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Abstract: Developing suitable photocatalysts for the oxygen evolution reaction (OER) is still a
challenging issue for efficient water splitting due to the high requirements to create a significant
impact on water splitting reaction kinetics. Herein, n-type Bi2WO6 with flower-like hierarchical
structure and p-type Cu2O quantum dots (QDs) are coupled together to construct an efficient S-scheme
heterojunction, which could enhance the migration efficiency of photogenerated charge carriers. The
electrochemical properties are investigated to explore the transportation features and donor density
of charge carriers in the S-scheme heterojunction system. Meanwhile, the as-prepared S-scheme
heterojunction presents improved photocatalytic activity towards water oxidation in comparison
with the sole Bi2WO6 and Cu2O QDs systems under simulated solar light irradiation. Moreover, the
initial O2 evolution rate of the Cu2O QDs/Bi2WO6 heterojunction system is 2.3 and 9.7 fold that of
sole Bi2WO6 and Cu2O QDs systems, respectively.

Keywords: photocatalysis; S-scheme heterojunction; water oxidization; quantum dots

1. Introduction

Sunlight provides an abundant renewable energy source to overcome the energy crisis
that humans face in the future. Among all the strategies, solar energy conversion from
sunlight into chemical energy has shown up as a sustainable and efficient route utilizing
semiconductor photocatalysts [1,2]. As we know, water oxidation to dioxygen is a multi-
electron transfer reaction in a photocatalytic water splitting process, which is a critical
step and involves the difficult breaking of the O–H bond as well as the formation of an
O–O bond [3,4]. Continuous efforts have been dedicated to the development of efficient
water oxidation catalysts (WOCs), consisting of desirable semiconductor photocatalysts and
cocatalysts with proper band structure and electrophilic ability, which could improve the
light absorption capability and charge transportation with overall promoted photocatalytic
performance for water oxidation [5,6].

Among various semiconductor photocatalysts, ternary metal oxide, n-type Bi2WO6,
as one of the simplest members of the Aurivillius family, is comprised of accumulated
layers of perovskite-like [WO4]2− octahedral sheets and [Bi2O2]2+ sheets [7–9]. Density
functional theory (DFT) calculations show that the conduction band (CB) of Bi2WO6 is
comprised of W 5d orbitals; the valence band (VB) mainly originates from hybridizing
O 2p with Bi 6s orbitals, which not only enables the VB to be highly dispersed, but
also facilitates the migration of photogenerated holes for specific oxidation reactions.
In addition, the band gap of Bi2WO6 is about 2.8 eV, and the valence band edge is at
+2.95 V vs. NHE (normal hydrogen electrode), which is high enough to trigger the water
oxidation reaction for oxygen production. These unique properties reveal that Bi2WO6
can be utilized as a visible-light-driven photocatalyst for organic synthesis, CO2 reduction,
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and environmental remediation [10–12]. Nevertheless, similar to many semiconductors,
the poor utilization efficiency of solar energy and high recombination rate of pure Bi2WO6
give rise to depressed photocatalytic activity and thereby cannot meet the rising demand
of commercial applications [13–15].

Compared with mono-component photocatalysts, the hybrid heterojunction photo-
catalysts that hybridize at least two different functional catalysts into one system have
attracted increasing attention in recent decades. In particular, the advanced Z- or S-scheme
heterojunctions have been extensively investigated and reported; they synchronously real-
ize efficient separation, transportation, and utilization of photoinduced charge with strong
redox abilities by means of recombining weak electrons and holes at low potentials be-
tween the two semiconductors [16,17]. Therefore, to enhance the photocatalytic efficiency of
Bi2WO6, it is feasible to couple Bi2WO6 with other cocatalysts for constructing an S-scheme
heterojunction system [18–20]. For example, Liu et al. constructed Bi2WO6/CoAl-LDHs
(layered double hydroxides) S-scheme heterojunction to obtain enhanced photo-Fenton-like
catalytic performance, which profited from the synergistic effect of an internal electric
field and S-scheme heterojunction [20]. Recently, quantum dots-modified semiconductor
functional materials have received tremendous attention [21–23]. The quantum dots (QDs)
can significantly increase the photon conversion efficiency by generating multiple excitons
from a single photon owing to their unique quantum effect, but also easily match well with
the band alignment of the host semiconductor [24]. Taking carbon QDs as an example,
Kang et al. utilized carbon QDs to decorate Bi2WO6 for constructing the desirable band
structure conditions induced by compensatory photo-electronic effects, thereby realizing
overall water photo-splitting [25]. Moreover, the high specific surface area (SSA) sup-
plies numerous active sites which are favorable for the adsorption of reactants and thus
enhancing the observed photocatalytic activity. A major merit of these QDs decorated semi-
conductors is that more micro-heterojunction and a faster charge transfer process can be
sustained due to the intimately contacted nature of the interface and the short charge-carrier
transport paths. Among numerous semiconductors, Cu2O QDs have shown up as a good
candidate for tailoring photo-response and promoting charge carrier migration properties
because of the well-aligned overlapped band structures of Bi2WO6 and Cu2O [26]. In fact,
Cu2O is widely applied as an effective co-catalyst in photocatalytic or electrocatalytic sys-
tems for a hydrogen evolution reaction (HER) owing to its high conduction band potential,
exhibiting good photocatalytic H2 production activity [27,28].

In this study, we successfully decorated Cu2O QDs onto the surface of Bi2WO6 micro-
flowers (MFs) with a uniform dispersion to form multiple S-scheme micro-heterojunctions
for enhancing the efficiencies of solar light utilization and photogenerated charge migration.
The incorporation of Cu2O QDs improved the adsorption ability of visible light and effec-
tively facilitated the transportation of photoinduced charge carriers, and thus enhanced the
photocatalytic activity for oxygen production under simulated solar light irradiation. This
work suggests that the coupling of nanosized p-type Cu2O QDs and the three-dimensional
Bi2WO6 MFs has a great potential for application in photocatalytic water oxidation.

2. Materials and Methods
2.1. Synthesis of Flower-Like Hierarchical Bi2WO6 MFs

In a typical procedure, 1.32 g of Na2WO4·2H2O was dissolved into 40 mL of purified
water to form a transparent solution. Meanwhile, 1.96 g of Bi(NO3)3·5H2O was firstly
mixed with 80 mL of HNO3 (0.3 M). After that, the Na2WO4 solution was dropped into
the Bi(NO3)3 solution with vigorous magnetic stirring, and a white precipitate was formed
quickly. Subsequently, 20 mL of NaOH solution (0.2 M) was added dropwise with stirring
for 12 h. Finally, the mixture was transferred to a Teflon-lined autoclave and kept at 160 ◦C
for 8 h. A light-yellow precipitate Bi2WO6 MFs was centrifuged, washed by purified water
and dried in air at 60 ◦C.
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2.2. Synthesis of Cu2O QDs/Bi2WO6 Heterojunction

Firstly, 0.025 g of hexadecyl trimethyl ammonium bromide (CTAB) was dissolved into
20 mL of purified water to form transparent solution. Then, 0.1 g of the as-prepared Bi2WO6
sample was added into the above CTAB solution with stirring for 30 min. Meanwhile,
0.008 g of copper acetate (Cu(Ac)2) and 0.016 g of ethylenediaminetetraacetic acid disodium
(EDTA-Na) were dissolved into 5 mL of purified water. Subsequently, the Cu solution
was mixed with the Bi2WO6 solution. Then, 10 mL of NaOH solution (0.05 M) was added
dropwise into the mixed solution with stirring for 30 min. Afterwards, 10 mL of ascorbic
acid (AA) solution (0.33 g) was dropped into the above solution with vigorous stirring
for 1 h. The generated Cu2O/Bi2WO6 was washed with absolute ethanol and distilled
water several times to remove the surfactant, and dried overnight in a vacuum oven. The
final products were named 1.5 wt% Cu2O/Bi2WO6, 3wt% Cu2O/Bi2WO6, and 6 wt%
Cu2O/Bi2WO6, where the 1.5, 3 and 6 wt% were the mass ratios of Cu2O to Bi2WO6 in
the mixed solution according to the theoretical stoichiometric ratio of added copper and
bismuth elements. For comparison, a control sample was prepared without the addition of
Bi2WO6 and labeled as Cu2O.

2.3. Characterizations

X-ray diffraction (XRD) patterns of the prepared heterojunctions were performed us-
ing a Bruker D8 diffractometer (Billerica, MA, USA). The morphology and microstructure
of the obtained catalysts were observed using a JSM5510LV (Tokyo, Japan) field emis-
sion scanning electron microscopy (SEM) and a JEOL 2100 (Tokyo, Japan) transmission
electron microscopy (TEM). Raman spectra were recorded on an ISA dispersive Raman
spectroscopy at 514 nm. Fourier transform infrared spectra (FTIR) were determined using
a Bruker spectrometer (Billerica, MA, USA) with an ATR correction mode. X-ray photoelec-
tron spectroscopy (XPS) was examined by a Thermo Escalab 250 instrument (Waltham, MA,
USA) with Al-Kα radiation to determine the surface chemical species. UV–vis absorption
spectra were conducted by a Cary 4000 UV-vis spectrometer (Waltham, MA, USA). Electron
paramagnetic resonance (EPR) analyses were carried out using a Bruker EMS-plus instru-
ment (Billerica, MA, USA) to detect the free radicals by using 5,5-dimethyl-1-pyrroline
(DMPO) as a spin-trapping agent.

2.4. Photoelectrochemical Tests

Photoelectrochemical measurements were conducted using a CHI660E electrochemical
workstation (Shanghai, China) with a three-electrode system in 0.05 M Na2SO4 electrolyte
(20 mL, pH = 6.8). A catalyst deposited fluorine-doped tin oxide (FTO) electrode was served
as a photoanode, while a Pt wire and a saturated calomel electrode (SCE) were applied as
the counter electrode and reference electrode, respectively. For the photoanode preparation,
40 mg of the prepared photocatalysts were added into 2 mL of ethanol with 40 µL Nafion
solution (5 wt%) and mixed homogeneously using a vortex oscillator. After that, the
resulting mixture was dip-coated onto the prewashed FTO glass to obtain a film electrode
with a controlled electrode area of 1 cm2. The solar light source (I0 = 100 mW cm−2) was
simulated using a 200 W Xenon lamp coupled with an AM 1.5G filter. Electrochemical
impedance spectroscopy (EIS) tests were measured at a scan frequency range of 0.1 to
100 kHz under a voltage amplitude of 10 mV and a potential bias of 0.298 V vs. SCE.

2.5. Photocatalytic Activities

The photocatalytic reactions were performed in a Teflon lining reactor under the
simulated solar light. 0.05 g of samples were added into 200 mL of the solution with La2O3
(0.2 g) and AgNO3 (0.03 M). Before irradiation, the mixture was stirred for 30 min in the
dark and then purged with N2 to removal O2. The concentration of O2 in the reactor
was measured by using gas chromatograph (Tet, GC-2030,Tokyo, Japan) with a thermal
conductivity at an interval of 30 min.
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3. Results and Discussion

Figure 1a displays a possible formation procedure of Cu2O QDs/Bi2WO6 hetero-
junction through a facile hydrothermal and deposition route. Firstly, when the cationic
surfactant CTAB is introduced, the CTAB can be adsorbed and anchored at the surface
of Bi2WO6 MFs. The characteristic flower-like hierarchical Bi2WO6 with high SSA pro-
vides a structural framework for the uniform growth of nanoparticles on the sheets slowly
with directed high-density. On the other hand, the EDTA and Cu(Ac)2 are mixed with
the purified water to form a blue Cu complex. Subsequently, the mixture is added drop-
wise into the Bi2WO6/CTAB solution. As a result, the Cu complex is deposited on the
surface of flower-like hierarchical Bi2WO6. With the addition of NaOH, Cu(II) ions from
the Cu complex are slowly released to generate Cu(OH)2 nanoparticles. As expected, the
negatively charged nanoparticles could be attracted and grafted by the positive CTAB
to restrain the agglomeration effect. When the weak reductive AA is added, the formed
Cu(OH)2 nanoparticles can be reduced to Cu2O QDs on the surface of Bi2WO6 MFs, which
further maintains the stability of the nanosized Cu2O QDs without apparent aggregation.
In Figure 1b, the XRD patterns of Bi2WO6 with different contents of Cu2O QDs are present.
As displayed, the XRD pattern of the as-prepared Bi2WO6 is in good agreement with the
standard diffraction pattern of orthorhombic Bi2WO6 (JCPDS No. 73-2020) [29], where
the obvious peaks at 28.3◦, 32.9◦, 47.2◦, 55.9◦, 58.6◦, 69.1◦, 76.1◦, 78.5◦, and 87.7◦ can be
indexed to the (113), (020), (220), (313), (226), (040), (333), (046), and (246) crystal planes,
respectively. Moreover, the patterns for Cu2O/Bi2WO6 heterojunctions are similar to those
of pure Bi2WO6, while no characteristic peaks belong to Cu2O are observed, which is
ascribed to the low loading mass and high dispersion of Cu2O QDs in the Bi2WO6 matrix.
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SEM images of the bare Bi2WO6 MFs are displayed in Figure 2a,b, where the uniform
flower-like hierarchical Bi2WO6 with 2–3 µm diameter are observed clearly. It is found
that the hierarchical structure of Bi2WO6 is assembled by ultrathin sheets with 40 nm of
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thickness, as present in Figure 2c,d, inferring high porosity and huge surface area, which
benefits the exposure of more active sites.
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Figure 2. FESEM images of the pure flower-like Bi2WO6 samples with (a,b) wide scope and
(c,d) higher resolutions.

After introducing the Cu2O QDs, as shown in Figure 3a,b, it is clearly observed that the
size of the Bi2WO6 hierarchical flowers displays a negligible change, while the nanosheets
comprised of the flowers are mechanically exfoliated and the surface of the flower-like
hierarchical structure becomes smoother, which is possibly due to the vigorous stirring
during the Cu2O QDs deposition process. Meanwhile, with the increasing of Cu initial
amount, the Cu2O nanoparticles are observed and anchored at the surface of the hierarchical
Bi2WO6 MFs. As displayed in Figure 3c, the 3 wt% Cu2O QDs are uniformly deposited on
the surface of Bi2WO6 MFs, while once the amount of Cu(II) precursor reaches to 6 wt%,
large Cu2O nanoparticles are detected in Figure 3d,e, which indicates that the excess Cu(II)
precursor is harmful for the dispersion of Cu2O QDs and causes the aggregation.

TEM and HRTEM images of the Cu2O QDs/Bi2WO6 heterojunction are presented
in Figure 4. The micro-size Bi2WO6 MFs with 2–3 µm diameter is observed, which is
agreement with the results of SEM, as displayed in Figure 4a, where the large thickness of
the sample hampers the penetration of electron beams, leading to the black area. In general,
quantum dots are defined as semiconductor nanocrystals with particle sizes ranging from
1 to 20 nm, which possess unique electronic properties owing to the apparent quantum
confinement effect. It can be clearly observed that the Cu2O nanoparticles with ~20 nm of
diameter are uniformly dispersed at the surface of Bi2WO6 MFs in Figure 4b,c. Owing to
the smaller size, the Cu2O QDs can easily anchor at the surface of micro-sized Bi2WO6 to
form micro-heterojunctions, which shorten the charge-carrier transfer pathways through
the intimately contacted interface. The clear lattice fringe of 0.307 nm ascribed to the (110)
crystal facet of Cu2O is detected in Figure 4d. These results demonstrate the successful
construction of heterojunctions between Bi2WO6 and Cu2O.
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Figure 4. TEM (a,b) and HRTEM (c,d) images of the 3 wt% Cu2O QDs/Bi2WO6 sample.

FTIR spectra of Bi2WO6 MFs, Cu2O, and Cu2O/Bi2WO6 are displayed in Figure 5a.
The peaks at 818 and 703 cm−1 are attributed to the symmetric and asymmetric vibration
of W–O, respectively [30]. The peaks centered at 1599, 2924 and 2845 cm−1 are due to the
stretching vibration of O–H and C–H, respectively, which could be because of the usage of
organic surfactants (CTAB, EDTA) during the synthesis procedure of the heterojunction
system [31]. Besides, the characteristic peak of Cu2O is not found in the samples of
Cu2O/Bi2WO6. To further investigate the composition of samples, Raman spectroscopy
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of the samples was performed, as shown in the Figure 5b. The characteristic peaks at
796 and 827 cm−1 can be ascribed to the antisymmetric and symmetric Ag stretch modes
of the O–W–O band, respectively [32,33]. The peak at 714 cm−1 is associated with the
antisymmetric bridging mode of the tungstate chain. In addition, the obvious vibration
peak at 308 cm−1 is assigned to translational modes involving simultaneous motions of
WO6

6− and Bi3+ [34]. For the pure Cu2O, the intense peaks at low frequencies of 213 and
260 cm−1 originate from the stretching vibration of Cu2O, which is consistent with the
previous reports [35,36]. In the case of Cu2O/Bi2WO6, the characteristic peak at 308 cm−1

shifted to 296 cm−1, and the two peaks at 796 and 827 cm−1 became a broad peak at
809 cm−1 due to the cover of Cu2O on the surface of the Bi2WO6 MFs.
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Figure 5. (a) FTIR spectra and (b) Raman spectra of the as-prepared Cu2O/Bi2WO6 samples: a. Bi2WO6,
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The XPS spectra were conducted to detect the chemical environment of elements
in the catalyst, and all characteristic peaks were calibrated using C 1s (binding energy
at 284.6 eV) as a reference. In Figure 6a, elements of W 4f, Bi 4f, O 1s, and Cu 2p were
detected in the full survey spectrum of the 3 wt% Cu2O/Bi2WO6, demonstrating the
coexistence of these elements in the sample. As presented in Figure 6b, two distinct peaks
located at 159.8 and 165.1 eV are assigned to the characteristic peaks of Bi 4f7/2 and Bi
4f5/2 in the trivalent oxidation state, respectively. In the previous report, the binding
energy of Bi 4f7/2 in Bi2WO6 MFs locates in the range of 158 to 159 eV while that for
Bi2O3 appears between 159 and 160 eV. Therefore, the peak located at 159.8 eV could be
assigned to Bi3+ in Bi2WO6 MFs [37,38]. In Figure 6c, the high resolution deconvoluted
W 4f spectrum reveals two broad peaks at 38.2 and 36.0 eV corresponding to W 4f5/2 and
W 4f7/2, respectively, suggesting the valence state of W element is +6 in the sample of
Cu2O/Bi2WO6 heterojunction [39]. Moreover, as seen from Figure 6d, there are two obvious
characteristic peaks at 953.3 and 933.5 eV, attributed to Cu 2p1/2 and Cu 2p3/2, respectively,
revealing the feature of Cu+ in Cu2O [40,41]. In contrast, the CuO state generally has a
main characteristic peak locates at a binding energy of higher than 933 eV and characteristic
shake-up satellite peaks at around 937–945 eV [42–45]. The shake-up peaks are often
detected at around 9–10 eV higher than the main peaks, which results from the vigorous
photoelectrons synchronously interacting with a valence electron and then being excited to
a higher binding energy level [46]. However, in Figure 6d, the peak belonging to Cu2+ at
933.7 eV with the shake-up peaks at 937–945 eV is not observed, revealing that the copper
species in Cu2O/Bi2WO6 hybrids are mainly presented as Cu(I) [47–49].
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UV–vis absorption spectra of various heterojunctions and the corresponding band
gap energies calculated from the Tauc’s plots by (αhν) = A(hν − Eg)1/2 are presented in
Figure 7, which reveals the sunlight response and absorption capability of Cu2O, Bi2WO6
MFs, and various Cu2O/Bi2WO6 hybrids. The absorption edge of Bi2WO6 MFs is about
460 nm, which suggests that the pure Bi2WO6 can only absorb UV and near-visible light.
However, the absorption spectrum of Cu2O sharply rises at the beginning of 650 nm,
displaying strong visible light response ability, which makes it a desirable candidate for
utilization of solar energy. When depositing Cu2O QDs on the surface of Bi2WO6, the
obtained Cu2O/Bi2WO6 hybrid system exhibits improved absorption ability for visible
light, as displayed in Figure 7a. The corresponding band gap energies are calculated and
displayed in Figure 7b, where the band gap energy of Cu2O/Bi2WO6 hybrids decreases
with the introduction of Cu2O. Meanwhile, it is observed that the band gap of the 6 wt%
Cu2O/Bi2WO6 hybrid is narrowed to 2.05 eV, which is obviously different from those of
the 1.5 wt% and 3 wt% Cu2O/Bi2WO6 hybrids. This result suggests that the excess amount
of Cu precursor did not result in the formation of Cu2O QDs but Cu2O microstructures on
the surface of Bi2WO6. It demonstrates that the optimal amount of Cu precursor exists in
the formation of QDs-MFs micro-heterojunction structure. On the other word, the excessive
Cu precursor leads to the enhancement of sunlight response property.



Nanomaterials 2022, 12, 2455 9 of 16Nanomaterials 2022, 12, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 7. UV–visible absorption curves (a) and Tauc’s plots (b) of the prepared Bi2WO6 and different 
Cu2O/Bi2WO6 heterojunctions. 

To investigate the transportation behavior and efficiency of photoinduced charge car-
riers at the heterojunction interface, the photoelectrochemical properties of these samples 
were investigated. In Figure 8a, electrochemical impedance spectroscopies (EIS) of these 
samples in the manner of a Nyquist diagram were recorded in the dark and under light 
irradiation. In general, the radius of each semicircle is correlated to charge-transfer re-
sistance (Rct) at the interface of electrode/electrolyte; a smaller semicircle implies a lower 
Rct value [50–52]. As shown in Figure 8a, Cu2O exhibits significantly smaller Rct under light 
irradiation (l) in comparison with being in darkness (d), indicating that the electrical re-
sistance at the electrode/electrolyte interface is decreased due to the production of pho-
toinduced charge carriers. In the case of the flower-like Bi2WO6 MFs, a larger semicircle is 
recorded, suggesting that the Bi2WO6 possesses poor electrochemical performance in 
charge-transfer process [53,54]. With the formation of the Cu2O QDs/Bi2WO6 heterojunc-
tion, the Rct of Bi2WO6 is intensively reduced, which apparently improves the photoelec-
trochemical property of Bi2WO6 and is favorable for the transportation of the photogener-
ated charge carriers. 

 
Figure 8. (a) Nyquist plots, Mott–Schottky curves of (b) Bi2WO6, (c) Cu2O, and (d) Cu2O/Bi2WO6. 

Figure 7. UV–visible absorption curves (a) and Tauc’s plots (b) of the prepared Bi2WO6 and different
Cu2O/Bi2WO6 heterojunctions.

To investigate the transportation behavior and efficiency of photoinduced charge
carriers at the heterojunction interface, the photoelectrochemical properties of these sam-
ples were investigated. In Figure 8a, electrochemical impedance spectroscopies (EIS) of
these samples in the manner of a Nyquist diagram were recorded in the dark and under
light irradiation. In general, the radius of each semicircle is correlated to charge-transfer
resistance (Rct) at the interface of electrode/electrolyte; a smaller semicircle implies a
lower Rct value [50–52]. As shown in Figure 8a, Cu2O exhibits significantly smaller Rct
under light irradiation (l) in comparison with being in darkness (d), indicating that the
electrical resistance at the electrode/electrolyte interface is decreased due to the produc-
tion of photoinduced charge carriers. In the case of the flower-like Bi2WO6 MFs, a larger
semicircle is recorded, suggesting that the Bi2WO6 possesses poor electrochemical perfor-
mance in charge-transfer process [53,54]. With the formation of the Cu2O QDs/Bi2WO6
heterojunction, the Rct of Bi2WO6 is intensively reduced, which apparently improves the
photoelectrochemical property of Bi2WO6 and is favorable for the transportation of the
photogenerated charge carriers.
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To gain deeper insights into the characteristics of the prepared heterojunctions, flat
band potential and carrier concentrations are deduced from the Mott–Schottky (M–S)
curves [55,56]. The electrode potentials vs. SCE are converted to the reversible hydrogen
electrode (RHE) potentials based on the following Nernst equation [57]:

VRHE = VSCE + 0.059 × pH + V0
SCE (1)

where VSCE is the experimental potential measured against the SCE, VRHE represents the
converted potential vs. RHE, and V0

SCE = 0.245 V at 25 ◦C. The Mott–Schottky (M–S) plots
are depicted in Figure 8b–d, in which the flat band potentials at the electrode/electrolyte
interface are calculated according to Equation (2) [36]:

1/C2 = (2/εrε0eNdA2)[(V − Vfb) − kT/e]c (2)

where C is the specific capacity, εr and ε0 are the dielectric constant of the samples and
the electric permittivity of vacuum (8.85 × 10−12 N−1 C2 m−2), respectively; Nd represents
the carrier density of the catalysts, A is the efficient area of electrode, V and Vfb are the
applied working potential and the flat band potential, respectively; k is the Boltzmann
constant, T donates the absolute temperature, and e is the electron charge (1.602 × 10−19 C).
In Figure 8b, a positive slope of M–S plot is observed, inferring a n-type semiconductor
of Bi2WO6. In contrast, the negative slope of the M-S plot indicates a p-type behavior of
Cu2O in Figure 8c, which is consistent with the previous reports [36,58]. Meanwhile, the
flat band potentials of Cu2O and Bi2WO6 are calculated to be 0.74 and −0.18 V vs. RHE at
pH = 6.8, respectively. In Figure 8d, an inverted “V-shape” curve is detected in the M–S
plot of Cu2O/Bi2WO6, which is attributed to a characteristic curve of the p-n junction. It
demonstrates that two distinct electronic behaviors (p- and n-type) are exhibited in the
Cu2O/Bi2WO6 photoelectrode. Moreover, a slight shift of x intercept in Cu2O/Bi2WO6
occurs, implying the band realignment of Cu2O and Bi2WO6.

The photocatalytic water oxidization performances of these prepared samples are
presented in Figure 9. As shown in Figure 9a, the Cu2O QDs/Bi2WO6 heterojunctions
display significantly enhanced O2 evolution activities in comparison with the sole Bi2WO6
and Cu2O QDs under simulated solar light irradiation. The incorporation of Cu2O QDs
improves the adsorption ability for visible light (Figure 7) as well as electrical conductivity
of the prepared Cu2O QDs/Bi2WO6 heterojunctions (Figure 8a), thereby resulting in the en-
hancement of photocatalytic activity towards water oxidation under solar light irradiation,
as the 1.5 wt% Cu2O QDs/Bi2WO6 heterojunction shown in Figure 9a. Meanwhile, the
3 wt% Cu2O QDs/Bi2WO6 heterojunction exhibits the best photocatalytic water oxidation
performance, up to 50 µmol/L within 3 h, which is 2.1 and 6.1 times higher than that of pure
Bi2WO6 and Cu2O QDs, respectively. Furthermore, the initial O2 evolution rate of the 3 wt%
Cu2O QDs/Bi2WO6 heterojunction reaches 329 µmol h−1 g−1, which is 2.3 and 9.7 fold that
of sole Bi2WO6 and Cu2O QDs system, respectively (Figure 9b), and is also superior to the
reports in the literature (Table 1). However, excessive Cu(II) dosage (6wt%) is harmful for
the dispersion of Cu2O QDs and causes the aggregation, leading to deteriorated catalytic
performance. For the stability of the heterojunction system, as the recycling tests shown in
Figure 9c, the photocatalytic performance of the 3 wt% Cu2O QDs/Bi2WO6 hybrid fades to
some extent due to the excess deposition of Ag+ ions at the surface of heterojunction, but
it still maintains good long-term stability and reuse potentiality. As a result, in Figure 9d,
the 3 wt% Cu2O QDs/Bi2WO6 hybrid exhibits a sustainable photocatalytic O2 production
capacity from water splitting.
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Table 1. Comparison of photocatalytic O2 evolution performance between the 3 wt% Cu2O/Bi2WO6

heterojunction and literature reports.

Catalysts Light Source O2 Evolution Rate in First
Hour (µmol h−1 g−1) Stability Ref.

BpCo-COF-1 300 W Xe lamp (λ > 420 nm) 152 4 h [59]
IrOx-am@TiO2 LED-405 lamp 143.6 4 h [60]

Mn-BiFeO3 300 W Xe lamp (λ > 420 nm) 255 6 h [61]
BP/BiVO4 300 W Xe lamp (λ > 420 nm) 102 3 runs, 9 h [62]

BiFeO3 300 W Xe lamp (λ > 420 nm) 82.2 5 h [63]
Ov-BiVO4/rGO 300 W Xe lamp (λ > 420 nm) 180 3 runs, 15 h [64]
Sol-10BP/BiOBr 300 W Xe lamp (λ > 420 nm) 89.5 4 runs, 16 h [65]
VBi-rich Bi2WO6 300 W Xe lamp (λ > 420 nm) 100.13 9 h [66]

KCa2Nb3O10/CoFe-PB 300 W Xe lamp (λ > 420 nm) 89 4 runs, 12 h [67]
S-BiOCl 200 W Xe lamp (λ > 420 nm) 142 5 runs, 25 h [68]

3 wt% Cu2O/Bi2WO6 200 W Xe lamp (λ > 420 nm) 329 4 runs, 12 h This work

For the 3 wt% Cu2O QDs/Bi2WO6 S-scheme heterojunction, the EPR results are
displayed in Figure 10, where the signals attributed to the hydroxyl radicals (·OH) and su-
peroxide radicals (·O2

−) are detected. As shown in Figure 10a, the characteristic four peaks
caused by the existence of DMPO–OH· adduct are observed, apparently, which demon-
strates that water molecular adsorbed on the surface of photocatalyst could efficiently react
with the photoinduced holes and form ·OH [69]. On the other hand, in Figure 10b, the
characteristic six peaks are clearly found, which is ascribed to the superoxide radical [70].
It is demonstrated that both of ·OH and ·O2

− can be efficiently produced over the Cu2O
QDs/Bi2WO6 hybrids under the solar light irradiation.
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heterojunction.

Based on the above results, two types of II or S-scheme heterojunction can be built
between Cu2O QDs and Bi2WO6. Once the type II heterojunction is constructed, the trend
of photoinduced charge carriers is for photogenerated holes at the VB of Bi2WO6 to migrate
to the VB of Cu2O; correspondingly, the photoinduced electrons at the CB of Cu2O transfer
to the CB of Bi2WO6. Consequently, photoinduced holes and electrons gather at the CB
of Bi2WO5 and VB of Cu2O, respectively. Unfortunately, the VB potential of Cu2O is
situated at +0.83 eV, which is quite low and makes it hard to guarantee enough oxidative
potential to oxidize water and produce gaseous O2 [71]. Therefore, it is concluded that
the Cu2O QDs/Bi2WO6 hybrids might tend to construct a novel S-scheme band structure,
as presented in Figure 11a. The photoinduced electrons at the CB of Bi2WO6 are likely to
quench the holes at the VB of Cu2O. Subsequently, the stronger reductive electrons at the
CB of Cu2O and oxidative holes at the VB of Bi2WO6 are efficiently retained simultaneously.
As described in Figure 11b, the separated photoinduced holes at the VB of Bi2WO6 react
with the adsorbed H2O at the surface of hybridized system to generate O2, and the retained
electrons at the CB of Cu2O are quenched by Ag+ ions. Therefore, the construction of
an S-scheme heterojunction is conducive to inhibiting the recombination efficiency of
the photoinduced charge carriers, giving rise to more photogenerated holes taking part
in the photocatalytic reactions, thereby enhancing the photocatalytic efficiency towards
O2 production.
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4. Conclusions

In summary, we successfully prepared Cu2O QDs/Bi2WO6 heterojunctions by cou-
pling hierarchical Bi2WO6 MFs with Cu2O QDs to construct efficient S-scheme heterojunc-
tions, which could facilitate the migration of photoinduced charge carriers. The electro-
chemical properties are investigated to explore the transportation performance and donor
density of charge carriers in the S-scheme heterojunction system. The results indicate
that the synthesized S-scheme heterojunction shows improved photocatalytic activity for
water oxidation compared with the sole Bi2WO6 and Cu2O QDs systems under simulated
solar light illumination. The initial O2 evolution rate of the heterojunction system is 2.3
and 9.7 fold that of sole Bi2WO6 and Cu2O QDs system, respectively. Furthermore, it is
evidently demonstrated that both of ·OH and ·O2

− can be generated efficiently over the
Cu2O QDs/Bi2WO6 heterojunction under the simulated solar light illumination.
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