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Abstract. In order to investigate commonly disturbed 
genes and pathways in various brain regions of patients 
with Parkinson's disease (PD), microarray datasets from 
previous studies were collected and systematically analyzed. 
Different normalization methods were applied to microarray 
datasets from different platforms. A strategy combining 
gene co‑expression networks and clinical information 
was adopted, using weighted gene co‑expression network 
analysis (WGCNA) to screen for commonly disturbed genes 
in different brain regions of patients with PD. Functional 
enrichment analysis of commonly disturbed genes was 
performed using the Database for Annotation, Visualization, 
and Integrated Discovery (DAVID). Co‑pathway relation-
ships were identified with Pearson's correlation coefficient 
tests and a hypergeometric distribution‑based test. Common 
genes in pathway pairs were selected out and regarded as risk 
genes. A total of 17 microarray datasets from 7 platforms were 
retained for further analysis. Five gene coexpression modules 
were identified, containing 9,745, 736, 233, 101 and 93 
genes, respectively. One module was significantly correlated 
with PD samples and thus the 736 genes it contained were 
considered to be candidate PD‑associated genes. Functional 
enrichment analysis demonstrated that these genes were 
implicated in oxidative phosphorylation and PD. A total of 
44 pathway pairs and 52 risk genes were revealed, and a risk 
gene pathway relationship network was constructed. Eight 
modules were identified and were revealed to be associated 
with PD, cancers and metabolism. A number of disturbed 
pathways and risk genes were unveiled in PD, and these find-
ings may help advance understanding of PD pathogenesis.

Introduction

Parkinson's disease (PD) is the second most common neuro-
degenerative disorder of the central nervous system, with an 
estimated prevalence and incidence of 2 per 100,000 people 
and 797 per 100,000 person‑years in China (1). PD is char-
acterized by the progressive degeneration of dopaminergic 
neurons in the substantia nigra pars compacta and the accu-
mulation of Lewy bodies; α‑synuclein‑containing inclusions 
suggested to contribute to motor impairment (2,3). Clinical 
symptoms include bradykinesia, rigidity, tremors, gait 
impairment and postural instability, which adversely affect 
survival and quality of life in patients with PD (4,5). Thus, 
investigating the pathogenesis of PD and exploring effective 
therapeutic approaches is of great importance.

Significant effort has been applied to elucidating the 
molecular mechanisms underlying PD using high throughput 
microarray technology (6‑13). Resultant data are deposited in 
public databases including the Gene Expression Omnibus (GEO) 
and ArrayExpress. For example, Zhang et al (7) analyzed gene 
expression profiles of three brain regions, the substantia nigra, 
the putamen and Brodmann area 9, demonstrating decreased 
expression of the proteasome endopeptidase complex NADH, 
but increased expression of heat shock proteins, metallothio-
neins, polypyrimidine tract‑binding protein and synucleins in 
PD. Garcia‑Esparcia et al (13) investigated changes in gene 
expression in the frontal cortex and reported downregulated 
cortical olfactory receptor levels (including OR2L13, OR1E1, 
OR2J3, OR52L1 and OR11H1) and upregulated taste receptor 
levels (TAS2R5 and TAS2R50) in patients with PD. However, 
these datasets are based on different microarray platforms, 
different sample sources and use small sample sizes, which 
make their results somewhat inconsistent and difficult to use 
clinically. Therefore, to discover and understand the common 
hallmark traits of PD, information from multiple studies should 
be integrated (14,15). In addition, despite the identification of 
several markers for the progression of PD, the relationships 
between genes, the expression of genes and clinical traits of PD 
remain unclear. Weighted gene co‑expression network analysis 
(WGCNA) can be used to explore these relationships as previ-
ously reported (14‑16).

The goal of the present study was to analyze a dataset 
comprising 427 samples collected from 17 publically available 
datasets, utilizing WGCNA to identify common PD risk genes 
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from different brain regions and functional modules associ-
ated with clinical traits.

Materials and methods

Collection of gene expression data. Gene expression data of 
PD, submitted prior to April 10th, 2015, were collected from 
ArrayExpress using the key word ʻParkinson's diseaseʼ under 
the two screening conditions (organisms: Homo sapiens; 
experiment type: RNA array). The following gene expres-
sion data were manually excluded: Non‑PD studies, studies 
using cell lines, samples exposed to drugs, blood or leukocyte 
samples, in vitro studies and repeated data.

Screening of microarray platforms. Annotated files of micro-
array platforms were also downloaded from ArrayExpress. 
The total number of genes for each microarray platform and 
the number of overlapping genes between platforms was calcu-
lated. Microarray platforms with <10,000 genes or <6,000 
overlapping genes were excluded.

Data pre‑treatment. Raw data files (CEL files) of Affymetrix 
platforms (excluding Affy HUGENE; Affymetrix; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA) were read with 
the function ReadAffy of the package Aff (Affymetrix; 
Thermo Fisher Scientific, Inc.) in R (17). This was followed 
by background correction, probe level normalization and 
expression value calculation using the Robust Multi‑array 
Average (RMA) algorithm (18). Microarray data from the 
Agilent platform (Agilent Technologies, Inc., Santa Clara, 
CA, USA) were read with the function read.table of R and 
normalized with linear models for microarray data (LIMMA) 
package (19). Extraction and normalization of the microarray 
data from Affymetrix HUGENE was achieved using the 
read.celfiles and RMA function of the package oligo (20). 
Probes were mapped into genes according to the annotation 
files, and probes mapping to the same gene were averaged 
as the final expression level of the gene. Overlapping genes 
of different platforms were retained for further analysis. To 
overcome variance in overall gene expression levels resulting 
from diverse pretreatments, ComBat from the package 
sva (21) was adopted to combine all the microarray data.

Screening of commonly disturbed genes. By combining gene 
co‑expression networks and clinical information, including 
brain region, age, sex and sample type, a WGCNA package 
was adopted (22) to screen out commonly disturbed genes in 
different brain regions. Cluster analysis was performed on 
the samples, using the function hclust to exclude outliers. A 
height of 125 was set as the cut‑off point. Cluster analysis was 
then performed again for the samples, using clinical infor-
mation to check the distribution of clinical features among 
samples. Microarray platform information was also included 
in the analysis to examine the effect of data normalization. 
A gene co‑expression network was constructed, from which 
gene co‑expression modules closely associated with clinical 
features (i.e. commonly disturbed genes) were screened out.

Functional enrichment analysis. Functional enrichment anal-
ysis, using biological processes from the Gene Ontology (GO) 

Consortium (http://david.ncifcrf.gov/) and pathways from the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) (23), was 
performed for commonly disturbed genes using the Database 
for Annotation, Visualization, and Integrated Discovery 
(DAVID) online tool (24). P‑values were calculated using the 
hypergeometric distribution and adjusted by the Benjamini 
and Honchberg method (25). A false discovery rate (FDR) of 
<0.05 was set as the cut‑off point.

Co‑pathway analysis. Pathway information was downloaded 
from KEGG (26). Pathway expression level was determined 
as the median expression level of all genes in the pathway:

 Where Pathik represents the expression level of pathway i in 
sample k. g1, g2, g3,… gn represent expression levels of all genes 
from pathway i in sample k. A pathway expression network 
was established when expression levels were determined for 
each pathway.

The correlation of two pathways in both PD samples and 
normal samples was examined with Pearson's correlation 
coefficient:

 Where Px,y represents Pearson's correlation coefficient of 
pathway x and pathway y in all samples. X and Y represent 
the average expression levels of pathway x and pathway y in all 
samples. Co‑pathway relationships with a Pearson correlation 
coefficient >0.99 were selected out.

If dysfunction of two pathways is associated with a 
disease, then common genes in the two pathways are likely 
to be involved in the disease. Therefore, disease‑associated 
co‑pathway relationships were screened using a hypergeo-
metric distribution‑based test:

 Where n represents the number of common risk genes; N 
represents the number of total genes in both pathways and M 
represents the number of total risk genes in both pathways. 
P<0.05 was set as the threshold.

Construction of risk gene pathway network. Common 
risk genes were acquired from pathway pairs. Risk gene 
pathway relationships were obtained and visualized with 
Cytoscape (27).

Results

Microarray data collection. A total of 69 microarray datasets 
were obtained by preliminary search. Based upon the exclusion 
criteria, 19 datasets were used for further analysis. They were 
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generated from 10 microarray platforms (Table I): A‑AFFY‑33, 
A‑AFFY‑34, A‑AFFY‑37, A‑AFFY‑41, A‑AFFY‑44, 
A‑AFFY‑54 (Affymetrix; Thermo Fisher Scientific, Inc.), 
A‑MEXP‑1174 (Illumina, Inc., San Diego, CA, USA), 
A‑AGIL‑28 (Agilent), A‑GEOD‑17047 and A‑AFFY‑168 (Affy 
HUGENE; Affymetrix; Thermo Fisher Scientific, Inc.).

Annotation files for the 10 platforms were downloaded 
from ArrayExpress (Table II). AFFY‑34 and AFFY‑41 were 
excluded due to containing only a small number of genes 
(9,659 and 8,166 genes, respectively) and few genes overlapped 
(2,508). MEXP‑1174 was also removed as it had <7,000 over-
lapping genes, although it detected 10,742 genes. 7 platforms 
were retained: AFFY‑33, AFFY‑37, AFFY‑44, AFFY‑54, 
AGIL‑28, GEOD‑17047 and AFFY‑168, containing a total of 
10,898 genes.

Clinical information. Clinical information relating to 17 
microarray datasets from 7 open access platforms was 
collected and processed. Clinical information was obtained 
for 427 cases, including 227 cases of PD and 200 controls. PD 
samples were obtained from 114 male patients and 54 female 
patients at the age of 54‑94, while control samples were 
obtained from 97 males and 55 females at the age of 49‑97. 
Thirteen different brain regions were covered, and detailed 
information is displayed in Table III.

Pre ‑ t rea t m en t  o f  m ic ro a r ra y  d a ta .  R l i m ma 
p a c k a g e  ( h t t p : / / w w w. b i o c o n d u c t o r . o r g / p a c k-
ages/release/bioc/html/limma.html) was applied to normalize 

the raw data from different microarray platforms. These data 
were subsequently combined and normalized. A good perfor-
mance of normalization was achieved (Fig. 1).

Gene coexpression modules. Cluster analysis was performed 
to remove outliers based on the threshold value of a height cut 
of 125 (Fig. 2A). Three samples (GSM506020, GSM1311832 
and X21_G05_P2) were removed as outliers. Cluster analysis 
was then conducted again with clinical information (Fig. 2B). 
The results indicated that brain region, gender and platform 
were distributed uniformly among sample types (PD or 
control), suggesting that a single clinical feature was not 
sufficient to classify samples. This justified the pre‑treatment 
methods of the present study.

According to previous findings  (28), the optimal soft 
thresholding power is the minimum value where scale‑free fit 
is best optimized. Scale‑free fit was set as 0.9 in the present 
analysis and the optimal soft‑thresholding power was set as 
14 (Fig. 3). Gene co‑expression modules were identified using 
the function blockwiseModules. Five modules were obtained: 
Module 0 contained 9,745 genes (in grey, named MEgrey); 
module 1,736 genes (in turquoise, named MEturquoise); 
module 2,233 genes (in blue, named MEblue); module 3,101 
genes (in brown, named MEbrown); and module 4,93 genes 
(in yellow, named MEyellow). The results of cluster analysis 
are displayed in Fig. 4.

Correlation between modules and clinical features. 
Three modules (MEgray, MEblue and MEbrown) had no 

Table I. Summary of the 19 included microarray datasets.

ArrayExpress ID	 Number of samples	 Submission date	 Microarray platform	 (Refs.)

E‑GEOD‑20163	   17	 2011/1/20	 AFFY‑33	 (6)
E‑GEOD‑20164	   11	 2011/1/20	 AFFY‑33	 (6)
E‑GEOD‑20168	   30	 2010/2/22	 AFFY‑33	 (7)
E‑GEOD‑20291	   30	 2010/3/23	 AFFY‑33	 (7)
E‑GEOD‑20292	   26	 2010/3/23	 AFFY‑33	 (7)
E‑GEOD‑20314	     8	 2011/1/20	 AFFY‑33	 (6)
E‑GEOD‑8397	   94	 2008/6/16	 AFFY‑33	 (8)
			   AFFY‑34
E‑GEOD‑19587a	   22	 2010/8/19	 AFFY‑37
E‑GEOD‑20333b	   12	 2010/3/23	 AFFY‑41
E‑GEOD‑20141	   18	 2010/2/22	 AFFY‑44	 (6)
E‑GEOD‑20146	   20	 2010/2/22	 AFFY‑44	 (6)
E‑GEOD‑7621	   25	 2008/11/6	 AFFY‑44	 (9)
E‑GEOD‑24378	   17	 2011/1/20	 AFFY‑54	 (6)
E‑MEXP‑1416	   16	 2008/1/19	 AFFY‑54	 (10)
E‑GEOD‑28894c	 114	 2011/7/21	 MEXP‑1174
E‑GEOD‑43490	   41	 2015/1/11	 AGIL‑28	 (11)
E‑MTAB‑812	   53	 2012/9/19	 AGIL‑28	 (12)
E‑GEOD‑54282	   33	 2014/9/1	 GEOD‑17047	 (12)
E‑MTAB‑1194	   18	 2013/6/2	 AFFY‑168	 (13)

aDataset obtained from www.ebi.ac.uk/arrayexpress/experiments/E‑GEOD‑19587/; bData set obtained from www.ebi.ac.uk/arrayex-
press/experiments/E‑GEOD‑20333/; cDataset obtained from www.ebi.ac.uk/arrayexpress/experiments/E‑GEOD‑28894/.
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Figure 1. Box plots for microarray data from 7 platforms. (A) AFFY‑168. (B) AFFY‑33. (C) AFFY‑37. (D) AFFY‑44. (E) AFFY‑54. (F) AGIL‑28. 
(G) GEOD‑1704. (H) integrated microarray data.

Table II. Number of overlapping genes between platforms.

Microarray								        GEOD‑	 AFFY‑	 MEXP‑
platform	 AFFY‑33	 AFFY‑34	 AFFY‑37	 AFFY‑41	 AFFY‑44	 AFFY‑54	 AGIL‑28	 17047	 168	 1174

AFFY‑33	 12504									       
AFFY‑34	 4321	 9659								      
AFFY‑37	 12504	 4231	 12504							     
AFFY‑41	 8166	 2508	 8166	 8166						    
AFFY‑44	 12504	 9659	 12504	 8166	 20150					   
AFFY‑54	 12431	 9626	 12431	 8132	 20027	 20084				  
AGIL‑28	 11119	 7127	 11119	 7747	 15173	 15123	 27277			 
GEOD‑17047	 12146	 8497	 12146	 8078	 17486	 17438	 17438	 19594		
AFFY‑168	 12087	 8461	 12087	 8044	 17397	 17347	 17347	 19430	 19430	
MEXP‑1174	 6813	 4049	 6813	 4075	 8487	 8464	 8464	 8604	 8564	 10742
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significant relationship with any clinical feature (Fig. 5). 
ʻSexʼ and ʻBatchʼ revealed no significant relationship with 

the 5 modules (Fig. 5), demonstrating the suitability of the 
pre‑treatment. ʻOrganism partʼ was significantly correlated 

Table III. Clinical information for the 17 selected microarray datasets.

	 Gender
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
	 Male	 Female	 All	 Age range

Brain region				  
Cerebellum				  
  PD 	 NA	 NA	 4	 74‑85
  Control	 NA	 NA	 4	 81‑86
Cortex				  
  PD 	 4	 1	 5	 64‑84
  Control	 2	 3	 5	 64‑91
Dopamine neurons				  
  PD 	 4	 4	 16	 66‑94
  Control	 4	 4	 17	 61‑89
Dorsal motor nucleus of the vagus				  
  PD 	 8	 6	 14	 64‑90
  Control	 7	 4	 11	 58‑90
Frontal lobe				  
  PD 	 6	 5	 11	 54‑79
  Control	 3	 4	 7	 49‑82
Globus pallidus interna				  
  PD 	 7	 4	 11	 NA
  Control	 5	 4	 9	 NA
Inferior olivary nucleus				  
  PD 	 3	 3	 6	 74‑81
  Control	 3	 1	 4	 73‑84
Locus coeruleus				  
  PD 	 5	 2	 7	 64‑90
  Control	 5	 2	 7	 58‑90
Prefrontal cortex BA9				  
  PD 	 35	 6	 41	 64‑94
  Control	 37	 5	 42	 54‑97
Putamen				  
  PD 	 9	 6	 15	 67‑89
  Control	 10	 5	 15	 (54, 94)
Striatum				  
  PD 	 4	 2	 6	 (60, 84)
  Control	 2	 4	 6	 (64, 91)
Substantia nigra 				  
  PD 	 30	 14	 86	 (64, 90)
  Control	 19	 18	 69	 (64, 94)
Superior frontal gyrus				  
  PD 	 NA	 NA	 5	 NA
  Control	 NA	 NA	 3	 NA
Total				  
  PD 	 114	 54	 227	 (54, 94)
  Control	 97	 55	 200	 (49, 97)

PD, Parkinson's disease.
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with MEyellow (correlation coefficient 0.25, P=1x10‑07; 
Fig. 5), confirming different expression patterns existed in 
different brain regions. ʻDiseaseʼ was significantly negatively 
correlated with MEturquoise (correlation coefficient ‑0.14, 
P=0.003; Fig.  5), suggesting that there were commonly 
disturbed genes in different brain regions. Therefore, the 
736 genes from MEturquoise were regarded as candidate 
PD‑associated genes.

Biological functions of candidate genes. Candidate genes 
were associated with cellular respiration, protein catabolism 
and negative regulation of protein modification (Fig. 6A). 
In terms of cellular components, cytoplasm and mitochon-
drion were overrepresented in candidate genes (Fig. 6B). In 

terms of molecular function, pyrophosphatase activity and 
NADH dehydrogenase (quinone) activity were overrepre-
sented (Fig. 6C). KEGG pathway enrichment indicated that 
these genes were involved in oxidative phosphorylation and 
PD‑associated pathways (Fig. 6D).

Risk genes and pathways. A total of 44 significant pathway 
pairs were identified, from which 52 risk genes were revealed. 
The network constructed by significant pathways and risk 
genes can be further divided into 8 modules (Fig. 7). Module 1 
was associated with PD, module 2 was associated with several 
cancers, and modules 3, 5, 6, 7 and 8 were associated with 
the metabolism of drugs, amino acids and carbohydrates 
(Table IV).

Figure 2. Cluster analysis result for (A) all samples and (B) following removal of 3 outliers.
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Discussion

In the present study, a systematic analysis of 17 microarray 
datasets from 7 microarray platforms was performed. A total 
of 736 PD‑associated candidate genes were revealed through 

functional enrichment analysis. Further co‑pathway analysis 
identified 44 significant pathway pairs and 52 risk genes. 
A network containing pathway pairs and risk genes was 
constructed, from which 8 modules were identified. Module 1 
was associated with oxidative phosphorylation and PD, while 

Figure 3. Topological property of the network under a range of soft‑thresholding powers. Left: X‑axis is a scale‑free fit index and Y‑axis is the soft‑thresholding 
power. The red line marks scale‑free fit as 0.9. Right: X‑axis is the mean connectivity and Y‑axis is the soft‑thresholding power.

Figure 4. Hierarchical clustering result for the genes from the 5 modules.

Figure 5. Correlation analysis result for the 5 modules and clinical features. Clinical features are on the X‑axis while genes from 5 modules are on the Y‑axis. 
P‑values for correlation coefficients are given in brackets.
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module 2 was associated with diverse cancers. Other modules 
were associated with the metabolism of xenobiotics, amino 
acids and carbohydrate.

Mitochondrial dysfunction and oxidative stress are closely 
associated with PD (29,30). Proteins associated with familial 
PD, including phosphatase and tensin homolog‑induced puta-
tive kinase 1 (PINK1), Parkinsonism associated deglycase 
(DJ‑1), synuclein alpha (SNCA) and leucine rich repeat kinase 
2 (LRRK2), are either mitochondrial proteins or mitochon-
dria‑associated, and all interface with pathways involved with 
oxidative stress and free radical damage (31). Mitochondrial 
import and accumulation of α‑synuclein impairs complex I 
(also known as NADH‑ubiquinone oxidoreductase) in human 
dopaminergic neuronal cultures and the PD brain (32).

An increased prevalence of malignant melanoma and skin 
carcinoma is observed in patients with PD (33) and some 
degree of overlap in the underlying biochemical dysfunction 
of PD and cancers is known to exist (34). Genes that underlie 
familial forms of PD are often abnormally expressed in cancer. 
Functional studies implicate these genes as being associated 
with the maintenance of the cell cycle, so genes involved in the 
cell cycle might be potential targets (35).

Cytochrome P450 (CYP) enzymes are responsible for the 
metabolism of multiple exogenous and endogenous compounds. 
Brain CYPs are also involved in the progression of PD (36). 
Morale et al (37) reported that loss of aromatase cytochrome 
P450 function is a risk factor for PD, and McCann et al (38) 
discovered that the poor metabolizer genotype of CYP2D6 
has a significant association with PD.

Some of the 52 risk genes identified in the present study 
have been implicated in the progression of PD, including 
SNCA  (39). Deficiencies in complex I of the respiratory 
chain are frequent causes of mitochondrial diseases, and have 
been associated with PD (40). Several structural subunits 
of complex I were identified as risk genes in the present 
study, inlcuding NADH‑ubiquinone oxidoreductase 1 alpha 
subcomplex subunit 5 (NDUFA5), NDUFA2, NDUFAB1 and 
NDUFA4. Peralta et al (41) reported that conditional ablation 
of NDUFA5 results in a mild chronic encephalopathy but no 
increase in oxidative damage. Three voltage‑dependent anion 
channels (VADCs; VADC1, VADC2 and VADC3) were also 
identified as risk genes (42). They recruit Parkin to defective 
mitochondria, which promotes mitochondrial autophagy (42). 
Chu et al (43) demonstrated that VADC1 is downregulated 

Table IV. Pathways and risk genes in the 8 modules.

Module	 Pathways	 Risk genes

1	 Oxidative phosphorylation, Alzheimer's disease, 	 NDUFA5, VDAC3, NDUFA2, ATP5C1, ATP5G3, 
	 Parkinson's disease and Huntington's disease	 NDUFAB1, ATP5J, SLC25A5, SLC25A4, NDUFA4,
		  COX5A, UQCRC2, NDUFS3, NDUFB6, VDAC1,
		  VDAC2, ATP5A1, SNCA, ATP5F1, NDUFB5,
		  UQCRFS1, NDUFC1, SDHA, NDUFV2, NDUFA1,
		  NDUFA10, COX7A2L, ATP5B, NDUFS2, NDUFA6,
		  NDUFB3, SDHB
2	 Glioma, non‑small cell lung cancer, melanoma, signaling	 MAPK10, ATP1B1, ATP1A1, MAP2K4, PPP3CB, 
	 pathways regulating pluripotency of stem cells, mineral	 MAP2K1, CDKN1B, CDC42, PIK3CB
	 absorption, gastric acid secretion, carbohydrate digestion	
	 and absorption, proximal tubule bicarbonate reclamation, 	
	 aldosterone‑regulated sodium reabsorption, acute myeloid	
	 leukemia, salivary secretion, dorso‑ventral axis formation, 	
	 bladder cancer, thyroid hormone synthesis, T cell receptor	
	 signaling pathway, VEGF signaling pathway, B cell receptor	
	 signaling pathway, natural killer cell mediated cytotoxicity, 	
	 protein digestion and absorption, melanogenesis, toll‑like	
	 receptor signaling pathway, Fc epsilon RI signaling pathway, 	
	 chronic myeloid leukemia and prostate cancer	
3	 Drug metabolism ‑cytochrome P450, metabolism of	 GSTO1, GSTA4, ADH5
	 xenobiotics by cytochrome P450, chemical carcinogenesis, 	
	 metabolism of xenobiotics by cytochrome P450	
4	 Hypertrophic cardiomyopathy (HCM), Dilated	 SGCB, ATP2A2
	 cardiomyopathy, Arrhythmogenic right ventricular	
	 cardiomyopathy (ARVC)
5	 Lysine degradation, Tryptophan metabolism	 ACAT1, HADH
6	 Phenylalanine metabolism, isoleucinePhenylalanine, 	 GOT1, GOT2
	 tyrosine and tryptophan biosynthesisisoleucine	
7	 Starch and sucrose metabolism, Pentose and	 UGP2
	 glucuronate interconversions	
8	 Other glycan degradation, Glycosaminoglycan degradation	 HEXB
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in response to α‑synuclein accumulation and aggregation and 
thus leads to a decrease in mitochondrial function. Glutathione 
S‑transferase omega‑1 (GSTO1) is involved in the metabolism 
of xenobiotics and has been previously reported to modify the 

age of PD onset (44,45). GSTA4 may also be involved with 
PD, but confirmation of this requires further studies.

Overall, a number of relevant pathways and risk genes 
were revealed in the present study. The risk gene pathway 

Figure 6. Functional enrichment analysis results for the candidate genes. (A) GO biological process terms. (B) GO cellular components terms. (C) GO 
molecular function terms. (D) Kyoto Encyclopedia of Genes and Genomes pathways. GO, gene ontology.

Figure 7. The constructed network, including 49 pathway pairs (red circles) and 52 risk genes (green circles).
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network produced may be useful to guide further research 
to illustrate the molecular mechanisms underlying PD. Some 
of the identified risk genes may also be potential therapeutic 
targets for treatment of PD, although this too requires further 
study.
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