protomers of PCNA, results in ring opening – resembling the opening

of a crab claw.[24,26]
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F IGURE 3 Replication factor C (RFC) and PCNA cooperatively
open in concerted “crab-claw”motion. (A) RFC first binds PCNAwith
both proteins in the closed conformation and the ATPase sites
inactive. (B) PCNA opening is accomplished through a large
conformational change in RFC that opens the A-gate, exposing the
central chamber and a cryptic external DNA binding site. PCNA opens
into lockwasher shapewith an opening large enough to directly bind
duplex DNA

ATP binding enables the clamp loader to bind and open the slid-

ing clamp. That ATPγS allows RFC to undergo a large conformation

change is consistent with earlier predictions based on biochemical and

structural studies of clamp loader action.[11,12,27–30] However, ATP

binding is not sufficient to mediate the conformational change of RFC

to the open form; instead, opening of RFC is conformationally coupled

to the opening of PCNA.[24] Thus, both the sliding clamp and clamp

loader undergo a concerted crab-claw opening motion. This confor-

mational coupling is proposed to regulate the binding preference of

RFC: because RFC only becomes competent to bindDNA in the central

chamber when PCNA is opened, RFC will prefer to bind PCNA before

binding to primer-template DNA. This binding preference is impor-

tant physiologically because if RFC bound to DNA, then PCNA binding

would be blocked, resulting in a non-functional complex.

Upon DNA binding to RFC–PCNAopen–ATPγS, the gap in the PCNA
ring narrows to approximately 14 Å, as observed by three differ-

ent labs.[24,31,32] Indeed, the open PCNA appears in equilibrium with

a closed PCNA form. Interestingly, the ATP sites appear in a spiral

conformation and are competent for hydrolysis in these recent RFC–

PCNA–DNA–ATPγS structures. The constriction of the PCNA opening

upon binding DNA appears to tighten the interfacial ATP sites, and

these slightmovementsmay result in active ATPase catalysis for clamp

loading activity.[24,32] The earlier structure of RFC bound to only two

protomers of closed PCNA likely captures an early encounter of RFC–

PCNA, before clamp opening, in which the tight AAA+ spiral prevents

premature ATPase activity.[22,26]

Interestingly, superposition of the RFC–PCNAopen–ATPγS–DNA
and RFC–PCNAclosed–ATPγS-DNA structures show no significant

change in the RFC conformation despite the large change in PCNA

ring opening (Figure 3). The lack of a substantive conformation change

of RFC in these structures suggests that the PCNA ring is in equilib-

rium between open and closed states while RFC stays relatively static.

Thus, it appears that RFC–ATPγS does not require ATP hydrolysis to

open/close the PCNA ring. However, ATP hydrolysis is needed for RFC

to eject, leaving behind a closed PCNA–DNA complex.[33–35] This sce-

nario is consistent with the biochemical finding that ATP hydrolysis

precedes clamp closure.[36–38]

Furthermore, high resolution structures of the RFC–DNA interac-

tion show that RFCunexpectedlymelts at least 1 bp at the 3′ end of the
primed substrate.[24,31,32] Thismelting activity is specific toRFC, as the

bacterial and T4 phage clamp loaders do not melt any DNA in solution

or in crystal structures.[24,26,39] The A subunit of RFC contains a “sepa-

ration pin” at the top of the central chamber that flips the 3′ nucleotide
onto aromatic residues that line an exit channel that only appears upon

opening of RFC.[24] Unlike most DNA melting proteins, RFC does not

require any ATP hydrolysis to melt DNA, which is entirely driven by

binding energy. The function of this melting is not fully understood,

but likely facilitates PCNA loading at DNA that is nicked or contains a

small single-stranded gap (see below). This melting could also be used

to confirm recognition of a 3′ terminus.

It is noteworthy that the Rfc1 subunit dominates the DNA bind-

ing interface, compared to Rfc subunits 2–5.[24,31,32] Specifically, the

Rfc1–DNA interaction surface area accounts for 64% of the buried

surface of DNA, compared to 36% of the buried surface area of DNA

for the Rfc 2–4 subunits combined.[24] This has important implications

to the function of alternative clamp loaders, each of which exchanges

a new subunit for Rfc1 (Table 1). Hence, the DNA structure, or the

mode of binding and its outcome, could be easily modified by the large

subunit of each of the alternative clamp loaders as proposed.[24,31,32]

PCNA interaction with DNA may also play a role in the clamp loading

reaction.[40,41]

THE EUKARYOTIC Rad24-RFC LOADS THE 9-1-1
CLAMP AT 5′ DNA ENDS

Asdescribedearlier in this review, eukaryoteshave fourdifferent types

of clamp loaders, the canonical RFC and three RLCs. The RLCs con-

tain the Rfc 2–5 subunits, and only differ in the Rfc1 subunit (Table 1).

For the discussion to follow, we present new and unexpected devel-

opments in our knowledge about function of the Rad24-RFC, which is

called Rad17-RFC in humans.

Rad24-RFC assists in repairing double-strand breaks (DSBs) by

loading the 9-1-1 clamp at 5′ DNA recessed ends that are produced

at a DSB or during stalled replisome polymerases that get stuck

at lesions and do not complete fill-in at repair gaps, Okazaki frag-

ments or the leading strand, thereby leaving a recessed 5′ end that

normally would be only a transient occurrence.[42,43] An early step

in responding to DNA damage is the 9-1-1 clamp, which is specif-

ically loaded onto 5′ DNA ends to activate the ATR kinase (yeast

Mec1−Ddc2, human ATR−ATRIP) that controls the DNA damage cell

cycle checkpoint.[44] 5′ ends are normally ligated and are present

only transiently, but if template lesions prevent the completion of an

Okazaki fragment, or stoppolymerase andprevent continuing the lead-

ing strand, the expected subsequent leading strand repriming event

(e.g., via PrimPol?) will leave a recessed 5′ end that may act to load 9-

1-1 and signal DNA damage. The recent cryoEM structure of the yeast
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F IGURE 4 Rad24-replication factor C (RFC) binds a recessed 5′DNA and threads 3′ ssDNA through the central chamber. This structure of
Rad24-RFCwith the 9-1-1- clamp further changed the paradigm of clamp loaders in important ways: (1) it opened the clampwide enough for
direct insertion of dsDNA, (2) its primary binding site was outside the central chamber on Rad24 that bound the 5′ end of a DNA, and (3) it placed
ssDNA instead of 3′ dsDNA though the central chamber which presumably facilitates ATP firing of clamp loading instead of a need for dsDNA
binding. The ssDNAwas not visible in this structure, but is presumed to follow the path shown by the blue spheres, as observed in Castaneda et al.
(2022). The left panel is the Rad24-RFC–9-1-1open–DNA (7SH2), and the right panel is Rad24-RFC–9-1-1closed–DNA (7SGZ). The two structures
that may restrict dsDNA loading are the Rfc5 plug, and the upper loop (See text for details)

Rad24-RFC−DNA−9-1-1 clamp showed a totally unexpected process

by which the Rad24-RFC−9-1-1 DNA clamp/clamp loader engages 5′
recessed DNA.[45,46]

Before the Rad24-RFC−9-1-1 clamp−DNA structure was solved, it

was generally assumed that the recessed 5′-end DNA binds into the

central chamber of the Rad24-RFC clamp loader, similar to recessed

3′-end containing DNA that binds inside the canonical Rfc1-RFC for

PCNA loading. However, this long held expectation was not at all the

case. Instead, the Rad24-RFC−9-1-1 clamp−DNA structure showed

that 5′DNA binds to an external site on Rad24, rather than inside cen-

tral chamber of the clamp loader.[45,46] 5′DNA binding to the external

site occurs on Rad24 at a site formed between the collar and AAA+

domains of Rad24 which are connected by a “long linker” (see “LL” in

Figure 2).[46] The 3′ ssDNA that emanates from the recessed 5′ end
threads into the central chamber of the clamp loader to bind themotor

subunits.[45,46] Interestingly, it appears that the central chamber of

Rad24-RFC has loop(s) that protrude into the central chamber that

perhaps prevent dsDNA fromentering inside this RLC, helping to select

for a long ssDNA gap.[45,46]

These unexpected findings are quite exciting because: (1) it showed

the presence of a second DNA binding site in a clamp loader, and (2)

it indicated that ssDNA – not just dsDNA – can traverse the central

chamber of the clamp loader and trigger ATP hydrolysis of the motor

subunits for 9-1-1 clamp loading. Prior to these findings, clamp loaders

were thought to require dsDNA inside the central chamber to scaf-

fold and configure the clamp loader subunits for ATP hydrolysis. As

described below, the 5′ DNA external site was found to generalize to

canonical RFC, and likely generalizes to all alternative RFCs.[46]

The Rad24-RFC−911−DNA−ATPγS complex showed a nearly

shallow helical configuration of ATP sites that is similar to the

RFC−PCNA−DNA−ATPγS complex, and two conformers in which the

9-1-1 ring was either open or closed. Like the RFC−PCNA studies, the

Rad24-RFC conformation was essentially unchanged in the open and

closed forms of the 9-1-1 clamp. The 9-1-1 clamp can open in-plane as

wide as 27 Å, more than sufficient for dsDNA passage.

Thus, both RFC and Rad24-RFC can widely open their respective

clamps, but they do so in different ways. While RFC opens PCNA into

a shallow lock washer with sufficient distance for dsDNA to enter,

the Rad24-RFC keeps the 9-1-1 clamp opening in-plane with a suf-

ficient gap in the clamp for dsDNA to enter (see Figures 3 and 4).

Despite the differences between Rad24-RFC−9-1-1−DNA and the

RFC−PCNA−DNA structures, their comparison shows they are more

alike than distinct, and reinforce newmechanistic insights of how RFC

and RFC-like complexes function with clamps.

RFC BINDS DNA WITH NICKS OR SMALL GAPS
USING TWO DNA SITES TO BIND AND MELT THE
DUPLEX

Opening of RFC causes the Lid of the A-subunit to stretch out into an

“alternative linker” (AL) between the Lid and the collar domains,[24,32]

similar to the “long linker (LL)” in the 5′ DNA site observed in

the Rad24-RFC structures (see Figure 2).[45,46] This conformational

change creates a DNA binding site for a recessed 5′ end in the

canonical RFC.[24,31,32] This 5′ DNA site also utilizes the N-terminal

BRCT domain of Rfc1 that is outside the AAA+ module and has been

demonstrated to preferentially bind DNAwith a 5′-phosphate.[47,48]

The 5′ DNA site of Rfc1 is not required for cell viability but muta-

tions or deletions of the BRCT result in defective gap repair.[49–51]

The possibility that RFC binds a DNA gap, via the BRCT region’s abil-

ity to bind a recessed 5′ end, along with the 3′ primer terminus in the
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F IGURE 5 Scheme of replication factor C (RFC) loading PCNA at a DNA gap. (1) RFC–ATP can initially bind to nicked DNA using the flexibly
tethered BRCT domain, and then (2) binds PCNA using only three RFC subunits to bind two protomers of PCNA; PCNA is closed. (3) Crab-claw
motion of RFC opens PCNA into a lockwasher shape and exposes the external DNA binding site. (4) DNA and BRCT domain dock onto this site,
causing partial melting. (5) 3′ primed dsDNA enters the central chamber of RFC, resulting in further melting at the internal separation pin. The
open PCNA ring constricts and is in equilibriumwith a fully closed PCNA clamp (not shown but see text for details). (6) ATP hydrolysis ejects the
clamp loader leaving a closed PCNAon the 3′ side of the gap to attract a polymerase for gap fill-in. Illustration is from figure 6 of Liu et al. (2022).[50]

central chamber of the entire clamp loader, became obvious from the

external DNA binding site in the Rad24-RFC−9-1-1 structures.[45,46]

Recent structures from three different labs have shown that this is

indeed the case as illustrated in Figure 5.[31,32,50] Consistent with a

role in gap repair, the recent cryoEM data also reveal that RFC can

even unwind dsDNA at both the internal and external DNA binding

sites.[31,50] There appear to be two separation pins(for 3′ [Trp638 and

Phe582] and 5′ [His556 and His659] ends) that may coordinate with

each other at a nick to unwind up to five nucleotides of duplex DNA for

clamp loading.[24]

RFCmediatedDNA unwinding at a nick is not driven by ATP hydrol-

ysis but throughDNAbinding energy, and PCNA loading iswithin a few

fold of the same efficiency as being loaded at a nick or gap compared to

a 3′ primer template junction.[32,50] Moreover, the intrinsic unwinding

activity of RFC allows it to load PCNA at a variety of DNA struc-

tures. It seems possible that similar unwinding activities may facilitate

other RLCs to function on particular DNA structures that are specific

to them. For example, the Elg1-RFC is proposed to be a PCNA clamp

unloader that removes PCNA from non-nicked duplex DNA[19]; this

action could possibly be facilitated by an intrinsic unwinding activity.

Interestingly, the gaps in excision repair processes are small, andwould

not need a processive enzyme, yet PCNA is required for this repair

reaction.[52–55] The exact DNA polymerase that functions in these gap

repair reactions is still ambiguous, but gap-fillingDNApolymerases can

function with PCNA. Thus, it is possible that the PCNA is acting to

attract polymerases to sites of damage, and facilities the function of

whichever polymerasemost fits the repair job at hand.

CONCLUSIONS AND PROSPECTS

Clearly, there are further discoveries to be made regarding

RFC−PCNA and the Rad24-RFC−9-1-1 alternative clamp loader

mechanism, and these will be informative studies for the future. For

example, we still do not know the exact details of how these AAA+

machines function, and an initial recent deep mutagenesis studies of

a clamp loader have identified a conserved network among subunits

needed for T4 clamp loader function.[56] Furthermore, the Egl1-RFC
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and Ctf18-RFC (Chromosome transmission fidelity 18) have been

established to function in unloading PCNA from DNA.[18,19] However,

PCNA clamp unloading is promiscuous, and can also be performed

by Rad24-RFC, RFC, and even just a Rfc2-Rfc5 heterodimer,[57]

bringing into question the function of use of a full pentameric RLC

for an unloading function alone. Instead, we suggest that RLCs may

recognize more specialized different DNA structures for PCNA than

the canonical RFC. It was recently shown that Ctf18-RFC binds the

leading strand Pol ε,[58] and that it may load PCNA for function with

Pol ε suggesting that Ctf18-RFC may play a more specific role for

leading strand synthesis.[20,21] While Ctf18-RFC is not essential,[59]

and thus is not likely needed for the replisome, studies of Ctf18

mutants reveal that Ctf18-RFC is important for full activation of the

DNA damage checkpoint, and may be important during certain stages

of replication, perhaps involving cohesion.[60–62] In overview, it is

possible that each clamp loader binds/functions within different DNA

metabolic processes to fulfill specific niches in DNA replication and

repair programs. Both the mechanism and the physiology behind RFC

and RLCs are among the many exciting questions that remain to be

addressed in future studies.
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