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We report the successful classification, by artificial neural networks (ANNs), of 1H NMR spectroscopic data recorded on whole-cell
culture samples of four different lung carcinoma cell lines, which display different drug resistance patterns. The robustness of the
approach was demonstrated by its ability to classify the cell line correctly in 100% of cases, despite the demonstrated presence
of operator-induced sources of variation, and irrespective of which spectra are used for training and for validation. The study
demonstrates the potential of ANN for lung carcinoma classification in realistic situations.

1. Introduction

Nuclear magnetic resonance spectroscopy (NMR, or MRS)
has enormous potential for the study of biochemical and
physiological changes in cancer tissues, due to its noninvasive
nature and the large quantity of specific molecular infor-
mation it can generate. Despite the sensitivity limitations of
the technique, the inherent complexity of the spectra, and
inevitable presence of overlapping resonances, there have
been several successful NMR-metabonomics studies of cell
tissue culture and culture extracts. The focus has been on
elucidating the physiopathology of tumors and tumor cells,
their drug toxicology and drug resistance, often with a view
to identifying diagnostic markers [1–8]. A further significant
complication in such studies arises from variability in the
metabolite profile from sample to sample. This reflects many
factors [9] including minor variations in growing conditions,
the biochemical heterogeneity of the growing cells, the effect
of different batches of sera (if used), and variations in cell and
sample preparation. These additional factors may mask the

inherent metabolite distribution, which may be diagnostic of
the pathophysiological state of interest.

Experimental complications and difficulties also com-
promise the extraction of critical information from in vivo
MRS experiments. In this case, the problems arise from
the use of different MR-protocols, which affect the quality
of the water suppression, differences in echo time and in
the baseline, and so forth. While the causes are different in
origin, they have a similar effect on the application. For both
forms of magnetic resonance, many of these issues can, in
principle, be addressed by improved experimental design,
however, it is common for additional sources of variance
to be identifiable only after extensive experimentation. In
addition to technical issues are the natural physiological
variability and the individual treatment history of the
subject. As a result, there is an ongoing requirement for the
development of magnetic resonance-based diagnostics using
advanced statistical-, or other data-, analysis techniques
which can reduce or compensate for additional sources of
variability.
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1H NMR spectra of intact tissues or whole-cell samples
are inherently complex due to the large number of con-
tributing species which results in significantly overlapping
resonance signals. Cell membranes also produce magnetic
field inhomogeneity, further broadening the spectra [10].
In the case of cancer cells, a significant proportion of
the lipids reside in a fluid environment and hence appear
in the liquid-state 1H spectra as strong “mobile-lipid”
resonances [7, 8, 11]. Although the identification of the
major resonances in 1H NMR spectra can be used to
characterise the metabolite profile, the complexity of the data
sets usually necessitates the use of data reduction and pattern
recognition techniques. These can provide information on
the biochemical and physiological changes in cancer tissues,
related to their physiopathology, drug toxicology, and drug
resistance [12, 13]. Prominent amongst such techniques is
principal component analysis (PCA), [14, 15] which involves
diagonalisation of the spectral correlation or covariance
matrix to identify independent sources of variance (principal
components) across the set of spectra, and ranking of the
components by their contribution to the overall variance.
Thus, PCA is an unsupervised approach to data reprojection
that can reveal the presence of classes, it has been applied to
a variety of problems in biological science [16, 17].

Artificial Neural Networks (ANNs) belong to the so-
called Artificial Intelligence group of methods, which were
inspired by neurobiology and by the architecture of the
human brain [18]. In recent times, these approaches have
found applications in many branches of science. For exam-
ple, they have been used in chemotaxonomy to classify
limpets [19] from HPLC mass spectrometric data and
in the identification of insect species from morphological
measurements [20]. ANNs can be used to model data where
the relations, or functions, are not known.

There have been some reports of the use of artificial
intelligence and network methods in medical diagnostics
which have involved analysis of magnetic resonance spec-
troscopic data. El-Deredy et al. [21] used ANNs to achieve
reasonable prediction of the measured in vitro chemother-
apeutic response from 1H NMR of glioma biopsy extracts.
More recently, Suna et al. [22] demonstrated the diagnostic
potential of unsupervised approaches to classification by
successfully analysing simulated 1H NMR spectra using self-
organising maps. This approach allowed the identification of
stages along a metabolic pathway ranging from “normolip-
idaemic” to “metabolic syndrome”. Tate and coworkers [23]
reported the trial of an automated decision support system
for classification of brain tumors from in vivo MRS, which
showed a small but significant improvement in diagnostic
accuracy over spectroscopy used and interpreted on its own.

In recent work [24], we reported PCA of 1H NMR
spectra recorded for a group of human lung carcinoma cell
lines in culture and 1H NMR analysis of extracts from the
same samples. The samples studied were cells of lung tumor
origin with differing chemotherapy drug resistance patterns.
For whole-cell samples, it was found that the statistically
significant causes of spectral variation were an increase in
the choline and a decrease in the methylene and mobile
lipid 1H resonance intensities, which were correlated with

our knowledge of the level of resistance displayed by the
different cell lines. In this paper, we investigate the use of
artificial neural network (ANN), a supervised method, to
classify lung carcinoma. Two sets of whole-cell 1H NMR
spectra will be examined. These were recorded for two
groups of human lung carcinoma cell lines, these were grown
in culture and characterised over two different periods by
two different groups of researchers (each consisting of a
biologist and a spectroscopist), who both adhered to the
same experimental protocol and used the same spectrometer.
The cell lines studied include (i) the parent cell line DLKP,
a human squamous nonsmall cell lung carcinoma; (ii)
DLKP-A; (iii) DLKP-A5F, two resistant daughter lines; (iv)
A549, a human lung adenocarcinoma cell line. The study
also examines the capability of supervised techniques to
compensate for experimental sources of variance, which may
include operator bias and the cell culture growth process
and in particular provide a test case for the application of
ANN architectures in the identification and monitoring of
resistance states in cancer tissue by MRS.

2. Experimental

2.1. Cell Samples. The cell lines DLKP [25, 26], DLKP-A
[27], DLKP-A5F [28], and A549 were grown in culture to
approximately 70–80% confluency in 175 cm2 tissue culture
flasks. Culture conditions were as follows: DLKP, DLKP-
A, and DLKP-A5F and were cultured in minimal essential
medium/Hams F12 (1 : 1, v/v) supplemented with 5% fetal
calf serum and 2 mM L-glutamine. A549 was cultured in
Dulbecco’s modified Eagle’s medium/Hams F12 (1 : 1, v/v)
supplemented with 5% fetal calf serum. Cells were cultured
as monolayers in tissue culture flasks and incubated at 37◦C.
A cell count was performed and c. 5 × 107 cells were
separated and pelleted. These were then resuspended in
deuterated PBS buffer and were kept in a container at 37◦C
before the start of the NMR measurements. The methods
used were described in detail previously [24]. DLKP cells
express a small amount of the multidrug resistance protein-1
(MRP-1) MDR drug efflux pump [25, 26]. DLKP-A [27] is a
highly resistant clone of DLKP, which overexpresses the P-gp
drug efflux pump. DLKP-A5F [28] was derived from DLKP
by a different drug exposure profile, it is also highly drug
resistant. A549 is an unrelated human lung adenocarcinoma
cell line which was obtained from the American Type Culture
Collection.

The first group of 13 samples, G1 13 21, were grown by
a biologist during a six-month period, they were analysed by
a first NMR spectroscopist. G1 13 21 contained 21 spectra
and so was relatively sparse, it comprised DLKP [4 samples,
6 spectra], DLKP-A [4, 6], DLKP-A5F [3, 5], and A549
[2, 4]. The second group of 17 samples, G2 17 33, was
grown independently, by a second biologist during a later six-
month period and was analysed by a second spectroscopist
[24]. G2 17 33 contained 33 spectra, it comprised DLKP
[3, 6], DLKP-A [5, 10], DLKP-A5F [5, 9], and A549 [4, 8].
Thus for the integrated study presented here, a total of 30
samples were prepared and 54 1H spectra was recorded. The
same protocols and methods were used by all the researchers
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for cell growth and NMR spectroscopy. The biologist and
spectroscopist who produced G1 13 21 will be collectively
referred to as R1, and the biologist and spectroscopist who
produced G2 17 33 will be referred to as R2. Due to the
significant work involved in producing the large number of
cells required for each spectrum, the number of samples in
the study is inevitably somewhat limited. However, the total
data set is larger than those usually reported in the analysis
of NMR data by pattern recognition methods [16, 17, 29].

2.2. 1H NMR Spectroscopy of Intact Cells. NMR spectra
of the intact cell samples were recorded in deuterated
PBS buffer on a Bruker DPX 400 spectrometer operating
at 400.13 MHz for 1H. Before all NMR experiments, the
sample temperature was calibrated and controlled at 36.4 ±
0.2◦C using an internal ethylene glycol thermometer (80%
solution of ethane-1,2-diol in dimethyl sulfoxide-d6). 1H
NMR spectra were acquired, without spinning, using WET
[30] solvent suppression, with two Carr-Purcell-Meiboom-
Gill (CPMG) echoes appended, using an echo delay of 1 ms
[10]. Chemical shifts were referenced to an external 0.1%
solution of sodium trimethylsilyl-[2,2,3,3-d4]-propionate
(TSP) in D2O. All experiments were performed with a
spectral width of 5200 Hz, an acquisition time of 3.15 s,
and relaxation delay of 2 s. Three acquisition schemes were
used to record the one-dimensional 1H NMR spectra, all
amounting to 128 scans. The first scheme (I) employed
cycles of 16 dummy scans followed by four acquisition scans,
(16,4)32, giving an acquisition time of 3/4 hour. In the second
scheme (II), 16 dummy scans were applied once prior to
acquisition 16((0,16)8), giving an acquisition time of 13
minutes. In the third scheme (III), 16 dummy scans and 128
acquisition scans were collected into 32 K data points, giving
an acquisition time of 15 minutes. The time taken from
resuspension to the start of data acquisition was typically
less than 3/4 hour, and never more than 1 hour. All the data
presented were recorded within 1 hour.

For the first group of 13 samples (G1 13 21) in the
study, the acquisition schemes (I) and (II) were used for
each sample. For the second group of 17 samples (G2 17 33),
all three schemes were tested for each sample. Hence, the
greater number of repeat spectra is for the second group.
The inclusion of multiple spectra in the analysis from the
same sample tests the stability of the samples over the time of
the analysis. The insensitivity of the spectra to the sampling
scheme used demonstrates that the samples do not change,
for example, due to sedimentation, over the timescale that a
single spectrum is acquired.

2.3. PCA Analysis. In the spectral region from 1.08 to
1.20 ppm, ethanol was observed, which was probably the
result of endogenous processes. However, its intensity was
highly variable, even within the same cell line, so this region
was excluded from the analysis. The region containing the
residual water resonance signal (3.56–6.05 ppm) was also
excluded. The region above 6.05 ppm contained no features
of sufficient intensity for reliable quantification, given the
linewidth. For this study, we chose, as descriptors, the
integrals over chemical shift regions (bins) of size 0.04 ppm
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Figure 1: Schematic representation of a four-layer ANN architec-
ture.

[12] which was found to produce the clearest separation of
the cell types in the scores plots and the least noise in the
corresponding loadings plots. Thus, the NMR spectra were
reduced to 71 descriptors, with bin centres in the range 0.60–
1.04, 1.24–3.56 ppm. We adopted the conventional approach
[31] of normalisation relative to the total sum of the bin
intensities in the region of interest. All the measures were
implemented through writing an MATLAB (version 6.5.1,
The Mathworks Inc.) code making use of the built in
eigensolver.

2.4. ANN Analysis. ANNs are a sophisticated computational
modelling tool, which can be used to solve a wide variety
of complex problems. The attractiveness of ANNs comes
from their capability to “learn” and/or model very complex
systems and from the possibility of using them in classifi-
cation. An ANN is a computational model formed from a
certain number of single units, artificial neurons, or nodes,
connected with coefficients (weights), wij , which constitute
the neural structure. Many different neural network archi-
tectures can be used. One of the most common is the
feed forward neural network of multilayer perceptions. The
network is conventionally constructed with three or more
layers, that is, input, output, and hidden layers, Figure 1.

Each layer has a different number of nodes. The input
layer receives the information about the system (the nodes
of this layer are simple distributive nodes, which do not
alter the input value at all). The hidden layer processes the
information initiated at the input, while the output layer is
the observable response or behaviour. The inputs, inputi,
multiplied by connection weights wij are first summed and
then passed through a transfer function to produce the
output, outi. The determination of the appropriate number
of hidden layers and number of hidden nodes in each layer
is one of the most critical tasks in ANN design. Unlike the
input and output layers, one starts with no prior knowledge
of the number and size of hidden layers.
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The use of ANN consists of two steps: “Training” and
“Prediction”. The “Training” consists first of selecting input
and output data for the network. This data is referred to
as the training set. In the training phase, where actual data
must be used, the optimum structure, weight coefficients and
biases of the network are identified. Training is considered
complete when the neural networks achieve the desired
statistical accuracy, that is, when they produce the required
outputs for a given sequence of inputs. A good criterion to
find the correct network structure and therefore to stop the
learning process is to minimise the root mean square (RMS)
error as follows:

RMS =

√
√
√
√

∑N
i=1

∑M
j−1

(

yi j − outi j
)2

N ×M , (1)

where yi j is the element of the matrix (N×M) for the training
set or test set, and outi j is the element of the output matrix
(N ×M) of the neural network, where N is the number of
variables in the pattern, and M is the number of samples.
RMS gives a single number, which summarises the overall
error.

After a supervised network performs well on training
data, it is important to check its performance with data
that has not been used in training. This process is called
verification. This testing is critical to insure that the network
has not simply memorised the training set but has learned
the general patterns involved within an application. At this
stage, other input data are submitted to the network in
order to evaluate if it can predict the outputs. In this
case, the outputs are already known, but they are not
shown to the network. The predicted value is compared
to the experimental one to see how well the network is
performing. If the system does not give reasonable outputs
for this test set, the training period is not over or the
network is able to model the data but cannot predict
them.

In this work, ANN was used as a supervised method
where a training data set was created from the library of
NMR spectra, and the lung carcinoma classification of this
training data set was known. The backpropagation method
was used throughout. Firstly, the optimal ANN architecture
was searched for and when the correct classification in the
training phase was obtained, the usefulness of the created
database and the prediction power of the networks were
validated using an independent verification set. For the
ANN analysis, we used 72 inputs; the 71 binned NMR
intensities and the identity of the pairs of researchers (R1
and R2) as numbers 1 and 2. For output 4, nominal values
were used, these identify the four cell lines, DLKP, DLKPA,
DLKP-A5F, and A549, for which there were 12, 16, 14,
and 12 spectra, respectively. All calculations were performed
using the software Trajan Neural Network Simulator, Release
3.0 D. (Trajan Software Ltd 1996–1998, UK), on a standard
PC computer running Microsoft Windows Professional XP
2000.
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Figure 2: Typical 400 MHz 1H NMR spectra of DLKP lung carcino-
ma whole cells. (a) CH3, (b) CH2, (c) CH2CH=CH, (d) CH2COO,
(e) =CHCH2CH=, (f) HC=CH/CHOCOR. The spectral regions
used for statistical analysis (0.60–1.04 and 1.24–3.56 ppm) are
indicated.

3. Results

3.1. 1H NMR Spectroscopy of Whole Cells. A typical 1H NMR
spectrum of intact DLKP cells is shown in Figure 2. The
appearance of the spectra and the assignment suggested
below are broadly similar for all the cell samples analysed.
A tentative assignment which is consistent with the literature
[2, 4, 32, 33] is included in the figure [24]. Direct quantitative
analysis of the whole-cell spectra is hampered by the
potential multiple contributions from different metabolites
to any given resonance line by the nonlorentzian lineshapes
and by the broadness of the resonance lines. The resonances
in the downfield region arise from species that are at
low concentration, so quantification is precluded by the
sensitivity limitations of the NMR measurement.

3.2. PCA Visualization of Whole-Cell Spectra. The binned
NMR spectra of the intact cells were analysed using PCA.
The scores plots are shown in Figure 3. Separation of the four
cell types, within each of the two data sets, is apparent using
the first two PCs, demonstrating that resistance type can
be classified by PCA. It also demonstrates that the samples
were stable over the course of the experiment and that
the spectra are insensitive to the NMR sampling scheme.
Loadings analysis shows that, for each data set, the spectral
regions that contribute significantly to the first two principal
components are from 1.24 to 1.50 ppm, corresponding to
overlapped resonances from lipid methylenes and lactate
methyls, and from 2.90 to 3.40 ppm, corresponding to
overlapped resonances from N-methyl signals in the choline
moieties of phosphatidylcholine, phosphocholine, and glyc-
erophosphocholine. The contribution from other spectral
regions to these two principal components is marginal.

Despite the fact that the same spectral regions allow
separation within each data set, separation using PCA fails
when the two sets of spectra are combined into one; see Sup-
plementary Material available at doi:10.1155/2011/158094. It
is apparent that, in addition to the metabolite differences
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Figure 3: PCA scores plots for A549, DLKP, DLKPA, and DLKP-A5F, whole-cell data. Analysis is shown for G1 13 21 (a), G2 17 33 (b). The
right hand panel is reproduced from [24] with permission.

of biological interest, there are subtle differences between
G1 13 21 and G2 17 33 in the distribution of metabolites,
which prevent classification of the entire (54 spectra) data
set. The loadings analysis indicates contributions from across
the spectral range, which may suggest variations in more
than one metabolite. These spectral differences arise despite
stringent efforts of the second group of researchers to adhere
to the original experimental protocols and are reflected in the
fact that there is not a simple correspondence between the
orientation of the first two principal components between
the two sets of spectra, Figure 3.

3.3. ANN Analysis of Whole-Cell Spectra. ANN analysis
consists of separate training and verification steps. For
this study, we adopted the strategy of choosing multiple
verification sets of spectra at random from the 54 spectra
available. In training, the first aim is to find an optimal ANN
architecture to enable classification of the training data set.
Several architectures of three up to four layered structures
were examined for this purpose.

3.4. 3-Layers Architecture. Initially we adopted the simplest
3 layers architecture, in which case the search of the
optimal architecture consists of optimising the number of
nodes in the single hidden layer, effectively determining
the corresponding weights, wij , to minimize the RMS (root
mean square error) value according to (1). For our analysis,
the RMS value ceases to decrease significantly above 5 to 6
nodes, Figure 4, we therefore used networks with 6 hidden
nodes for verification. This optimal architecture will be
labelled (72, 6, 4), with it we obtained an RMS = 1.38× 10−3.
Figure 4 illustrates the process of searching for the optimal
network architecture.

In spite of the fact that very low values for the residual
mean squares were achieved using the (72, 6, 4) architecture,
the appropriateness of the architecture and of the training set
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Figure 4: Plot of residual mean squares as a function of the number
of nodes in the hidden layers, in the three-layers network (�), and
in the second (Δ) and third (�) layers of the four-layers network.
For the networks labelled (Δ), 3 nodes were used in the third layer;
and for the networks labelled (�), 4 nodes were used in the second
layer. The lines have no physical meaning; they are included to better
illustrate the optimal number of nodes.

was then tested with various verification sets, that is, a “cross-
validation” procedure was undertaken. Initially, five spectra
were randomly chosen and excluded from the training set
and used then as the verification set. From 10 combinations
and 10 independent networks trained, in only two cases
were any of the 5 spectra classified as unknown, Table 1.
These results are encouraging; two cases represent ∼4% of
the total, so for (72, 6, 4) the classification was verified
as 96% successful. The failures may have arisen due to an
insufficient number of spectra in the training set or because
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Table 1: Results of cross-validation verification process for the three- and four-layer ANN networks.

Architecture (72, 6, 4)∗

Verification set no. Spectra used in verification set Results of Classification

1 2, 13, 17, 27, 38 all correct

2 21, 24, 31, 35, 51 all correct

3 4, 12, 22, 35, 44 spec. 35 classified as unknown

4 16, 17, 22, 25, 52 all correct

5 15, 16, 17, 23, 54 all correct

6 9, 15, 20, 24, 43 spec. 9 classified as unknown

7 3, 12, 15, 25, 51 all correct

8 19, 21, 43, 47, 54 all correct

9 16, 36, 37, 47, 48 all correct

10 12, 42, 44, 48, 50 all correct

Architecture (72, 4, 3, 4)

1 5, 13, 20, 21, 22, 23, 24, 31, 51, 54 all correct

2 5, 8, 12, 15, 16, 29, 35, 36, 42, 49 all correct

3 8, 10, 13, 18, 23, 28, 33, 39, 40, 53 all correct

4 3, 5, 7, 9, 17, 27, 41, 45, 50, 52 all correct

5 5, 11, 16, 14, 20, 22, 24, 26, 44, 50 all correct
∗

where (72, 6, 4) refers to (the no. of inputs, the number of nodes in the hidden layer(s), the number of outputs).

networks with three layers have insufficient complexity for
100% prediction accuracy, in this case.

3.5. 4-Layers Architecture. We then examined networks with
four layers (2 hidden). From several cases examined, it was
found that four-layer ANN architectures performed similarly
to simpler three layers architectures. Networks of the form
(72, 4, 3, 4) or (72, 5, 4, 4) were investigated, note that
the numbers in brackets refer to the number of inputs, the
number of nodes in the first and in the second hidden
layers, and the number of outputs. Acceptable RMS values,
of 1.22 × 10−3 and 1.41 × 10−3 were obtained for (72, 4,
3, 4) and (72, 5, 4, 4), respectively, which are similar to the
values obtained using the optimal three-layer architecture.
Networks with the architecture (72, 4, 3, 4) performed very
similarly to (72, 5, 4, 4) and require fewer unknowns (or
weights, wij), 312 as opposed to 396. As a result, (72, 4, 3,
4) was found to converge faster and to be less sensitive to
the number of spectra excluded from training to form the
verification set. In fact, we found that 5 to 10 samples could
be used for verification with 100% correct classification of
the spectra, see Table 1. So in summary, the optimal 3- and
4-layer architectures were found to be (72, 6, 4) and (72, 4, 3,
4), respectively, Figure 5.

4. Discussion

The 1H NMR spectra of intact cells for both G1 13 21
and G2 17 33 have similar general appearance with severe
signal overlap and line broadening. Reprojection of either
data set, using PCA, demonstrates that separation by cell
types is possible due to systematic differences in the lipid
methylene and lactate methyl resonances and the overlapped
N-methyl 1H nuclei of the choline-containing species [24].

Alterations in signal intensity and chemical shift from such
cellular metabolites and biochemical intermediates have
been described by other researchers in the area [6, 11].
However, because of the complex biochemical role played by
these substances, we cannot ascribe a particular functional
role to the findings, what is more the alterations appear to
correlate and associate with particular phenotypic changes,
for example, drug resistance. On the basis of the principal
component analysis of either group, one could speculate
that metabolite profiling by in vivo MRS has potential
applications in monitoring the development of resistance in
a given cancerous tissue. However, for the full data set such
a possibility is effectively prevented by other influences on
the metabolite distribution, which are comparable to, and
nonorthogonal with, the “relevant” biochemical variation.
We have shown that this significant obstacle can be elimi-
nated, at least for in vitro studies of cell culture, by using
a suitable ANN architecture. The most successful network
was a four-layer structure with two hidden layers. After
appropriate training, the (72, 4, 3, 4) architecture enabled
100% successful classification. Our approach may, in time,
be expanded to the classification of larger data sets of spectra
which have been recorded with less stringent control over
sources of variance unrelated to the classification of interest.
This result is encouraging and it is, to our knowledge, the
first reported application of the use of ANNs specifically
to correctly classify 1H NMR spectra in a data set when
additional “nonrelevant” sources of variance are included.

Other related examples of the combination of supervised
and unsupervised methods include a report by Griffiths and
coworkers [34], who obtained 85% accurate classification
of meningiomas from nonmeningiomas, by initially using
PCA to reduce the dimensionality of 1H NMR spectra
recorded for tumor biopsy extracts. The first thirty PCs
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Figure 5: (a) Structure of the optimal 3-layer ANN architecture (72, 6, 4). (b) Structure of the optimal 4-layer ANN architecture (72, 3, 4).

from this first stage of analysis were then classified using a
network. More recently, the performance of lineshape fitting
and quantitative ANN analyses were compared by Hiltunen
et al. [35] for both in vivo and simulated 1H spectra. The
good correlation obtained with these two approaches, for
simulated data at least, suggested that ANNs have potential
for quantification of in vivo MRS long echo time spectra. A
further advantage of ANNs in the development of analysis
methods for in vivo MRS is that they require less processing
time than line fitting or other computational approaches
[36]. Thus, our study adds to the growing number of
applications of supervised techniques for exploiting the
diagnostic potential of 1H NMR spectra for biomedical
purposes.

5. Conclusions

We have found that NMR data recorded for human lung
carcinoma whole-cell culture samples can be used for anal-
ysis and classification. When sources of variation not directly
related to the biological state of interest (drug resistance)
are minimised or kept constant, visual separation of the cell
type can be achieved using unsupervised pattern recognition
techniques, such as PCA. On the other hand, when this
condition is not met, in our case when different researchers
were responsible for cell culture and spectroscopy, successful
classification of the cell type could be achieved using artificial
neural networks. The experimental and ANN methodology
developed are a step towards the goal of robust and reliable
diagnostics based on magnetic resonance spectral data.
Furthermore, as similar experimental problems may be
encountered in metabolomics applications using other spec-
troscopic techniques, biological classification using ANNs of
data sets that include “nonbiological” sources of variance
may be generally possible.
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