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Objectives: The aim was to determine whether the dual-energy CT radiomics model
derived from an iodine map (IM) has incremental diagnostic value for the model based on
120-kV equivalent mixed images (120 kVp) in preoperative restaging of serosal invasion
with locally advanced gastric cancer (LAGC) after neoadjuvant chemotherapy (NAC).

Methods: A total of 155 patients (110 in the training cohort and 45 in the testing cohort) with
LAGC who had standard NAC before surgery were retrospectively enrolled. All CT images
were analyzed by two radiologists for manual classification. Volumes of interests (VOIs) were
delineated semi-automatically, and 1,226 radiomics features were extracted from every
segmented lesion in both IM and 120 kVp images, respectively. Spearman’s correlation
analysis and the least absolute shrinkage and selection operator (LASSO) penalized logistic
regression were implemented for filtering unstable and redundant features and screening out
vital features. Two predictive models (120 kVp and IM-120 kVp) based on 120 kVp selected
features only and 120 kVp combined with IM selected features were established by
multivariate logistic regression analysis. We then build a combination model (ComModel)
developed with IM-120 kVp signature and ycT. The performance of these three models and
manual classification were evaluated and compared.

Result: Three radiomics models showed great predictive accuracy and performance in
both the training and testing cohorts (ComModel: AUC: training, 0.953, testing, 0.914; IM-
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120 kVp: AUC: training, 0.953, testing, 0.879; 120 kVp: AUC: training, 0.940, testing,
0.831). All these models showed higher diagnostic accuracy (ComModel: 88.9%, IM-120
kVp: 84.4%, 120 kVp: 80.0%) than manual classification (68.9%) in the testing group.
ComModel and IM-120 kVpmodel had better performances thanmanual classification both
in the training (both p<0.001) and testing cohorts (p<0.001 and p=0.034, respectively).

Conclusions: Dual-energy CT-based radiomics models demonstrated convincible
diagnostic performance in differentiating serosal invasion in preoperative restaging for
LAGC. The radiomics features derived from IM showed great potential for improving the
diagnostic capability.
Keywords: locally advanced gastric cancer, dual energy CT, iodine map, radiomics, neoadjuvant chemotherapy
INTRODUCTION

Stomach cancer remains prevalent worldwide. There were over
1,000,000 new cases in 2018 from the disease, which resulted in an
estimated 783,000 deaths (1 in every 12 deaths globally), making it
the fifth most frequently diagnosed cancer and the third leading
cause of cancer death. The incidence of stomach cancer in east Asia,
particularly in China, is much higher than in any other region of the
world (1). The high mortality rate is largely due to late diagnosis at
locally advanced gastric cancer(LAGC) (2).Neoadjuvant
chemotherapy(NAC) has been shown to significantly increase the
curative resection rate, disease-free survival, and overall survival
from this disease (3, 4). Serosal invasion and lymph node status after
NAC were established to be independent prognostic factors (5, 6).

Endoscopic ultrasound (EUS) and computed tomography (CT)
are the most frequently used methods for preoperative staging of
gastric cancer and the accuracy varies among different studies: 78%–
92% and 77%–89% for T staging and 57%–91% and 71%–90% for N
staging for EUS andCT respectively (7–10). However, the accuracy of
T andN restaging after NAC decreased to 47% and 39% by EUS, and
to 57% and 37% by CT, respectively (11, 12). Compared with
primary staging, restaging after NAC has been shown to be
inaccurate and unreliable. The radiologic T stages were not
significantly correlated with pathologic T stages, whereas the
radiologic N and pathologic N stages were significantly correlated
(12). At present, no diagnostic modality has been accepted as an
effective method for restaging, particularly in T-restaging, which was
once regarded as too weak for clinical decision-making. The accurate
assessment of clinical T-restaging, particularly with the invasion of
serosa after NAC, is critical for operative decision-making, as well as
to evaluate prognosis. Therefore, improving the accuracy of restaging
of serosal invasion after NAC is particularly critical.

Dual-energy CT (DECT) emerged as a cutting-edge technique
that embraced a material decomposition algorithm (13, 14) to
separate different materials and obtain quantitative material
urve; DECT, Dual-energy CT; EUS,
l Co-occurrence Matrix; GLDM, Gray
evel Run Length Matrix; GLSZM, Gray
AGC, Locally-advanced gastric cancer;
lection Operator; NAC, Neoadjuvant
ray Tone Difference Matrix; ROC,
interests.
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concentrations, such as iodine uptake (IU, mg/ml). Preliminary
studies have reported the use of the IU in different tumors (15–17).
A study in 2015 reported the utility of IU in evaluating the response
after NAC in gastric cancer (14). However, this study only enrolled
20 patients, and the regions of interests (ROIs) were traced in round
or oval shapes, which indicated that the diagnostic value of DECT
had not yet been fully evaluated. In addition, there exist no related
studies that assess the capacity of IU for restaging after
chemotherapy in LAGC patients.

Radiomics extracts high-throughput quantitative imaging
features and can characterize the spatial relationships and
consistency of signal intensities within the tumor region. It has
demonstrated the ability to predict treatment response or
prognosis across a range of cancer types and imaging
modalities, such as hepatocellular carcinoma, rectal cancer,
breast cancer, and prostate cancer (18–20). By extracting image
features such as shape, size, texture, and density, the images were
then transformed into mineable high-dimensional data which
improved medical decision-making and personalized precision
medicine (19, 21). In addition, radiomics has shown its
superiority in diagnosing lymph node metastasis and occult
peritoneal metastasis (22, 23). However, the diagnosis value of
radiomics, particularly combined with dual-energy technology in
gastric cancer patients after NAC, remains unclear.

Our aim in this study was to explore the prediction
performance of dual-energy CT-derived radiomics models and
the incremental diagnostic value of IM features in preoperative
restaging of serosal invasion with LAGC after NAC.
MATERIALS AND METHODS

Patients
This study was approved by our Ethical Committee, and informed
consent was waived for the patients. All procedures involving human
participants adhered to the tenets of the Declaration of Helsinki.

A total of 184 patients were retrospectively enrolled from June
2014 to June 2018. The inclusion criteria were as follows: (1)
confirmed gastric cancer by gastroscopic biopsy; (2) standard
NAC before surgery; (3) availability of the pathology results after
surgery; and (4) a visible tumor defined as cT2-4a/bNxM0 on CT
January 2021 | Volume 10 | Article 562945
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images and CT scan performed ≤ 3 weeks before NAC and again
≤ 3 weeks before surgery, according to the gastric cancer CT
protocol. The exclusion criteria were as follows: (1) insufficient
CT imaging quality due to movement artifacts or other reasons
(n=15); (2) any patients who did not complete NAC due to drug
toxicity or disease progression (n=11); or (3) a history of
previous or other concurrent tumor anywhere in the body
(n=3). Ultimately, 155 patients were enrolled in our study
(Figure 1). The median interval and interquartile range (IQR)
between re-staging CT and surgery is 5 (IQR=2-6) days. The
enrolled patients were randomly divided into a training cohort
and testing cohort at the ratio of 7:3(110 and 45 patients),
respectively, for model establishment and assessment.

Neoadjuvant Chemotherapy
In our study, NAC for enrolled patients was administered
according to the MAGIC study (24), which comprised three
preoperative cycles of intravenous epirubicin (50 mg/m² of body-
surface area) and cisplatin (60 mg/m²) on day 1, a continuous
intravenous infusion of fluorouracil (200 mg/m²) for 21 days,
and three postoperative cycles of the same regimen.

Surgical and Pathological Evaluation
All the patients underwent gastrectomy with a standard D2
lymphadenectomy within three weeks after completion of
chemotherapy (25, 26). Two pathologists (Ma QC and Yang CX)
independently analyzed the surgical specimens for the invasion
depth of the gastric wall (ypT staging) according to the pathologic
TNM staging system developed by the American Joint Committee
on Cancer and the International Union Against Cancer (25, 27). In
addition, we also collected clinical factors including sex, location of
the tumor, Borrmann type and tumor makers of all patients after
chemotherapy, including alpha fetoprotein (AFP, normal reference
value: <8.78ng/mL), carcinoembryonic antigen (CEA, normal
reference value: <5ng/ml), carbohydrate antigen 125(CA 125,
Frontiers in Oncology | www.frontiersin.org 3
normal reference value: <35U/mL), carbohydrate antigen 724 (CA
724, normal reference value: <8.2U/mL), carbohydrate antigen (CA
199, normal reference value: <35U/mL) for univariate analysis.

CT Image Acquisition
All gastric CT scans were performed using a third-generation
dual-source scanner (SOMATOM Force; Siemens Healthineers,
Forchheim, Germany) with the same scan protocol. All the
patients were placed in a supine position on the scanner, and
the parameters were set as follows (28): tube voltage A 90 kVp;
effective tube current-time product 200mAs; tube voltage B 150
kVp; effective tube current-time product 125mAs; FOV: 374×374
mm; rotation time: 5 s; pitch: 0.6; kernel: Qr40; and collimation:
128*0.6 mm. All the patients were required to fast for 6 -8 h and
drink 1000-1500ml of water before the CT scan. Using the test
bolus technique, 16 mL of contrast agent, as a test bolus, was
injected to monitor the time to reach the peak of the celiac trunk.
Then, the main contrast agent (Ultravist; Schering, Berlin,
Germany) was injected intravenously through the cubital vein
at a flow rate of 3 ml/s (1.5 ml/kg body weight) using a CT-
compatible power injector. Two phase-enhanced DECT scans
were performed, including the arterial phase (at the beginning of
the peak of the celiac trunk) and portal phase (delays 20 seconds
after the peak of the celiac trunk).

All portal phase datasets were reconstructed with 1.5 mm slice
thickness and delivered to a dedicated workstation with dual-energy
software (Syngo.via, Version VB10, Siemens Healthineers,
Forchheim, Germany) for further dual-energy image post
processing. In addition, 120-kV equivalent mixed images were
generated, linearly blended with a weighted factor of 0.6 (120
kVp), and the iodine maps (IM) were reconstructed and obtained
from the dual-energy datasets (13, 29). The iodinemap was based on
the dual-energy, 3-material decomposition algorithm and
represented the absolute iodine uptake value in the field of view
(30). These two types of images were ultimately acquired for analysis.
FIGURE 1 | Flowchart of study enrollment.
January 2021 | Volume 10 | Article 562945
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Image Analysis and Manual Classification
All 120 kVp CT images were independently analyzed by two
radiologists experienced in gastrointestinal diseases (ZP and Ding
B, both with more than 20 years of experience in the diagnosis of
abdominal diseases). Both readers were partially blinded to the
gastroscopic results (they knew that the patients had gastric cancer
that had been diagnosed by endoscopic biopsy) and were
completely unaware of the location, size, macroscopic features,
and stage of gastric cancers. The inter-observer agreement of the
two radiologists’ assessment of preoperative tumor restaging after
NAC (ycT) were tested using weighted kappa statistics. The depth of
tumor invasion judged by CT is based on the studies of Hasegawa
and Habermann CR (31, 32). T1 tumors were defined as a tumor
that cannot be seen on image or with focal thickening of the inner
layer, visible in the outer layer of the gastric wall, and surrounded by
a clear fat plane. T2 tumors were defined as localized or diffuse
thickening of the gastric wall with transmural involvement and a
smooth outer border of the wall or only a few small linear strands of
soft tissue extending into the fat plane involving less than one-third
of the tumor extent. T3 tumors were defined as transmural tumors
with obvious blurring of at least one-third of the tumor extent or
wide reticular strands surrounding the outer edge of the tumor. T4
tumors were defined as tumors in which the fat plane between the
gastric tumor and the adjacent organs disappears or invaded the
adjacent organs. T1, T2, and T3 tumors were defined as serosal
invasion negative and T4 as serosal invasion positive.

All of the lesions weremanually classified into a serosal invasion-
negative group (−) and serosal invasion-positive group (+) by the
radiologists on portal phase images. Finally, 57 cases of serosal
invasion (−) and 98 cases of serosal invasion (+) were diagnosed.

Tumor Segmentation and Feature
Extraction
Tumor segmentation and feature extraction were conducted with
radiomics software (Radiomics 1.0.9a, Siemens Healthineers,
Germany) on a research platform (Syngo.Via VB10, Research
Frontier, Siemens Healthineers, Germany) (33). Two radiologists
(Pan ZL and Du LJ) independently preformed tumor segmentation.
Both of them were blinded to the pathological data but were
informed that all the patients had gastric cancer. Volumes of
interest (VOIs) were delineated semi-automatically in three
dimensions on both 120 kVp images and were automatically
matched to the IM images (Figure 2). Fat tissues or adjacent
organs were excluded on coronal and sagittal panels. To ensure
the consistency of the sketch between the two radiologists, 40
patients were randomly selected for secondary delineation.

The computation of radiomics features from VOIs of both 120
kVp and IM-120 kVp images was based on the PyRadiomics library
(33). The extracted features were reproducible and matched the
benchmarks of IBSI (34). In each set, there were 1,226 radiomics
features extracted for each patient, including 234 first-order features,
17 shape features, and 975 texture features (texture features based
on Gray Level Co-occurrence Matrix (GLCM) Features, Gray Level
Size Zone Matrix (GLSZM) Features, Gray Level Run Length
Matrix (GLRLM) Features, Gray Level Dependence Matrix
(GLDM) Features, and Neighboring Gray Tone Difference Matrix
Frontiers in Oncology | www.frontiersin.org 4
(NGTDM) Features). A variety of options including Laplacian of
Gaussian filtering, wavelet filtering, and non-linear intensity
transforms including square, square root, logarithm and
exponential, were provided by the software to customize image
pre-processing before feature extraction.

Feature Selection and Model
Establishment
The feature stability and repeatability were initially evaluated. To
reduce the influence in the manual segmentation, we calculated the
consistency of all the extracted features (120 kVp and IM) by using
Spearman’s rank (SR) correlation method. Setting the threshold of
Spearman as 0.8, features with high consistency (SR > 0.8)
were selected.

After consistency analysis, least absolute shrinkage and selection
operator (LASSO), which is appropriate for high-dimensional, low-
sample size data with collinearity (35), was performed to screen out
vital features for further analysis. Ten-fold cross-validation and
minimum deviance information were used as the feature screening
criteria. In our study, a multivariant logistic regression algorithm
was applied as a classification model built with the remaining
features. Based on these selected features with nonzero
coefficients, two radiomics models were ultimately established:
120 kVp model (built with features extracted from 120 kVp
images only) and IM-120 kVp model (built with features
extracted from both 120 kVp and IM-120 kVp images). The
process of LASSO is shown in Figure 3. In addition, a
combination model (ComModel) was developed by adding
independent preoperative predictors of serosal invasion from
significant clinical characteristics for further evaluating the
predictive value of dual-energy radiomics signatures.

Model Performance and Comparison
The performance of all prediction models was evaluated by the
receiver operating characteristics (ROC) curve and area under the
curve (AUC). The optimal thresholds of the odds for different
models were determined by maximizing Youden’s J statistics.
Sensitivity, specificity, accuracy, and the AUC were reported, as
well as the 95% confidence intervals (CIs). The confusion matrix
was also derived to illustrate the prediction ability. Furthermore, a
diagnostic accuracy for detecting serosal invasion was calculated for
all the models. In terms of the comparison of diagnostic efficiency
among different models, DeLong’s test was conducted with
significant differences set at p <0.05. Regarding to the goodness of
fit of models, the calibration curve and Brier score were
implemented for three regression models (120 kVp, IM-120 kVp
and ComModel). Additionally, decision curve analysis (DCA) was
performed for all diagnostic models to further assessing clinical gain.
Figure 4 shows the flowchart of our study.

Statistical Analysis
Descriptive analysis was performed to describe the distribution of
the variables of interest for the training and testing cohorts. The
Kolmogorov-Smirnov test was used to test the normality of all the
continuous variables. Student’s t-test orWilcoxon rank sum test was
used to compare normally or abnormally distributed continuous
January 2021 | Volume 10 | Article 562945
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variables between the serosal invasion-positive and serosal invasion-
negative groups, respectively. Categorical variables were compared
between two groups using the chi-squared test or Fisher’s exact test,
as appropriate. Inter-observer agreement was evaluated using the
kappa coefficient. All tests were two-sided and p<0.05 was
considered statistically significant. Feature selection, and model
establishment and performance assessment were performed using
the R software package (version 3.6.2). Other statistical analyses
were implemented with SPSS (Version 25; IBM Corporation;
Armonk, NY) and Medcalc Statistical Software (MedCalc
Software, Ostend, Belgium; 2018).
RESULTS

Clinical Characteristics of the Patients
Table 1 describe the characteristics of the study cohort. The
mean ages were 58.58 ± 10.12 and 59.66 ± 11.60 for training
Frontiers in Oncology | www.frontiersin.org 5
group and testing group, respectively. There was no bias for
serosal invasion in the two groups (p = 0.595, x2 = 0.282).
Among all of the preoperative clinical factors, including
sex, location of the tumor, Borrmann type and tumor
markers were not significantly associated with serosal
invasion after univariate analysis except ycT (both p<0.001,
x2 = 19.563 and 32.308 for training group and testing group
respectively), which was determined by radiologists as
positive or negative.

Radiomics Models Building and Validation
After consistent analysis, 234 features from the 120 kVp group
and 468 features from the IM-120 kVp group were selected.
Based on this analysis, eight features were selected during LASSO
from 120 kVp images (two first-order features, one shape feature,
and five gray level features). Through the same process,
13 texture features (six from 120 kVp imaging and seven
from IM-120 kVp imaging), three first-order features and 10
A B

DC

FIGURE 2 | A patient with gastric cancer located in the cardia and lesser curve of the stomach (A–D). Axial (A) and coronal (B) multiplanar reconstruction from
portal phase images showed abnormal enhancement accompanied by wall thickening of the stomach. The irregular outer layer of the gastric wall, blurring, and
reticular strands surrounding the outer border (arrow heads) indicated that this patient was serosal invasion-positive, which was proven by histology. (C) showed the
iodine map of the lesion. 3D reconstruction of the lesion is displayed (D).
January 2021 | Volume 10 | Article 562945
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gray level features were selected for the IM-120 kVp model
(Supplementary 1). The details of the selected features (boxplots
and heatmaps) for two models are recorded in Supplementary
figures A–D. Features contained in the models (and their
coefficients) are shown in Table 2. Based on the 120 kVp
images set, the model reached an AUC of 0.940 (95% CI:
0.8993–0.9805) in the training cohort (Figure 5A). The IM-
120 kVp model revealed some improvement, with an AUC of
0.953 (95% CI: 0.9185–0.9875). In addition, a ComModel,
developed with IM-120 kVp signature and ycT showed similar
performance with an AUC of 0.953 (95% CI: 0.9173–0.9894).
Frontiers in Oncology | www.frontiersin.org 6
There was no significant difference between these three models
(p=0.4 between IM-120 kVp model and 120kVp model, p=0.989
between ComModel and IM-120 kVp model, p=0.628 between
ComModel and 120 kVp model). For the testing cohort,
ComModel demonstrated a slightly better predictive
performance for the detection of serosal invasion (AUC=0.914,
95% CI: 0.8219–1.000) than IM-120 kVp (AUC=0.879, 95% CI:
0.7685–0.9887, p=0.203) and a significant improvement in
diagnose ability than 120 kVp (AUC=0.831, 95% CI: 0.7058–
0.9568, p=0.018, Figures 5A, B). While IM-120 kVp
(AUC=0.879, 95% CI: 0.7685–0.9887) model also showed
FIGURE 4 | Flowchart of our study.
A B

DC

FIGURE 3 | Process of least absolute shrinkage and selection operator (LASSO) logistic regression (A–D). (A, B) represented LASSO logistic regression of 120 kVp
features and (C, D) represented LASSO logistic regression of IM-120 kVp features. (A, C) showed LASSO coefficient profiles for the 1,226 features. The vertical line
showed the optimal value of l (l=0.046 for 120 kVp, l=0.0445 for IM-120 kVp) resulting in eight and thirteen non-zero features, respectively, for 120 kVp and
IM-120 kVp. (B, D) showed that the area under the curve (AUC) curve was plotted by the tuning parameter (l) selection performed by 10-fold cross-validation with
the minimum deviance criterion.
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significant better performance than 120 kVp (AUC=0.831, 95%
CI: 0.7058–0.9568, p=0.040, Figures 5A, B) model in
testing group.

Performance Comparison Between the
120 kVp Model, IM-120 kVp Model,
ComModel and Manual Classification
Regarding the manual classification, the k value for inter-
observer agreement was 0.823 (95% CI: 0.732–0.913), which
showed good agreement. The AUC of the classification was 0.648
(95%CI: 0.5555–0.7409) and 0.681 (95% CI: 0.5393–0.8228) for
the training and testing cohorts, respectively. According to the
calibration curve and Brier score, ComModel showed best
goodness of fit than IM-120 kVp and 120 kVp groups (Brier
score=0.081, 0.101 and 0.116, respectively for ComModel,
IM-120 kVp and 120 kVp groups) (Supplement Figure E).
Frontiers in Oncology | www.frontiersin.org 7
Subsequently, we separately compared the AUC between the
ComModel, IM-120 kVp, 120 kVp and manual groups. For the
training cohort, the ComModel, IM-120 kVp, 120 kVp models
showed significant differences in comparison with manual
classification (p<0.001). For the testing cohort, the ComModel
showed significant improvement than the manual group
(p<0.001), the p value between the IM-120 kVp group and
manual group was 0.034, whereas the 120 kVp group did not
display superiority (p=0.124). In terms of the clinical gain,
decision curve analysis illustrated that ComModel owned
larger net benefit among the range of threshold probabilities
compared with IM-120 kVp and 120 kVp models (Supplement
Figure F). Table 3 summarizes the accuracy, sensitivity, and
specificity of the three models and manual classification of the
testing group. The comparison among these four groups is
shown in Figures 5A, B.
TABLE 1 | Characteristics of the patients.

Characteristic Training Group (n=110) Testing Group (n=45)

Total Serosal invasion (−)
(n=39)

Serosal invasion (+)
(n=71)

p-
value

Total Serosal
invasion (−)

(n=18)

Serosal invasion (+)
(n=27)

p-
value

Age mean (SD),
year

58.58
(10.12)

59.13(10.63) 58.28(9.89) 0.677 59.66
(11.60)

57.44
(15.05)

59.10(11.12) 0.674

Sex, No. 0.800 0.357
Male 75 26 49 31 11 20
Female 35 13 22 14 7 7
Staging, No. <0.001 <0.001
0 4 4 0 5 5 0
I 14 13 1 9 9 0
II 26 17 9 5 2 3
III 66 5 61 26 2 24
ycT, No. <0.001 <0.001
1 5 5 0 5 5 0
2 21 13 8 4 2 2
3 11 3 8 7 4 3
4 73 18 55 29 7 22
Borrmann type 0.053 0.497
I 7 3 4 1 1 0
II 50 15 35 17 6 11
III 45 21 24 26 11 15
IV 8 0 8 1 0 1
Location, No. 0.723 0.540
Proximal 52 16 36 25 9 16
Distal 58 23 35 20 9 11
AFP 0.423 0.509
Positive (+) 12 3 9 2 0 2
Negative (−) 98 36 62 43 18 25
CEA 0.149 0.637
Positive (+) 19 4 15 10 4 6
Negative (−) 91 35 56 35 14 21
CA 125 0.656 0.400
Positive (+) 4 1 3 1 1 0
Negative (−) 106 38 68 44 17 27
CA 724 0.215 0.272
Positive (+) 21 5 16 10 2 8
Negative (−) 89 34 55 35 16 19
CA 19-9 0.705 0.557
Positive (+) 10 3 7 7 4 3
Negative (−) 100 36 64 38 14 24
Janua
ry 2021 | Volume 10 | Article
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DISCUSSION

In this study, we developed and validated an IM-120 kVp
radiomics model, which was superior to the radiomics model
built by conventional 120 kVp, indicating the discrimination
value of iodine from DECT for serosal invasion in GC patients
after NAC. Furthermore, the ComModel model outperformed
120 kVp model and manual classification, presenting the
incremental value in diagnosing serosal invasion. This,
provides an assessment tool for treatment strategies for LAGC
patients after NAC.
Frontiers in Oncology | www.frontiersin.org 8
Accurate evaluation of serosal invasion for restaging of
LAGC after NAC is critical, as it involves the choice of
different interventions and the prognosis of patients.
However, previous studies have found that the restaging is
unreliable; the accuracy of T staging by CT was between 42.7%
and 57% (11, 12). Because of the decreased number of tumor
cells, edema, fibrosis, and chronic inflammation after
chemotherapy (36), the blurred border of lesions seriously
hinders accurate judgment. By extracting high-throughput
quantitative imaging features, radiomics can characterize the
spatial relationships and consistency of signal intensities within
A B

FIGURE 5 | (A, B) Comparison among the four groups for the training and testing group, respectively.
TABLE 2 | Features contained in the models and their coefficients.

Feature Coefficient

IM-120 kVp Intercept 1.167599735
M_original_firstorder_Entropy 0.5086991
M_original_glcm_MCC 0.598577944
M_squareroot_firstorder_10Percentile −0.544459182
M_logarithm_glrlm_RunEntropy 0.399207863
M_wavelet.HHH_glcm_MaximumProbability −0.348664531
M_wavelet.LHL_gldm_DependenceVariance −0.321889934
IU_logarithm_glszm_LargeAreaHighGrayLevelEmphasis −0.098944933
IU_wavelet.HHH_glcm_MaximumProbability −0.039030537
IU_wavelet.HHL_glcm_MaximumProbability −0.292194728
IU_wavelet.HLL_glszm_SizeZoneNonUniformityNormalized −0.245588102
IU_wavelet.LLH_glrlm_RunVariance −0.920372352
IU_wavelet.LLH_glszm_LargeAreaHighGrayLevelEmphasis −0.286325282
IU_wavelet.LLL_firstorder_TotalEnergy −0.037181896

120 kVp Intercept 1.163715812
M_original_firstorder_Entropy 0.359097918
M_original_glcm_MCC 0.378549514
M_original_shape_MinorAxisLength −0.191729331
M_squareroot_firstorder_10Percentile −0.735779269
M_logarithm_glrlm_RunEntropy 0.641373288
M_wavelet.HHH_glcm_MaximumProbability −1.107613619
M_wavelet.LHL_gldm_DependenceVariance −0.283627542
M_wavelet.LHL_glszm_GrayLevelNonUniformity −0.035049458
January 2021 | Volume 10 |
IM, Iodine map; GLCM, Gray Level Co-occurrence Matrix; GLSZM, Gray Level Size Zone Matrix; GLRLM, Gray Level Run Length Matrix; GLDM, Gray Level Dependence Matrix; NGTDM,
Neighboring Gray Tone Difference Matrix.
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the tumor region (18), showing their utility in discriminating
serosal invasion in preoperative staging (37, 38). In summary,
our radiomics models performed well in accurately classifying
serosal invasion not only in the training cohort, with AUCs of
0.940, 0.953 and 0.953 for the 120 kVp model, IM-120 kVp
model and ComModel, respectively, but also in the testing
cohort, with the AUCs of 0.831, 0.879 and 0.914, respectively.
All revealed better performance than manual classification,
especially for the ComModel. Through analysis and
calculation of the extracted features, radiomics is helpful for
finding small tumor tissue invisible to the naked eye, so it
improves the accuracy of diagnosing serosal invasion after
NAC. Furthermore, it also reflects the importance of clinical
and radiological features in the judgment.

Another finding is that the IM-120 kVp radiomics model
showed better discrimination than the 120 kVp model in
restaging serosal invasion with LAGC after NAC. Iodine-
specific maps have the potential to increase the depiction and
characterization of hypoattenuating malignancies by increasing
the contrast between a hypoattenuating lesion and normally
enhancing parenchyma on the basis of differences in tissue
iodine content (39). IU is a feasible biomarker with potential
benefit not only in the anti-EGFR therapy response assessment
for non-small cell lung cancer but also in predicting the
radio-chemotherapy outcome for cervical cancer (40, 41).
Chemotherapeutic agents used in NAC can decrease
the capacity of the vascular bed and thus reduce the blood
supply to tumor tissue (42). Iodine-containing contrast medium
reaches tumor tissue via blood perfusion; thus, the iodine
concentration in the tumor site can reflect the tumor response
to chemotherapy. Both of the radiomics models displayed
significant differences when compared with manual classification
in the training group, and the model based on IM-120 kVp images
also showed significant differences in the testing. Furthermore,
iodine map images can slightly improve the accuracy of staging of
gastric cancer compared with normal 120 kVp images, so the
model based on IM-120 kVp images showed a better performance
than the model based on 120 kVp images.
Frontiers in Oncology | www.frontiersin.org 9
Our findings showed that entropy was closely related to
identification of serosal invasion as it was included in both of
the two models. Previous studies demonstrated that entropy was
connected with a shorter survival time and was useful for risk
stratification in gastric cancer and salivary gland carcinoma (43,
44). Heterogeneity is widely recognized as a feature of
malignancy associated with cancer treatment failure and thus
results in a poor prognosis (45–47). According to our results,
many gray level features were screened out and included in our
models, as well, inferring that gray level features can contribute
to higher diagnostic accuracy. Though-run entropy (RE) was not
mentioned in other studies, and their innate meanings were
consistent with other gray level features in our model. The
heterogeneity information of gastric cancer strongly indicated
that intratumor heterogeneity is an essential factor in the
restaging of ycT.

Our study had some limitations: First, this was a single-center
study. Thus, multicenter validation in a larger sample size is
needed to acquire high-level evidence for applying the model to
clinical practice. Second, we only considered the restaging of ycT.
Given that the restaging of lymph nodes was also an important
factor for predicting prognosis, further studies should be
designed to evaluate the iodine values of the regional lymph
nodes. Third, we still adopt CT staging criteria because there are
no studies to date that report on restaging criteria using CT in
LAGC patients after NAC. Restaging criteria using CT after
NAC for gastric cancer are urgently needed for critical
decision-making.

NAC has been shown to significantly increase the curative
resection rate, disease-free survival, and overall survival. The
accurate assessment of clinical restaging, particularly the
invasion of serosa after NAC, is critical for operative decision-
making, so as to avoid potential toxicity, as well as to evaluate
prognosis. Thus far, no modality has been accepted as an
effective diagnostic method. Our dual-energy CT based
radiomics models could help differentiate serosal invasion in
preoperative restaging for LAGC. The radiomics features derived
from IM show great potential in improving the capacity for
TABLE 3 | Diagnostic performance of three models in testing group.

Pathological results

Diagnostic Model Serosal invasion negative
(n=18)

Serosal invasion positive
(n=27)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

ComModel Serosal invasion
negative

17 4 88.9 85.2 94.4

Serosal invasion positive 1 23
IM-120 kVp
group

Serosal invasion
negative

15 4 84.4 85.2 83.3

Serosal invasion positive 3 23
120 kVp group Serosal invasion

negative
16 7 80.0 74.1 88.9

Serosal invasion positive 2 20
Manual group Serosal invasion

negative
10 6 68.9 77.8 55.6

Serosal invasion positive 8 21
January 20
21 | Volume 10
ComModel, Combine model; IM, Iodine map.
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diagnosis. In addition, a larger group of patient cohorts is needed
to validate our models.
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