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ABSTRACT
Cardiovascular disease (CVD) remains the major cause of morbidity and mortality
around the world. Transcription factor EB (TFEB) is a master regulator of lysosome
biogenesis and autophagy. Emerging studies revealed that TFEB also mediates cellular
adaptation responses to various stimuli, such as mitochondrial dysfunction, pathogen
infection and metabolic toxin. Based on its significant capability to modulate the
autophagy-lysosome process (ALP), TFEB plays a critical role in the development of
CVD. In this review, we briefly summarize that TFEB regulates cardiac dysfunction
mainly through ameliorating lysosomal and mitochondrial dysfunction and reducing
inflammation.
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INTRODUCTION
Cardiovascular diseases (CVDs) are a range of disorders that affect both the blood vessels
and heart. They are a major global threat and one of the leading causes of mortality and
morbidity worldwide, placing a heavy burden on patients and their families. Common
CVDs include acute myocardial infarction (AMI), heart failure, atrial fibrillation (AF), and
atherosclerosis.

Transcription factor EB (TFEB) is a member of the MiT/TFE bHLH-LZ subfam-
ily (Steingrímsson, Copeland & Jenkins, 2004). It is considered a major transcriptional
regulator of autophagy and lysosomal biogenesis (Xu & Ren, 2015). Recent studies have
shown that TFEB binds directly to CLEAR elements on lysosomal genes, promoting
the expression of the entire network of genes in their promoters that contain CLEAR-
regulated motifs (the CLEAR network) (Palmieri et al., 2011; Sardiello et al., 2009). In
resting cells under nutrient-rich conditions, TFEB is primarily located in the cytoplasm
and is inactive (Sardiello et al., 2009; Settembre et al., 2011). However, under conditions
of starvation, bacterial infection, lysosomal dysfunction, or other stress processes, TFEB
quickly translocates to the nucleus and activates the transcription of its target genes,
promoting organismal homeostasis (Martina et al., 2012). TFEB is increasingly believed to
regulate homeostasis in the cardiovascular system and has a protective effect against CVD,

How to cite this article Yan X, Yang L, Fu X, Luo X, Wang C, Xie QP, OuYang F. 2024. Transcription factor EB, a promising therapeutic
target in cardiovascular disease. PeerJ 12:e18209 http://doi.org/10.7717/peerj.18209

https://peerj.com
mailto:9304117@csu.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.18209
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
http://doi.org/10.7717/peerj.18209


such as AMI, atherosclerosis, and cardiotoxicity (Chen et al., 2022b; Li et al., 2022; Haas
et al., 2022). This article reviews the research progress of TFEB in CVD and discusses the
related molecular mechanisms.

SURVEY METHODOLOGY
To identify the pertinent literature, we conducted a PubMed search using the following
keywords: (Transcription factor EB) and (Cardiovascular disease)/(Transcription factor
EB) and (Angiocardiopathy). We then proceeded to a title and abstract screening and
elimination process, which excluded articles not related to CVD, in order to ensure the
comprehensiveness and accuracy of this review.

TFEB and atherosclerosis
Atherosclerosis is a progressive and inflammatory vascular disease caused by lipid
dysregulation. It is characterized by the abnormal accumulation of lipids and
immune cells within the vessel wall (Arida et al., 2018; Ammirati et al., 2015). This
accumulation ultimately leads to severe clinical complications of arterial disease, such
as AMI and stroke (Zhao et al., 2019; Ching et al., 2011). Atherosclerosis is a complex
pathophysiological process that involvesmultiple cell types, includingmacrophages (Moore,
Sheedy & Fisher, 2013), endothelial cells (Sun et al., 2021), and vascular smooth muscle
cells.

Numerous studies have confirmed the involvement of TFEB in the development of
CVD. Vascular dysfunction, in particular endothelial dysfunction, is a key factor in
CVD. Furthermore, overexpression of TFEB in endothelial cells (EC) has been shown
to significantly promote EC migration and tube formation. Endothelial-specific TFEB
overexpression in mice demonstrated enhanced capillarisation and augmented blood
perfusion following ischemic injury (Fan et al., 2018). Moreover, the restoration of
autophagic flux through TFEB overexpression diminished oxidative stress and enhanced
endothelium-dependent relaxation in aortic endothelial cells of diabetic mice (Zhao et al.,
2022). Similarly, Lu et al. (2017) demonstrated that laminar shear stress, one of the crucial
processes in the atherosclerotic process, can prevent atherosclerosis by increasing the
abundance of TFEB in endothelial cells. In vitro experiments have demonstrated that the
overexpression of TFEB in endothelial cells effectively inhibits the inflammatory response,
while the down-regulation of TFEB exacerbates it. This effect may be attributed, in part, to
the reduction of oxidative stress by TFEB (Lu et al., 2017). TFEB increases the abundance of
antioxidant genes, such as heme oxygenase 1 (HO1) and superoxide dismutase 2 (SOD2),
which reduces intracellular reactive oxygen species (ROS) (Fig. 1A) (Lu et al., 2017).

Under in vivo inflammatory conditions, transgenic mice with endothelial cell-specific
expression of TFEB exhibited reduced endothelial cell-leukocyte adhesion (Fig. 1B), and
atherosclerosis development was reduced (Lu et al., 2017). In addition, EC-TFEB/ApoE-/-
mice exhibited a reduction in atherosclerotic lesion formation compared to their littermate
ApoE-deficient (ApoE-/-) mice. This suggests that TFEB activation has a protective effect
against atherosclerosis in vivo. Chen et al. (2022a) conducted a study demonstrating how
bromelain stimulates antioxidant production through the activation of TFEB, thereby
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Figure 1 Role andmechanism of TFEB in CVD. (A) In endothelial cells, TFEB has an antioxidant effect
by activating SOD2 and HO-1 and inhibiting the production of ROS, thereby reducing the inflammatory
response.Red: activating effect. Green: inhibitory effect. (B) Mice that over-express TFEB exhibit reduced
leukocyte adhesion, which attenuates plaque formation and slows down the progression of AS. (C) After
myocardial ischemia-reperfusion, the expression of AMPKα1 and AMPKα2 was reduced. This inhibition
of TFEB occurred through the AMPKα1-mTOR and AMPKα2-skp2-CARM1 pathways, respectively. As
a result, lysosomal genesis was reduced, leading to impaired autophagic copper beam and ultimately im-
paired mitochondrial function. (D) Doxorubicin, (continued on next page. . . )

Full-size DOI: 10.7717/peerj.18209/fig-1
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Figure 1 (. . .continued)
a chemotherapeutic drug, inhibits TFEB expression, leading to IKK-β and NFκB activation and subse-
quent inflammatory response. (E) In endothelial cells, TFEB upregulates IRS1 and IRS2 expression, which
activate the Akt signalling pathway, phosphorylate Akt, and facilitate glucose transport into the cytosol.
TFEB, transcription factor EB; CVD, cardiovascular disease; HO1, oxygenase 1; SOD2, superoxide dis-
mutase 2; ROS, reactive oxygen species; AS, atherosclerosis; IRS, insulin receptor substrate. Image source
credit: Motifolio.

slowing the progression of atherosclerosis. These findings highlight the benefits of TFEB
in vascular diseases.

Additionally, numerous studies have confirmed that TFEB acts as a master regulator,
promoting the expression of autophagic and lysosomal genes (Moore, Sheedy & Fisher,
2013), primarily by targeting intracellular cholesteryl ester-rich lipid droplets (LDs) for
degradation to free cholesterol, orchestrating autophagic lysosomes, and promoting lipid
degradation. Therefore, TFEB may act as an antioxidant activator and promote autophagy
to delay the progression of atherosclerosis. The data indicate that TFEB plays a significant
role in the regulation of atherosclerosis, encompassing processes such as angiogenesis,
autophagy, inflammation, and oxidative metabolism.

TFEB and myocardial ischemia/reperfusion injury
Although there have been significant advances in understanding ischaemic heart disease, the
underlyingmechanisms remain incompletely elucidated (Severino et al., 2020). Studies have
indicated that autophagy has emerged as a key factor in maintaining cardiac homeostasis
and function, as it contributes to the reduction of cardiac damage by facilitating cellular
adaptation to misfolded protein accumulation, mitochondrial dysfunction and oxidative
stress (Sciarretta et al., 2018a). As previously mentioned, TFEB is a master regulator of
autophagy genesis. Therefore, it plays a crucial role in maintaining cardiac homeostasis
by mediating autophagy. Studies have reported that in myocardial ischemia/reperfusion
injury (IRI), both cytoplasmic AMPKα1 and nuclear α2 subunits are inhibited. This leads
to impaired autophagic flux by suppressing TFEB through the AMPKα1-mTOR and
AMPKα2-Skp2-CARM1 signaling pathways, respectively (Wang et al., 2019b). Similarly,
post-ischemic reperfusion increased the levels of myocardial BECLIN-1 protein, which
inhibits the activation of TFEB (Dhingra et al., 2017), resulting in impaired autophagic
flux (Oliveira et al., 2021). Autophagy is not an independent process; it is closely linked
to mitochondrial and lysosomal functions. BNIP3, a protein interacting with BCL-2
and adenovirus E1B 19kDa, has been reported to play a role in IRI (Diwan et al.,
2007). Its up-regulation leads to lysosomal depletion and promotes autophagosome
accumulation, impairingmitochondrial autophagy and leading to cardiomyocyte death. On
the other hand, TFEB expression stimulates lysosomal biogenesis, restores autophagosome
processing and attenuates mitochondrial damage (Fig. 1C) (Ma et al., 2012). During
hypoxia/reoxygenation,TFEB knockdown abrogated the clearance of autophagosomes and
restoration of cell viability that resulted from LAPTM4B overexpression. Conversely, TFEB
overexpression rescued the injury to cardiac tissue and restored the autophagic fluxes that
resulted from LAPTM4B knockdown during ischemia and reperfusion (Gu et al., 2020).
In addition, Javaheri et al. (2019) discovered that macrophage-specific over-expression
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of the transcription factor EB (M φ-TFEB) enhances ventricular function following IR
injury. Additionally, they found that TFEB in macrophages contributes to ventricular
remodeling after MI by mediating inflammatory responses. Therefore, it is clear that
TFEB may impact IRI through modulation of various biological functions (Javaheri et
al., 2019). Several studies have confirmed ways to improve the prognosis of myocardial
infarction. For example, Sciarretta et al. (2018b) demonstrated that alginate, a naturally
occurring non-reducing disaccharide, improves myocardial remodeling after myocardial
infarction (MI). This improvement relies on TFEB-mediated activation of autophagy. Liu
et al. (2020) reported that upregulation of TFEB induced by donor mesenchymal stem cell
(MSC) apoptotic vesicle release promotes autophagy and angiogenesis, thereby improving
post-MI cardiac dysfunction. In summary, TFEB plays a pivotal role in protecting against
cardiovascular diseases and more in-depth studies are needed to explore its underlying
mechanisms.

TFEB and chemotherapy-related cardiac toxicity
Chemotherapeutic agents are essential in the treatment of tumors, but their clinical use
is severely hampered by their unexpected cardiotoxicity. Clinicians and scientists have
long been aware of doxorubicin (DOX)-induced cardiotoxicity (DIC), and its molecular
mechanisms are still being discovered. The known mechanisms involved in DIC include
oxidative stress, Ca2+ overload, DNA damage, mitochondrial dysfunction, and autophagic
flux impairment (Rawat et al., 2021). One study found that human cardiac tissues from
doxorubicin-induced heart failure exhibited an increase in nuclear TFEB protein (Bartlett
et al., 2016), suggesting that there may be some association between TFEB and DIC,
and in vitro experiments, cardiomyocyte-specific TFEB over-expression induced cardiac
remodeling, whereas TFEB knockdown attenuated DIC. Bartlett et al. (2016) have reported
that DOX inhibited TFEB expression in a time- and dose-dependent manner, leading
to disruption of autophagic flux and deterioration of cardiac function. However, TFEB
activation prevented DIC by ameliorating lysosomal dysfunction and autophagy inhibition,
reducingROSoverload and increasing cell viability (Bartlett et al., 2016;Wang et al., 2019a).
A significant decrease in TFEB mRNA levels was observed in DOX-treated H9C2 cardiac
fibroblasts, but not in DOX-treated Sprague-Dawley rat hearts. This suggests that the effect
of DOX on TFEB transcriptional repression is cell-type and/or tissue-specific (Bartlett
et al., 2016). In contrast, another study on chemotherapeutic agents found that TFEB
exacerbated DOX-induced cardiotoxicity after the addition of alternate day fasting (ADF)
treatment, resulting in increased nuclear TFEB, impaired cardiac function, and increased
mortality in mice, which may be mediated by TFEB/MuRF1 or TFEB/GDF15 leading to a
decrease in left ventricular (LV) mass decreased (Ozcan et al., 2023). Recently, it has been
demonstrated that TFEB plays important and multiple roles. The study discovered that
doxorubicin treatment reduced TFEB expression in the nucleus and increased IKKα/β and
NF-κB phosphorylation (Wang et al., 2020). This suggests a possible connection between
TFEB activation and NF- κB, a well-known inflammation-associated factor (Fig. 1D).
Therefore, DIC may be achieved by inhibiting the anti-inflammatory activity of TFEB
through the activation of the NF- κB signaling pathway. Taken together, in most in vitro
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model studies, TFEB exerts a protective effect against cardiotoxicity, whereas in the in vivo
model, an increase in TEFB may exacerbate myocardial fibrosis and cardiomyocyte death,
ultimately leading to HF.

TFEB and metabolism-related cardiotoxicity
Both hyperglycemia and fatty acid overload contribute to a condition known as
‘glycolipotoxicity’, which leads to the accumulation of toxic metabolites in the
cardiovascular system and is increasingly recognized as a major driver of cardiac pathology
and a contributor to the progression of end-stage heart failure (Sanbe et al., 2004; Weekes
et al., 2003; Su & Wang, 2020). Numerous studies have demonstrated that glycolipotoxic
effects on cardiomyocytes primarily originate or terminate in the mitochondria and
endoplasmic reticulum (ER) (Boudina & Abel, 2006; Cai et al., 2002; González-Rodríguez et
al., 2014; Karunakaran et al., 2012; Yang et al., 2015). Transcriptomic data from ventricular
tissue of constitutive cardiomyocyte-specific TFEB-/- mice suggest that TFEB regulates
a network of genes involved in lipid and carbohydrate metabolism. Modulation of
cardiomyocyte lipid metabolism by TFEB is achieved through modulation of prominent
lipid targets such as peroxisome proliferator-activated receptor alpha (PPARα) (Trivedi
et al., 2020). In the liver, TFEB acts in an autophagy-dependent manner to reduce lipid
accumulation (Settembre et al., 2013). Lack of TFEB action resulted in significant LD
accumulation, whereas over-expression of TFEB reduced LD size and accumulation. This
demonstrates an unusual function of TFEB in regulating substrate metabolic pathways in
cardiomyocytes, rather than its usual role in regulating lysosomal signaling and function.
In endothelial cells, TFEB up-regulates Insulin Receptor Substrate (IRS1) 1 and 2 through
different mechanisms to activate Akt signaling and increase glucose uptake (Fig. 1E) (Sun
et al., 2021). In a mouse model, TFEB overexpression reduces diet-induced weight gain and
obesity and improves glucose intolerance and insulin sensitivity (Evans et al., 2019). On
the other hand, mtorc2-Akt-mediated inactivation of GSK3β under glucose deprivation
conditions leads to nuclear retention of TFEB in the human colorectal adenocarcinoma
cell line HT2951 (Li et al., 2018). Thus, there may be an interaction between TFEB and
Akt to maintain internal homeostasis. Altogether, all these data suggest that TFEB is an
important regulator of glucose homeostasis and lipid homeostasis.

CONCLUSION
In this review, the role of TFEB in CVD is discussed (Fig. 2). It is found that stimulation
of TFEB is an effective strategy to ameliorate cardiac dysfunction, mainly associated
with improved lysosomal and mitochondrial dysfunction and reduced inflammation.
Increased TFEB helps clear damaged mitochondria and inflammatory factors, thus
improving oxidative stress in the heart. Additionally, TFEB has non-classical roles in
metabolic pathways, besides regulating lysosomal biogenesis and autophagy. However, the
mechanisms underlying TFEB’s role in CVD have not been fully elucidated. Understanding
TFEB’s role in CVD and its associated molecular mechanisms is important. Manipulating
TFEB activity may provide a promising target for treating CVD.
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Figure 2 TFEB is involved in heart damage caused by various diseases. (A) Hypertension, myocardial
infarction, and coronary atherosclerosis can overload the heart and eventually lead to heart failure. (B)
Ischaemic heart disease can cause interruptions or complete absence of blood flow, resulting in cardiac
pathological changes. (C) Doxorubicin has been shown to be cardiotoxic and long-term use may cause
cardiac dysfunction. (D) overloading the heart with sugars and lipids can lead to the accumulation of toxic
metabolites. Image source credit: Motifolio.

Full-size DOI: 10.7717/peerj.18209/fig-2
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