
Gene organization and evolutionary history
Cullins, containing an evolutionarily conserved cullin 
homology domain, are a family of structurally related 

proteins required for ubiquitin-dependent protein 
degradation (Box 1). Two groups have made important 
contributions to the discovery of this protein family. 
Kipreos et al. [1] identified cullins as a novel gene family 
involved in cell cycle regulation in nematodes. Indepen-
dently, Mathias et al. [2] isolated Cdc53 (cell division 
control protein 53), a cullin homolog in budding yeast, 
and elucidated its role in ubiquitin-dependent proteolysis 
of cell-cycle regulators. Thus, cullins are named after 
their role in ‘culling’, sorting or ‘selecting’ cellular proteins 
for ubiquitin-mediated proteasomal degradation (E Kipreos, 
personal communication).

The cullin gene family is evolutionarily conserved. 
Table 1 presents a list of the cullin family genes from a 
range of representative species with respect to their gene 
organization and expression. There are seven cullins in 
mammals (CUL1 to CUL3, CUL4a, CUL4b, CUL5, CUL7 
and the closely related p53-associated parkin-like 
cytoplasmic protein (Parc) in Homo sapiens, Mus 
musculus and Rattus norvegicus), six in C. elegans (cul-1 
to cul-6) and five in Drosophila (CUL1 to CUL5). Arabi
dopsis has five cullins (CUL1, CUL2, CUL3A, CUL4 and 
CUL5), and yeast genomes encode three cullin proteins 
(cul1, cul3, cul8 in Saccharomyces cerevisiae; cul1, cul3 
and cul4 in Schizosaccharomyces pombe). In total, 490 
cullin domains in 490 proteins are described in the 
SMART nrdb database [3], which estimates 60% conser-
vation in the cullin homology domains.

Figure 1 summarizes the phylogenetic relationships 
among the cullins based on sequence alignment. The 
presence of the Cul1 to Cul5 genes in the early-
branching metazoans Trichoplax adhaerens and 
Nematostella vectensis indicates that cullin genes are 
ancient and originated before the separation of the 
different animal lineages. An extensive genome-wide 
analysis of the cullin family has suggested that three 
ancestral cullin genes, termed ‘Culα’, ‘Culβ’ and ‘Culγ’, 
appeared in early eukaryotic evolution, from which the 
cullin genes evolved after the split of the unikonts (which 
include animals and fungi) and the bikonts (which 
include plants). In this model, the human CUL1, CUL2, 
CUL5, CUL7 and PARC genes were derived from one 
common ancestral gene (Culα), whereas the Cul3 and 
Cul4a/4b genes evolved from two distinct ancestors, the 
Culβ and Culγ gene, respectively [4]. Notably, Cul7 and 
Parc, found only in chordates, are highly similar in 

Summary
Cullin proteins are molecular scaffolds that have 
crucial roles in the post-translational modification of 
cellular proteins involving ubiquitin. The mammalian 
cullin protein family comprises eight members (CUL1 
to CUL7 and PARC), which are characterized by a 
cullin homology domain. CUL1 to CUL7 assemble 
multi-subunit Cullin-RING E3 ubiquitin ligase (CRL) 
complexes, the largest family of E3 ligases with more 
than 200 members. Although CUL7 and PARC are 
present only in chordates, other members of the cullin 
protein family are found in Drosophila melanogaster, 
Caenorhabditis elegans, Arabidopsis thaliana and yeast. 
A cullin protein tethers both a substrate-targeting 
unit, often through an adaptor protein, and the RING 
finger component in a CRL. The cullin-organized CRL 
thus positions a substrate close to the RING-bound 
E2 ubiquitin-conjugating enzyme, which catalyzes 
the transfer of ubiquitin to the substrate. In addition, 
conjugation of cullins with the ubiquitin-like molecule 
Nedd8 modulates activation of the corresponding 
CRL complex, probably through conformational 
regulation of the interactions between cullin’s carboxy-
terminal tail and CRL’s RING subunit. Genetic studies 
in several model organisms have helped to unravel a 
multitude of physiological functions associated with 
cullin proteins and their respective CRLs. CRLs target 
numerous substrates and thus have an impact on a 
range of biological processes, including cell growth, 
development, signal transduction, transcriptional 
control, genomic integrity and tumor suppression. 
Moreover, mutations in CUL7 and CUL4B genes have 
been linked to hereditary human diseases.
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sequence and both contain a CPH (conserved in CUL7, 
PARC and HERC2) domain and a DOC domain (similar 
to the DOC1 of the anaphase-promoting complex/
cyclosome) of unknown functions (Figure 2). In human 
and mouse, Cul7 and Parc are located on the same 
chromosome in close proximity (260 kb apart). Based on 
these findings, Marin et al. [5] suggested that Parc 
originated from a gene fusion of a duplicate of Cul7 and 
an ariadne gene, which encodes a putative E3 ubiquitin 
ligase sharing structural similarity with Parkin. Fungal 
species contain only three cullin genes: Cdc53, Cul3 and 
Cul8 (also known as RTT101) in S. cerevisiae and Cul1, 
Cul3 and Cul4 in S. pombe [4]. However, Cul8/RTT101 
in Saccharomycotina differs significantly from the Cul4-
like genes of other fungi (such as ascomycetes and 
basidiomycetes) [4]. It was postulated that Cul8/RTT101 
originated from the Cul4 gene that underwent an 
accelerated evolution, or that Saccharo mycotina has lost 
their Cul4-like gene and the Cul8/RTT101 gene arose in 
parallel as a result of gene duplication.

Characteristic structural features
RING (really interesting new gene)-type E3 ubiquitin 
ligases orchestrate ubiquitination by simultaneously 
bind ing to a protein substrate and anchoring an E2 
ubiquitin-conjugating enzyme through the RING domain 
(for detailed description of the actions of E2 and E3 in 
ubiquitination, see Boxes 1 and 2 and Figure 3). Cullins 
are molecular scaffolds that organize the largest class of 
RING E3 ligases, known as the cullin-RING ligase 
complexes (CRLs). Below we discuss how cullins use 
their unique structural properties to assemble their 
cognate CRLs.

The structural properties of cullins have been revealed 
in the context of CRLs by high-resolution structural 
studies and biochemical reconstitution experiments 
(Table 2). Although all the cullin (and CRL) structures 
that have been solved so far have been mammalian 
proteins (Table 2), the interactions between cullins and 
their CRL components have been analyzed using bio-
chemi cal assays in systems from yeast to humans, high-
lighting an extraordinary conservation regarding the 
scaffolding functions of cullins. Thus, the cullin and CRL 
structural models discussed in this section are generally 
applicable to counterparts of all origins.

CUL1 to CUL5 have a long stalk-like amino-terminal 
domain (NTD), consisting of three cullin repeats (CR1 
to CR3), and a globular carboxy-terminal domain (CTD), 
which harbors a signature cullin homology domain 
(CH), a highly conserved stretch of about 200 amino 
acids (Figure 2).

The cullin CTD binds to its RING partner, Regulator of 
cullins 1 (ROC1) or ROC2 (also called RING box protein 
(Rbx)1 and Rbx2, respectively), which recruits the 
ubiquitin-loaded E2 enzymes for catalysis. The CUL1-
ROC1 association is established by multiple interface 
interactions, primarily involving CUL1’s α/β domain and 
the amino-terminal S1 β-strand of ROC1, which enable 
the formation of an intermolecular α/β hydrophobic core 
that essentially renders CUL1-ROC1 physically insepar-
able [6]. The cullin-RING interaction creates a catalytic 
core and is the most characteristic structural feature that 
defines CRLs [7].

On the basis of structural studies of the human S-phase 
kinase-associated protein 1 (Skp1)-CUL1-F-box (SCF) 
complex [6] and the CUL4A RING (CRL4A) complex 
[8,9], cullins organize CRLs by forming two distinct 
modules: a substrate-targeting unit, composed of a 
substrate-recognition protein and an adaptor protein that 
links the module to the cullin, and the RING component 
that is active in recruiting an E2 ubiquitin-conjugating 
enzyme (Figure 4). For instance, SCF contains a substrate 
recognition subunit known as the F-box protein, which is 
characterized by a 40-amino-acid F-box domain [10]. The 
Skp1 adaptor protein mediates binding of the F-box 

Box 1. The ubiquitin-proteasome system

The ubiquitin-proteasome system is a selective protein 
degradation pathway in which a substrate is first tagged with 
a chain of ubiquitin and the resulting modified protein is then 
recognized by the 26S proteasome, where proteolysis of the 
substrate takes place. The process of ubiquitination involves 
a three-tiered enzymatic cascade. First, the chemically inert 
ubiquitin molecule is activated in an ATP-dependent reaction by 
forming a thioester bond between the carboxy-terminal carboxyl 
group of ubiquitin and the catalytic cysteine of an E1 activating 
enzyme. Second, in a trans(thio)esterification reaction ubiquitin 
is transferred to the active site cysteine of an E2 ubiquitin-
conjugating enzyme. In the last step, an E3 ubiquitin ligase 
functions to orchestrate the transfer of ubiquitin to a substrate 
protein, forming an isopeptide bond between the ubiquitin 
carboxy-terminal glycine residue and substrate lysine ε-amino 
group. The action of an E3 typically involves recognition of a 
specific degradation motif (degron) on the substrate. The human 
genome encodes two E1 activating enzymes, 37 E2 conjugating 
enzymes and more than 500 E3 ubiquitin ligases [54]. A 
substrate protein can be conjugated with just one ubiquitin 
(monoubiquitination), one ubiquitin molecule at different lysines 
residues (multiubiquitination) or by a chain of several ubiquitin 
moieties (polyubiquitination). Ubiquitin contains seven lysine 
residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys48 and Lys63) 
that can act as acceptors and result in entirely different chain 
conformations. Polyubiquitination has multifaceted outcomes 
that depend on the respective chain structure [54]. For instance, 
although Lys48-linked chains are the canonical recognition 
motif for the proteasome, Lys63-linked chains have important 
non-degradative roles in cell signaling, DNA-damage response 
and endocytosis [55]. Monoubiquitination typically has non-
proteolytic functions, such as the internalization of cell-surface 
receptors [56].
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protein to the amino terminus of CUL1. In CRL4A, the 
substrate-targeting unit is composed of damage-specific 
DNA binding protein 1 (DDB1) as the adaptor protein, 
and a member of the DDB1 and CUL4 associated factor 
(DCAF) family that recognizes a substrate. However, 
CRL3 does not contain a separate adaptor subunit. 
Instead, it incorporates BTB (Bric-a-brac, Tramtrack, 
Broad-complex), a dual function molecule capable of 
binding to CUL3 and targeting a substrate (Figure 4). 
(SCF, also called CRL1, is historically the prototype of all 

CRLs and thus the name SCF remains commonly used in 
the current literature.)

Accumulating evidence points to a common 
mechanism by which CUL1 to CUL5 build a substrate-
targeting unit. CUL1 to CUL5 use amino-terminal 
helices H2 and H5 of CR1 to anchor their cognate 
adaptors. There are two distinct types of recognition fold 
in the adaptor (Table 2). In the SCF, CRL2, CRL3 and 
CRL5 E3s, different adaptors (Skp1, Elongin C (EloC) or 
BTB) share a similar structural motif termed the Skp1/

Table 1. Chromosomal localization of the cullin genes from several representative species

	 	 	 	 	 	 	 	 Gene

	 	 Cul1	 Cul2	 Cul3	 Cul3a	 Cul3b	 Cul4	 Cul4a	 Cul4b	 Cul5	 Cul6	 Cul7	 Cul8	 Parc

Human 

 Gene ID 8454 8453 8452 NP NP NP 8451 8450 8065 NP 9820 NP 23113

 Chromosomal localization 7q36.1 10p11.21 2q36.2 NP NP NP 13q34 Xq23 11q22-q23 NP 6p21.1 NP 6p21.1

 Introns 21 20 15 NP NP NP 19 19/21 18 NP 25 NP 40

 Isoforms 1 1 1 NP NP NP 2 2 1 NP 2 NP 1

Mouse

 Gene ID 26965 71745 26554 NP NP NP 99375 72584 75717 NP 66515 NP 78309

 Chromosomal localization 6; B3 18; A1 1; C4 NP NP NP 8; A1.1 X; A2 9; C NP 17; C NP 17; C

 Introns 21 20 15 NP NP NP 19 22 18/19 NP 25 NP 41

 Isoforms 1 1 1 NP NP NP 1 1 2 NP 1 NP 1

Rat

 Gene ID 362356 361258 301555 NP NP NP 361181 302502 64624 NP 363191 NP 316228

 Chromosomal localization 4q24 17q12.1 9q34 NP NP NP 16q12.5 Xq11 8q24 NP 9q12 NP 9q12

C.	elegans

 Gene ID 176466 176806 178547 NP NP 174198 NP NP 179413 178214 NP NP NP

 Chromosomal localization III III V NP NP II NP NP V IV NP NP NP

Drosophila

 Gene ID (lin19)  35420 34896 NP NP 35780 NP NP 43434 NP NP NP NP 
  35742

 Chromosomal localization 2R;  2L;  2L;  NP NP 2R;  NP NP 3R;  NP NP NP NP
  43F1- 39E3- 35C5-   44A4-   98F6-     
  43F2 39E6 35C5   44A4   98F6    

A.	thaliana

 Gene ID (ATCUL1)  839415 NP (ATCUL3)  843303 834663 NP NP NP NP NP NP NP 
  825648   839226    

 Chromosomal localization 4 1 NP 1 1 5 NP NP NP NP NP NP NP

S.	cerevisiae

 Gene ID (Cdc53)  NP 852886 NP NP NP NP NP NP NP NP (RTT101)  NP 
  851424           853400

 Chromosomal localization V NP VII NP NP NP NP NP NP NP NP X NP

S.	pombe

 Gene ID 2542393 NP 2542637 NP NP (pcu4)  NP NP NP NP NP NP NP 
       2543116

 Chromosomal localization I NP I NP NP I NP NP NP NP NP NP NP

Gene IDs are as listed in Entrez Gene [59]. The intron number and transcript information are indicated for the cullin genes in human and mouse. Only the variants in 
Entrez Gene are indicated and other variants may exist. NP, not present.
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BTB/Pox virus and zinc finger (POZ) fold, which is a 
primary determinant for affinity interactions with the 
cullin amino terminus. By contrast, the DDB1 adaptor of 
CRL4 lacks the Skp1/BTB/POZ fold and instead uses its 
BPB domain to interact with the CUL4A H2 and H5 
helices, as well as the amino-terminal extension [9]. In 
this regard, it is worth commenting on the enormous 
structural complexity of DDB1, a 127 kDa protein con-
tain ing three large propeller folds [8], which potentially 
enable multiple interactions with cellular proteins. 
Indeed, DDB1 was found to form a complex with de-
etiolated 1 (DET1), DDB1 associated 1 (DDA1) and the 
E2 ubiquitin-conjugating enzyme UBE2E [11]. Initial 
efforts to isolate the human CUL4A-containing com-
plexes resulted in very large complexes that contained the 
constitutive photomorphogenesis 9 (COP9) signalosome 
[12]. It remains to be determined whether DDB1 
enhances the association between CRL4 and COP9. The 

role of the COP9 signalosome in CRL function is dis-
cussed in the next section.

Structural and biochemical analyses have revealed 
additional protein-protein interactions that contribute to 
the cullin-mediated CRL assembly. In addition to the 
Skp1-CUL1 interactions, Skp2’s F-box domain also binds 
to CUL1, thus contributing to the assembly of the SCFSkp2 
complex [6]. Although CUL3 mediates interactions to 
BTB proteins through the Skp1/BTB/POZ fold, it binds 
to a conserved helical structure carboxy-terminal of the 
BTB domain, which was named ‘3-box’ for CUL3-inter-
acting box [13] (Table 2). The CUL3-3-box association 
strengthens the CUL3-BTB protein interactions. Despite 
sharing the identical adaptor protein Elongin C (EloC), 
CUL2 and CUL5 direct the assembly of distinct E3 
complexes: CRL2 with von Hippel-Lindau (VHL) or 
related BC box proteins, and CRL5 containing sup-
pressors of cytokine signaling (SOCS)-box proteins 

Figure	1.	Phylogenetic	tree	of	the	cullin	gene	family. Phylogenetic tree based on the alignment of cullins of Homo sapiens (Hs), Mus musculus 
(Mm), Rattus norvegicus (Rn), Drosophila melanogaster (Dm) and Caenorhabditis elegans (Ce). Gene IDs are as listed in Table 1. ClustalX was used to 
align sequences using the standard settings. The tree was drawn using Figtree v1.3.1. The bar indicates the proportion of amino acid sites at which 
two compared sequences are different. Iso, isoform.
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(Figure 4). However, it is unclear whether CUL2 and 
CUL5 recognize specific determinants within VHL and 
SOCS-box proteins, respectively [14,15]. A recent study 
provided some insight into how CUL5 assembles into a 

CRL5 complex with the HIV protein Virion infectivity 
factor (Vif; a SOCS-box protein), thereby yielding an E3 
ligase that targets the human antiviral protein 
APOBEC3G for proteasomal degradation [16]. It seems 
that loops 2 and 5 of CUL5 are engaged in interactions 
with Vif ’s SOCS-box and zinc finger motif (H-(X)5-C-
(X)17-18-C-(X)3-5-H), respectively.

In summary, it seems that to assemble CRLs, cullins 
not only bind to a common recognition fold in the 
adaptor, such as the Skp1/BTB/POZ motif (Table 2), but 
also form interface interactions with structural deter mi-
nants within the substrate-recognition molecules (SRMs) 
that include F-box, BTB, VHL and SOCS proteins. 
However, future structural and biochemical studies, 
using a larger set of substrates, are required to more 
rigorously define the ‘SRM determinants’. To understand 
the differential ability of CUL2 and CUL5 to assemble 
CRL2 and CRL5, respectively, it is critical to solve their 
structures, especially the amino terminus.

There are no structures available that reveal the three-
dimensional organization of either CUL7 or PARC. 
Although CUL7 resembles CUL1 in using the Skp1 
adaptor [17], it remains to be determined how CUL7 selects 
F-box and WD-repeat-domain-containing protein  8 
(Fbw8). At present, it is also unclear whether PARC 
forms a multi-subunit complex.

Localization and function
Cullin family proteins are involved in a diverse array of 
functions, including cell-cycle control, DNA replication 

Figure	2.	Cullin	protein	domain	organization	in	humans. Cullin repeat 1 (CR1) anchors the cognate adaptor proteins, and the cullin homology 
domain (CH) at the carboxyl terminus is critical for binding of the RING-finger protein. The red line indicates the position of the neddylation site. 
For CUL7 and PARC the neddylation site is based on consensus sequence alignment without experimental verification. Size and location of the 
individual domains are schematic representations and do not depict the exact proportions. Abbreviations: aa, amino acids; CH, cullin homology 
domain; CPH, conserved domain in CUL7, PARC and HERC2; CR, cullin repeat; DOC, a domain similar to the DOC1 domain of the anaphase-
promoting complex/cyclosome but of unknown function; IBR, in between RING; RING, really interesting new gene.
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Box 2. E3 ubiquitin ligases

E3 ubiquitin ligases are a diverse group of enzymes that 
recognize both a substrate protein and an E2 ubiquitin-
conjugating enzyme. E3 ubiquitin ligases can be subdivided into 
two major classes [57]: HECT-type and RING-type E3 ligases.

The single-molecule HECT-type E3 ligases are characterized by a 
Homologous to the E6-AP carboxyl terminus (HECT) domain that 
forms a thioester intermediate with ubiquitin as a prerequisite for 
ubiquitin transfer to the substrate protein.

In contrast, RING-type E3 ligases use RING (really interesting new 
gene)-zinc finger domains to recruit and allosterically activate an 
ubiquitin-charged E2 enzyme for direct ubiquitin transfer to the 
substrate. RING finger domains have a characteristic architecture 
of three β strands, one α-helical domain and two free loops that 
are arranged by Zn2+ ions. The loops are stabilized by a cluster of 
cysteine residues and up to two histidines [57]. U-box E3 ligases 
are a subgroup of the RING-type E3s and contain a structurally 
modified RING-motif (the U-box) that lacks the ability to chelate 
Zn2+ ions [58].

Of about 300 RING proteins expressed in human cells, the multi-
subunit cullin-RING Ligase (CRL) complexes constitute the major 
group and are characterized by two signature components: a 
cullin (CUL) scaffold protein and the RING-finger protein ROC1 or 
ROC2 (also known as Rbx1/Hrt1 or Rbx2, respectively) [7].
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and development. The major physiological functions of 
the cullin family proteins have been revealed by genetic 
ablation experiments in a variety of metazoan model 
organisms, including mouse, C. elegans and Drosophila 
(Table 3). In Arabidopsis, CRLs regulate hormonal signal-
ing, light responses, circadian rhythms and photo-
morpho genesis (for a recent review, see [18]). The cullin 
family proteins seem to be widely expressed and to locate 
both to the nucleus and cytoplasm, but there are no 
compelling data suggesting that cullin activity is 

con trolled by subcellular localization or by differential 
expression in a tissue-specific manner.

Cul1 and Cul3 mouse knockout experiments have 
revealed their indispensable roles in cell cycle progression 
and early embryogenesis (Table 3). The role of CUL1 in 
cell cycle control is understood in considerable detail. It 
was the pioneering work using the budding and fission 
yeast systems that led to the discovery of cullins and 
other CRL components and their role in cell cycle control 
(reviewed in [19]). Work in C. elegans and Drosophila has 

Figure	3.	The	ubiquitin-proteasome	system. The conserved 76-amino-acid polypeptide ubiquitin (Ub) is activated in an ATP-dependent reaction 
by an E1 ubiquitin-activating enzyme and transferred to an E2 ubiquitin-conjugating enzyme. An E3 ubiquitin ligase binds both the substrate 
protein and a ubiquitin-charged E2 enzyme for ubiquitin transfer, resulting in the mono-, multi- (not shown) or polyubiquitination of the substrate. 
The mode of ubiquitination determines whether the substrate protein is degraded by the 26S proteasome or altered in a non-proteolytic manner. 
See Boxes 1 and 2 for additional information.
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Table 2. Cullin structures and cullin-RING E3 complex assembly

	 E3	components

	 	 Substrate	 	 	 Key	recognition	 Key	determinants	on	
Protein	 Adaptor	 recognition	 RING	 Structures	solved*	 fold	on	adaptor	 cullin	NTD

CUL1 Skp1 F-box protein ROC1/Rbx1 CUL1-Rbx1-Skp1-F boxSkp2 Skp1/BTB/POZ fold in CUL1 H2 and H5 helices [6]
    [6]; Skp1-Skp2 [60] Skp1 [6] 

CUL2 EloC/EloB VHL ROC1/Rbx1 No CUL2 structure;  Skp1/BTB/POZ fold in CUL2 H2 and H5 helices 
    VHL-EloC-EloB [60] EloC [6,61] [14]

CUL3 BTB (adaptor- BTB (adaptor- ROC1/Rbx1 SPOP BTB-SBC [13] BTB [13]; 3-box [13] CUL3 H2 and H5 helices 
 targeting) targeting)    [62]

CUL4A DDB1 DCAF ROC1/Rbx1 DDB1-CUL4A-ROC1 [9];  BPB in DDB1 [9] CUL4A H2 and H5 helices 
    DDB1-V protein [8]  [9]; CUL4A amino-terminal  
      extension [9]

CUL4B DDB1 DCAF ROC1/Rbx1 Not available BPB in DDB1 (predicted) CUL4B H2/H5 (predicted)

CUL5 EloC/EloB SOCS protein ROC2/Rbx2 CUL5CTD-Rbx1 [37];  Skp1/BTB/POZ fold in CUL5 H2 and H5 helices
    SOCS2- EloC-EloB [63];  EloC [6,61] [64]; CUL5 loop 2 (amino 
    HIV Vif-EloC-EloB [16]  acids 51 to 60) [16]; CUL5  
      loop 5 (amino acids 118 to  
      134) [16]

CUL7 Skp1  Fbw8 ROC1/Rbx1 CUL7 CPH-p53 TD [65] Skp1/BTB/POZ fold in  Unknown 
     Skp1 (predicted)

PARC Unknown Unknown Unknown Not available Unknown Unknown

*Crystal structures of CRL complexes were solved with recombinant human proteins.
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demonstrated the requirement of CUL1 for cell cycle 
progression (Table 3). Mechanistically, it is believed that 
the CUL1-based SCF regulates the mammalian cell cycle, 
at least in part, by using the Skp2 F-box protein, which 
directs the ubiquitin-dependent degradation of p27 and 
p21 (inhibitors of cyclin-dependent kinases), thereby 
activating cyclin-dependent kinases [20]. SCF malfunc-
tion has been linked to malignancy, as mutations in the 
Fbw7 F-box protein are frequently found in a variety of 
human cancers [21].

Studies with Cul4 deletion in C. elegans have estab-
lished a crucial role for CUL4 in DNA replication 
(Table 3). It is well accepted that the CRL4 complex with 
the DCAF protein Cdt2 as substrate-recognition 
molecule (referred to as CRL4Cdt2) targets the replication 
initiation factor Cdt1 for degradation, thereby preventing 
DNA re-replication [22]. In mammals, CUL4A and 
CUL4B are believed to be functionally redundant, as 
deletion of Cul4a in mice resulted in viable animals and 

relatively subtle phenotypes (Table 3). Clearly, complete 
understanding of the physiological functions of Cul4 in 
mouse development requires future studies with animals 
lacking Cul4b and Cul4a/Cul4b.

There have been no mouse models for either Cul2 or 
Cul5. However, CRL2pVHL has a critical role in control of 
oxygen homeostasis, acting by targeting the α subunit of 
hypoxia-inducing transcription factor (HIF) for degrada-
tion (reviewed in [23]). Tissue-specific gene targeting of 
VHL in mice has demonstrated that efficient execution 
of CRL2pVHL-mediated HIF-1α proteolysis under normal 
levels of oxygen is fundamentally impor tant for survival, 
proliferation, differentiation and normal physiology of 
many cell types (reviewed in [23]). These studies have 
explained the tumor suppressor function of VHL, whose 
germline mutations inactivate its ability to form the 
CRL2 complex or bind to HIF-α, leading to the 
formation of highly vascularized tumors such as renal 
clear-cell carcinomas.

Figure	4.	Modularity	of	cullin-RING	E3	ligases. Cullin proteins are molecular scaffolds that assemble multi-subunit cullin-RING E3 ubiquitin 
ligase (CRL) complexes. The mammalian cullin protein family comprises eight members (CUL1 to CUL7 and PARC). In CRL, a cullin protein tethers 
both a substrate-recognition subunit, often through an adaptor protein, and the RING finger component. The cullin-organized CRL thus positions 
a substrate in close proximity to the RING-bound E2 ubiquitin-conjugating enzyme (not shown), which catalyzes the transfer of ubiquitin to the 
substrate. (a) General CRL composition. (b) Specific composition of the CRLs 1 to 7 and PARC. BTB, Bric-a-brac, Tramtrack, Broad-complex domain; 
DCAF, DDB1-CUL4 associated factor; DDB1, DNA damage-binding protein 1; Fbw8, F-box and WD repeat domain containing protein 8; PARC, 
p53-associated parkin-like cytoplasmic protein; SOCS, Suppressors of cytokine signaling; Skp1, S-phase kinase-associated protein 1; VHL-Box, 
von Hippel-Lindau box.
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Two hereditary human diseases have been linked to 
genes encoding members of the cullin protein family. 
Mutations in the CUL7 gene were linked to 3-M syn-
drome (Online Mendelian Inheritance in Man (OMIM) 
ID 273750), an autosomal-recessive disorder character-
ized by pre- and postnatal growth retardation (final 
height 3 to 4 standard deviations below the mean for the 
population), facial dysmorphism, large head circum-
ference, normal intelligence, and skeletal anomalies that 
include long slender tubular bones and tall vertebral 
bodies [24,25]. Huber et al. [24,25] identified CUL7 gene 
mutations in 52 out of 62 cases (84%), arguing for CUL7 
as the major disease gene of 3-M syndrome. The 
mutations were located throughout the CUL7 gene and 
most are predicted to cause premature termination of 
translation. Reverse transcriptase (RT)-PCR analysis of 
patient fibroblast mRNA detected a CUL7-specific 
transcript, but at reduced levels, arguing that CUL7 
mRNA is expressed at least in a subset of 3-M syndrome 
patients. Approximately 50% of the mutations identified 
by Huber et al. [24,25] are located within the cullin 
homo logy domain (exons 19 to 24), which is responsible 
for ROC1 binding. Biochemical characterization of the 
CUL7 nonsense and missense mutations Arg1445X 
(where X indicates a stop codon) and His1464Pro, respec-
tively, were shown to render CUL7 deficient in recruiting 
ROC1. Arg1445X was predicted to yield a truncated CUL7 

polypeptide (lacking the 254 carboxy-terminal amino 
acids), and His1464Pro was predicted to introduce a 
structural alteration in the cullin homology domain [24].

A study by Maksimova et al. [26] identified 43 patients 
from 37 Yakut families, a geographically isolated ethnic 
group in Russia, with a short stature syndrome similar to 
3-M syndrome. A common mutation in the CUL7 gene, 
insertion T at position 4582 in exon 25, was identified 
that is predicted to cause a frameshift and subsequent 
premature stop codon at position 1553 (Q1553X).

Given that cyclin D1 [27] and insulin receptor substrate 
1 (IRS-1) [28] are potential proteolytic targets of the 
CUL7 E3 ligase, it is tempting to speculate that either 
disturbed cyclin D1-dependent mechanisms or dysregu-
lated IRS-1-mediated signaling pathways might contri-
bute to the pathomechanism of 3-M syndrome. Altogether, 
studies with 3-M and Yakut patients, combined with 
proliferative defects observed in Cul7 knockout mice 
(Table 3), have strongly suggested a prominent role for 
CUL7 in growth regulation (reviewed by [29]).

Several familial mutations in the CUL4B gene were 
associated with X-linked mental retardation syndrome 
(XLMR; OMIM 300639) [30]. The authors [30] reported 
three truncating, two splice-site and three missense 
variants at conserved amino acids in the CUL4B gene on 
Xq24 in 8 of 250 families (3%) with XLMR. During 
adolescence of these patients a syndrome emerged with 

Table 3. Major physiological roles of cullins revealed by deletion studies with model organisms

Protein	 Mouse	 C.	elegans	 Drosophila

CUL1 Cell cycle and embryogenesis [66,67], with KO phenotypes,  Cell cycle [1]; germline Cell cycle [70,71]; apoptosis [72];  
 including: embryonic lethality E5.5 to E6.5; accumulation of  apoptosis [68]; sex eye development [73] 
 cyclin E; increased apoptosis in the ectoderm; large trophoblast  determination [69]  
 giant cells in blastocytes

CUL2 No mouse model G1-to-S transition [74];  
  mitosis [74,75]; germline  
  lineage [76]; meiosis [77-79];  
  polarity [77-79]; oogenesis [80];  
  MPK1 activation [80]; hypoxic  
  response, aging [81,82] 

CUL3 Cell cycle and embryogenesis [83], with KO phenotypes including  Meiosis/mitosis transition [84];  Eye development [72]; sensory organ 
 embryonic lethality <E7.5; accumulation of cyclin E; impaired  mitosis [85]; meiosis [86] [87]; neurons [88]; hedgehog signaling 
 S-phase entry; failure to endocycle in trophoblasts  [89,90]; actin cytoskeleton and cell  
   movement [91,92]

CUL4 Deletion of Cul4a alone yields no major defects in development  DNA replication [22] Cell cycle [94]; DNA damage response
 as mice lacking Cul4a exons 17 to 19 are viable and normal [93],   [95]
 and mice lacking Cul4a exons 4 to 8 are viable, showing mild 
 decrease in mouse embryonic fibroblast proliferation [33]; a role  
 in DNA repair as skin-specific CUL4A KO show increased  
 resistance to UV-induced skin carcinogenesis [93]

CUL5 No mouse model Oogenesis [80]; MPK1  Cell fate specification [96]; synapse 
  activation [80] formation [96]; oogenesis [97]

CUL7 Embryonic development, as KO showed neonatal death [98];  
 required for growth in embryo and placenta [98]; formation of  
 vascular structure [98]

PARC Not essential for development, as KO is viable and normal [99]

E, embryonic day; KO, knockout.
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delayed puberty, hypogonadism, growth retardation, foot 
abnormalities, relative macrocephaly, central obesity, 
aggressive outbursts and seizures. The complex pheno-
type of patients with CUL4B mutations argues for 
pleiotropic roles of CUL4B that remain to be determined.

The cullin-based CRLs function through their cognate 
substrate-recognition molecules, such as the F-box, 
SOCS, BTB and DCAF proteins (Figure 4 and Table 2). 
The F-box, SOCS, BTB and DCAF protein families each 
contain a distinct motif that is recognized by an adaptor 
molecule, which is linked to a cognate cullin (Figure 4). 
For example, humans contain about 61 F-box proteins, 
all of which can bind to Skp1 through the F-box domain. 
Through Skp1, which binds to CUL1 (Table 2), most of 
the F-box proteins can thus be assembled into the SCF 
E3 complex (Figure 4). Bioinformatics studies have 
identified hundreds of human genes that are predicted to 
encode F-box, SOCS, BTB and DCAF proteins, thereby 
potentially forming over 200 CRLs (Figure 5). Although 
the extent of the CRL family requires experimental 
verification, it is nonetheless reasonable to assume that 
CRLs target numerous cellular protein substrates and 
hence have an impact on all biological processes. In 
addition, studies with F-box proteins, including β-TrCP, 
Skp2 and Fbw7, demonstrate an ability of one substrate 
recognition protein to bind multiple substrates, thereby 
expanding the functional range of CRLs. For recent 
reviews on the diverse targeting functions of these 
proteins, see [10,31] (F-box family), [32] (BTB family) 
and [33,34] (DCAF family).

Most, if not all, cullins are found covalently conjugated 
with an ubiquitin-like molecule, Nedd8. This modification, 
termed neddylation, activates the E3 ligase activity of CRLs 
by promoting substrate polyubiquiti na tion (reviewed by 
[35]). Recent studies have suggested conformation-based 
mechanisms that explain the acti vat ing role of neddylation. 
In vitro mutagenesis experi ments have suggested that the 
interactions between human ROC1 and CUL1’s carboxy-
terminal tail in the un modified state render SCF inactive 
[36]. It was proposed that the conjugation of Nedd8 to the 
residue K720 of CUL1 induces drastic conformational 
changes in CUL1 that liberate ROC1, thereby driving SCF 
into an active state. This hypothesis was supported by 
recent structural studies by Schulman and colleagues [37] 
that revealed extensive conformational changes in CUL5 
when conjugated with Nedd8. Another activating mecha-
nism, proposed by Schulman and colleagues [37], suggests 
that the neddylation-mediated conformational changes in 
cullin enabled the repositioning of the RING-tethered 
ubiquitin-loaded E2 to a bound substrate for catalysis. In 
support of this model, in vitro cross-linking experiments 
have revealed that neddylation brought a SCF substrate 
into a close proximity to an E2 ubiquitin-conjugating 
enzyme [38].

Neddylation is reversed by the COP9 signalosome, 
which enzymatically removes Nedd8 from a cullin 
molecule [39]. COP9 is an eight-subunit complex that 
was originally identified as a suppressor of plant photo-
morphogenesis [40]. It was shown that COP9’s Jab1/Csn5 
subunit contains a Jab1/MPN domain metalloenzyme 
(JAMM) motif critical for COP9’s Nedd8 isopeptidase 
activity [39]. It is thus believed that CRL activities are 
dynamically controlled by cullin neddylation-deneddy-
lation cycles. It was observed that an SCF complex bound 
to a substrate contained higher levels of neddylated 
CUL1, suggesting that substrate-E3 interactions may 
trigger neddylation [41]. The detailed mechanism, how-
ever, remains elusive.

CRL is also regulated by Cullin-associated and 
neddylation-dissociated-1 (CAND1), which inhibits the 
E3 ligase activity of CRLs by binding to all cullins in their 
un-neddylated forms [42,43]. The CUL1-CAND1 
interaction is understood at the structural level, as the 
human CUL1-Rbx1-CAND1 complex showed that 
CAND1 binds both the CUL1 amino and carboxyl 
termini [44]. However, a recent study [45] has revealed 
that only a small fraction of cullin is bound to CAND1 in 

Figure	5.	Cullins	assemble	the	largest	subfamily	of	E3	ubiquitin	
ligases. Pie chart of the numbers of human E3 ubiquitin ligases, 
estimated from the numerical distribution of genes predicted to 
encode E3 RING or HECT polypeptides or, in the case of CRLs, the 
substrate-recognition molecules that include F-box, SOCS, BTB with 
3-box and DCAF proteins. Numbers refer to human gene numbers 
for F-box, SOCS, HECT, U-box and non-CRL RING proteins, derived 
from Li et al. [53]. The estimation for the human DCAF family is 
described by Lee and Zhou [34]. Kay Hofmann has kindly provided 
the tally of human genes encoding BTB and 3-box proteins (personal 
communication). The Hofmann estimation is based on the structural 
work from Schulman and colleagues [13], which identified a critical 
role for the 3-box in the assembly of CRL3 with the SPOP BTB protein. 
72 BTB-only (without 3-box) genes have not been counted for the 
estimation of CRL3s.
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human cells. Future studies are required to determine the 
precise role of CAND1 in regulating CRLs.

Frontiers
By organizing CRLs that presumably direct numerous 
substrates to ubiquitin-dependent degradation, the cullin 
family proteins build a cellular regulatory network of 
fundamental importance in controlling protein homeo-
stasis, thereby altering a wide range of biological processes, 
from cell cycle regulation to signal trans duction.

However, there are several areas that need attention. 
The development of cutting edge technology for the 
identification of CRL substrates is crucial. Although bio-
informatics predicts a large number of CRLs (Figure 5), 
we still have knowledge on only a handful of substrates. 
Proteomics-based approaches and newly developed 
global protein stability profiling technology [46] have 
proven effective in the identification of novel substrates. 
However, it remains to be seen whether these methods, 
coupled with agents that affect cell signaling, could lead 
to the isolation of substrates, whose turnover rates are 
dictated by often transient post-translational modifica-
tions, such as phosphorylation [10], prolyl hydroxylation 
[23] and glycosylation [47].

Although the assembly of a majority of CRLs is under-
stood in considerable detail (Table 2 and Figure 4), little 
is known about the control of the assembly in cells. It 
has long been suggested that the substrate-CRL 
interactions dictate the cullin neddylation-deneddylation 
cycle, which turns on and off the CRL’s E3 ubiquitin 
ligase activity. However, the mechanism by which this is 
achieved is elusive.

Given the intricate role of cullins and CRLs in a multi-
tude of biological processes, it is likely that cullin dys-
function will emerge as a pathogenetic factor in diseases. 
Indeed, CUL7 and CUL4B mutations have been identified 
in human disorders, but further studies are required to 
determine the underlying pathomechanisms.

Genetic studies in organisms from yeast to mouse have 
revealed a prominent role for cullins and CRLs in cell-
cycle progression (Table 3). Dysfunction of CRL activities 
has been associated with oncogenic transformation 
(reviewed by [48]). Thus, targeting CRLs is an emerging 
frontier in rational drug design. Recent advances have 
validated efforts in drug-targeting the ubiquitin-protea-
some system, with the proteasome inhibitor bortezomib 
now approved for the treatment of patients with multiple 
myeloma or mantle cell lymphoma (reviewed by [49]). A 
small molecule inhibitor (MLN4924) suppressing the 
Nedd8 activating pathway is currently in clinical trials, 
having demonstrated success in tumor suppression in 
animal model studies [50], and two small molecule 
inhibitors have been identified recently to inhibit SCF 
activities by different mechanisms [51,52].
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