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Abstract

Background: Degeneration of both intervertebral discs (IVDs) and facet joints in the

lumbar spine has been associated with low back pain, but whether and how IVD/joint

degeneration contributes to pain remains an open question. Joint degeneration can

be identified by pairing T1 and T2 magnetic resonance imaging (MRI) with analysis

techniques such as Pfirrmann grades (IVD degeneration) and Fujiwara scores (facet

degeneration). However, these grades are subjective, prompting the need to develop

an automated technique to enhance inter-rater reliability. This study introduces an

automated convolutional neural network (CNN) technique trained on clinical MRI

images of IVD and facet joints obtained from public-access Lumbar Spine MRI Data-

set. The primary goal of the automated system is to classify health of lumbar discs

and facet joints according to Pfirrmann and Fujiwara grading systems and to enhance

inter-rater reliability associated with these grading systems.

Methods: Performance of the CNN on both the Pfirrmann and Fujiwara scales was

measured by comparing the percent agreement, Pearson's correlation and Fleiss

kappa value for results from the classifier to the grades assigned by an expert grader.

Results: The CNN demonstrates comparable performance to human graders for both

Pfirrmann and Fujiwara grading systems, but with larger errors in Fujiwara grading.

The CNN improves the reliability of the Pfirrmann system, aligning with previous

findings for IVD assessment.

Conclusion: The study highlights the potential of using deep learning in classifying

the IVD and facet joint health, and due to the high variability in the Fujiwara scoring

system, highlights the need for improved imaging and scoring techniques to evaluate

facet joint health. All codes required to use the automatic grading routines described

herein are available in the Data Repository for University of Minnesota (DRUM).
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1 | INTRODUCTION

Degeneration of both intervertebral discs (IVDs) and facet joints in

the lumbar spine has been associated with low back pain,1–6 but

whether and how IVD or facet joint degeneration contributes to pain

remains an open question.7 Exploration of IVD and facet joint degen-

eration requires reliable, objective, quantitative, noninvasive measures

of the degeneration state. Nondestructive lumbar spine imaging is

achievable by numerous techniques, including computed tomography

(CT), x-ray, and magnetic resonance imaging (MRI). Each of these

techniques offers unique advantages and disadvantages for visualizing

features of tissue morphology and health better than the others. Here,

we focus on MRI analysis due to its ability to capture soft tissue detail,

which has led to its popularity for grading spinal health. Specifically,

T1- and T2-weighted sequence MRI images8–10 that are routinely

available in clinical setting allow quantification of degeneration using

the Fujiwara8,11 grading system for the facet joints and the Pfirr-

mann10 grading system for the IVD. Unfortunately, current MRI-based

analysis techniques are subjective in nature and therefore prone to

high variability and poor inter-rater and intra-rater reliability.12,13

The Fujiwara and Pfirrmann grading systems both use an integer

scale to describe tissue degeneration based on expert rater analysis of

visible features in the MRI image. The Fujiwara scale assigns facet

joint health scores from 1 to 4, where 1 is a healthy joint while 4 is a

severely degenerated joint.8,11 This assessment is made by qualita-

tively analyzing the thickness of the articular cartilage, the hydration

of the joint, and the presence of bone spurs—all of which are known

signs of osteoarthritis.14,15 Since the facet joint is often only a few

pixels wide in the image, and since the light–dark spectrum of the

grayscale image can be skewed by other pixel intensities, assigning a

Fujiwara score is often difficult. In previous research studies, the Fuji-

wara scale has shown low (�30%–40%) inter-rater agreement,13

although most scores differ between graders by only 1 point on the

4-point scale.16 Similar to the Fujiwara system, the Pfirrmann grading

system is used to assess IVD health on a scale from 1 to 5, where 1 is

healthy.10 The Pfirrmann grade is based on the IVD height, clear delin-

eation the nucleus pulposus, and nucleus pulposus hydration. In gen-

eral, Pfirrmann grading has been found to be more robust than

Fujiwara grading, partially due to the IVD's larger size. Thus, the IVD

MRI image contains more pixels, a greater range of tissue hydration

values, and more details than the facet joint images. These details lead

to a higher inter-rater reliability (range from 55 to 83%).10,17,18 Since

both the Fujiwara and the Pfirrmann grading scales ask humans to

assign an integer value based on qualitative examination of images,

they are both subjected to human errors and inconsistencies. For

these reasons, the systems are not frequently used in the clinical set-

ting. Therefore, such scoring systems could be enhanced with objec-

tive automated systems.

Automated scoring techniques have been developed to reduce

inter-rater variability and improve reliability of IVD diagnoses and sub-

jective scoring systems. For example, multiple automatic scoring tech-

niques have been implemented in which the degree of IVD

degeneration, including the degree of disc herniation is detected using

convolutional neural networks (CNN) and semantic segmentation

networks.18–22 These techniques can implement algorithms to isolate

the tissue of interest19,21,23,24 and then identify whether the tissue of

interest is damaged, bulging, or degenerated.18–22 Similarly, CNNs

have been implemented to understand and interpret the severity of

spinal stenosis24 and modic changes in the spine.23 Finally, Pfirrmann

grading of the IVD has been automated using deep learning tech-

niques including a CNN.18,23 The use of a CNN to score the health of

the IVD using the Pfirrmann system has been shown to improve the

inter-rater and intra-rater reliability.18,23 Despite the promise of auto-

mated scoring techniques and automated identification systems for

the IVD, automation of the scoring system for the facet joints

(Fujiwara)8,11 has yet to be completed. Improving the reliability of the

facet joint (Fujiwara) scoring system is possibly more important than

doing so for the Pfirrmann grading system because of the higher

inter-rater13 and intra-rater variability25,26 in Fujiwara grading.

Additionally, grading a series of discs and joints for research pur-

poses is time-consuming and requires special expertise. Due to the

sheer volume of work needed for a large-scale study and busy sched-

ules of specialists, it can be difficult for researchers to find a specialist

to grade disc and joint images within a targeted time frame. An auto-

mated grading system trained based on specialist assigned grades

could help facilitate this process.

Therefore, the goal of this study was to develop, verify, and apply

an automated CNN technique to MRI images of the IVD and facet

joint. We hypothesized that the CNN could improve the reliability of

the Fujiwara scoring system over the standard expert grading in terms

of inter-rater and intra-rater reliability of MRI facet joint scoring.

2 | METHODS

2.1 | Overview

A deep learning technique (deep CNN) was used to analyze MRI

images and to classify health of lumbar discs and facet joints accord-

ing to Pfirrmann and Fujiwara grading systems, respectively. Perfor-

mance of the CNN on both the Pfirrmann and Fujiwara scales was

assessed by comparing the predicted results from the classifier to the

grades assigned by an experienced radiologist. To quantify inter-rater

reliability of the system, percent agreement (PA), Pearson's correlation

and Fleiss kappa values for the predicted results of the test data were

compared with the multiple human grader scores on the same data.

2.2 | Dataset

Clinical MRI images of lumbar spines were obtained from the public-

access Lumbar Spine MRI Dataset.27 This dataset consists of anon-

ymized clinical MRI scans of 515 symptomatic patients suffering from

back pain. Each image stack contains slices of axial and sagittal views

of the lower 3 or 5 lumbar vertebrae and IVDs. All image collection

was performed using T2- and T1-weighted imaging during standard
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care; thus, the scan procedures may have varied across subjects.

Images were excluded if they exhibited signs of severe stenosis or

showed the presence of instrumentation in the lumbar spine. For the

purpose of this study, T2-weighted sagittal and T1-weighted axial

views were used as the input data for scoring on the Pfirrmann and

Fujiwara grading scales, respectively. The number of slices for each

patient ranged from 12 to 20 for both sagittal and axial views.

First, the mid-sagittal and mid-axial slices of each motion segment

were selected (total of 2633 disc images of motion segments from

L1-L2 to L5-S1 and 2377 joint images from both sides of the L1-L2

through L5-S1 motion segments) from T2-weighted sagittal and

T1-weighted axial views. Four graders (two PhD trained spine

researchers, one spine surgeon, and one musculoskeletal radiologist)

graded the IVDs using the Pfirrmann grading system while 5 graders

(two PhD trained spine researchers, one spine surgeon, one neurosur-

geon, and one musculoskeletal radiologist) graded the facet joints on

both sides of the spine using the Fujiwara scoring system. A total of

2366 graded IVD images (90% of total input images) were used to

train the automated algorithm, while 267 graded IVD images (10% of

total input images) were kept aside and used later to test the accuracy

of the automated network solution. For the facet joint, 2135 graded

images (90% of total input images) were used to train the CNN, while

242 images (10% of total input images) were used to test the accuracy

of the automated network solution.

2.3 | Preprocessing

A custom tool written in MATLAB was used to crop the selected

T2/T1-weighted images and define a region of interest enclosing the

disc or one of the facet joints from each level in the center of

the image and approximately 30% of their surroundings (Figure 1).

Images were then grouped based on their assigned graders for Pfirr-

mann (graders A–D) and Fujiwara (graders A–E) grading. For each

joint, the grader who had graded the most images was assigned as the

lead grader, and the performance of the rest of graders was compared

with that grader to measure inter-rater reliability. B.L., a neurosurgery

trained spine surgeon, served as the lead grader for disc images, and

T.T. a radiologist specializing in the musculoskeletal imaging, served as

the lead grader for facet joint images. The images graded by the lead

grader were also used as ground truth labels in training our classifier

algorithms.

To reduce the effect of signal inhomogeneity across the MRI

scans, we normalized the disc images using the mean and standard

deviation pixel intensity of each image. Due to the broader range of

pixel intensity in facet joint images, we first limited the range to one

standard deviation around the mean of pixel intensity values

(μ ± 0.5σ) and then normalized the modified image to the mean and

standard deviation of the preprocessed image. A series of preproces-

sing functions were implemented to resize each disc and facet joint

input image to 64 � 64 and 32 � 32 pixel image, respectively, as the

discs are larger than the fact joints, providing a consistent image reso-

lution for the CNN. These relatively coarse pixel counts were required

to maximize the number of images from the Lumbar Spine MRI Data-

set. Higher resolution images could have been used for some cases,

but doing so would have reduced the number of usable images or

introduced inconsistency in resolution across samples. The resized

images were shuffled and divided into training (80% of image set),

developing (10%), and test datasets (10%). Next, more training images

were generated by flipping the original images horizontally and rotat-

ing them �36
�
(see28–30 for discussion of flipping, rotating, and other

methods for augmenting image datasets). This rotation and flip is

believed to reduce the sensitivity of our model to rotations and mir-

rored images that may naturally occur while acquiring MRI images.

2.4 | Inter-rater reliability

A subset of disc and facet joint images were evaluated independently

by four graders for the Pfirrmann scores and by five graders for the

Fujiwara scores. Images which included all motion segments and levels

of health were selected randomly for each pair of grader X (where

X = B, C, or D for Fujiwara-based grades and B, C, D, or E for

Pfirrmann-based grades) and the lead grader (grader A). Table 1 shows

the number of images graded by the lead grader and each of the other

F IGURE 1 Examples of cropped images for the (A) facet joint and
(B) intervertebral disc.

TABLE 1 Number of images graded by each grader pair of
each type.

Lead grader (A)

Second grader–IVD B 2620

C 500

D 788

Classification Model 267

Second grader–facet B 68

C 301

D 134

E 246

Classification Model 242

Abbreviations: IVD, intervertebral disc.
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graders. PA, Pearson correlation, and Fleiss kappa values were calcu-

lated between each pair of graders and averaged across all the graders

to assess inter-rater reliability among the graders (Table 2).

2.5 | Network architectures

The CNN-based classifier systems take preprocessed

64 � 64/32 � 32 pixel grayscale images of lumbar discs/facet joints

as input and maps to one of the 5 Pfirrmann or 4 Fujiwara grades. The

machine learning pipeline was created using the Tensorflow31

(v.2.9.2) library through the Google Colab Pro platform. Each hidden

layer consists of a two-dimensional (2D) convolution layer followed

by batch normalization, activation, and pooling layers. These hidden

layers were followed by a series of fully connected (FC) layers. The

Bayesian Optimization class of the Keras Tuner library was used on

the development datasets to pick the optimal set of hyperparameters

for each model. Specifically, the number of hidden layers (1 to

6 layers), number of units in each hidden layer (32 to 512 with steps

of 32), activation function choices (relu, tanh, and elu), and optimizer

learning rate (10�4 to 10�2 with a “log” type sampling method) were

automatically adjusted to find the best set of hyperparameters for

each system in order to maximize the accuracy of the models. The

maximum number of trials for the Bayesian optimizer was set to

100 while the remaining parameters were kept at their default values.

A SoftMax output layer was used to calculate the probability vector

over the 4 Pfirrmann or 5 Fujiwara labels. The L1-L2 (Lasso-Ridge)

regularization method and dropout layers were added to the systems

to overcome overfitting to training data. The optimal neural networks

for both systems were trained using Adam optimizer, and checkpoint-

ing was performed by saving the best model at the end of each epoch

if the accuracy was improved compared with the previous saved

model.

2.6 | Validation/performance evaluation

The performance of the system was evaluated by PA, Pearson's corre-

lation coefficient, and Fleiss kappa value between the predicted

scores and ground truth scores (i.e., lead grader's scores). A two-

proportion z-test was adopted to compare the performance of the

CNN-based algorithms with the human results. The null hypothesis

for this comparison was that the probability of grader X (where

X = B, C, or D for Fujiwara-based grades and B, C, D, or E for

Pfirrmann-based grades) agreeing with the lead grader (grader A) is

the same as that of the CNN-based algorithm agreeing with the lead

grader (grader A). p < 0.05 was considered statistically significant.

We categorized the classification results into six groups:

1. Correct classification, high confidence: The algorithm prediction

was the same as lead grader's score, and the probability value for

the predicted grade was greater than 75%.

2. Correct classification, low confidence: The algorithm prediction

was the same as lead grader's score, and the probability value for

the predicted grade was lower than 75%

3. Small error, high confidence: The algorithm prediction was off by

one grading point, and the probability value for the predicted grade

was greater than 75%.

4. Small error, low confidence: The algorithm prediction was off by

one class and the probability value for the predicted class was

lower than 75%.

5. Off by 2 or more grades, high confidence (>1 grade off): The algo-

rithm prediction was off by more than one grading point, and the

probability value for the predicted grade was greater than 75%.

6. Off by 2 or more grades, low confidence (>1 grade off): The algo-

rithm prediction was off by more than one grading point and the

probability value for the predicted class was lower than 75%.

2.7 | Availability of software

All grading software described in this article, as well as the detailed

outputs, are available in the Data Repository for University of Minne-

sota (DRUM:https://hdl.handle.net/11299/264061).

3 | RESULTS

3.1 | Human graders

The distribution of Fujiwara scores and Pfirrmann grades assigned to

the MRI images of the entire dataset by the human graders (Figure 2)

show a strongly skewed distribution of values for the Fujiwara scoring

system (skewness = 0.63) and a more symmetric distribution for the

TABLE 2 Summary of interrater reliability between the graders X (=A, B, C, D, and E) and the lead grader.

A versus B A versus C A versus D A versus E Average

% Agr r κ % Agr r κ % Agr r κ % Agr r κ % Agr r κ

Fujiwara scores

(facet joint)

34 0.4 0.04 43 0.51 0.12 40 0.44 0.16 44 0.52 0.19 40 0.47 0.13

Pfirrmann scores

(IVD)

65 0.7 0.47 50 0.8 0.33 53 0.7 0.34 - - - 56 0.73 0.38

Note: % Agr is the percent agreement, r is Pearson's correlation coefficient, and κ is Fleiss kappa value.
Abbreviations: IVD, intervertebral disc.

4 of 10 NIKPASAND ET AL.

https://hdl.handle.net/11299/264061


Pfirrmann grading system (skewness = �0.15). Fujiwara scores of

grade 4 were identified in only 6.2% of all data (Figure 2A). All other

Fujiwara scores came from between 19.4% and 38.9% of the training

dataset images. For the Pfirrmann grading system, very few images

were graded with a score of 1 or 5, the highest and lowest scores

(2.1% and 3.2% of images for scores of 1 and 5, respectively,

Figure 2B). The other Pfirrmann grades were each assigned to 23.3%

to 38.1% of the images (Figure 2B). This variability in the number of

images assigned to each group may have negatively affected the accu-

racy of our deep learning algorithm.

Comparisons between the lead grader (grader A) and each of the

other graders (Table 2) showed a large amount of inter-rater variability

for the Fujiwara grading system (facet joint) but better performance

for the Pfirrmann grading system (IVD). The agreement rate between

graders ranged from 34 to 44% (average of 0.4) for Fujiwara grading

and 50 to 65% (average of 0.56) for Pfirrmann grading, while the Pear-

son's correlations coefficient ranged from 0.4 to 0.52 (average of

0.47) for Fujiwara grading and 0.69 to 0.79 (average of 0.73) for Pfirr-

mann grading. The Fleiss kappa value ranged from 0.04 to 0.19 (aver-

age of 0.13) for Fujiwara and 0.33 to 0.47 (average of 0.38) for

Pfirrmann grading (Table 2). Under the broad categorizations of Landis

and Koch,32 the Fleiss kappa results correspond to slight agreement

for the Fujiwara grading and fair to moderate agreement for the Pfirr-

mann grading.

3.2 | Classification results—Fujiwara grading of the
facet joint

The CNN classification algorithm performed comparably to the human

graders for both tasks. For the facet joint images, the CNN-generated

Fujiwara scores agreed with the lead grader on 49% of the images

(Table 3), which was slightly higher than the average 40% match rate

for the human graders. Similarly, the Fleiss kappa statistic for the

CNN versus the lead grader was 0.18, which was larger than

the human graders' average κ value of 0.13. In contrast, the

correlation between the CNN result and the lead grader's (grader A)

was lower than for the human graders (0.3 vs. 0.47 for CNN and

human graders average respectively; Table 2 and Table 3). These

results mean that on average the Fujiwara-based model was as good

as a human grader at picking the same score as grader A but produced

larger or less consistent errors when it was not in agreement with

grader A.

Figure 3 contains intensity plots showing the degree of accuracy

both between graders and for CNN in assigning Fujiwara scores.

These plots show that most differences between graders are 1 level

or less. In some cases, a disagreement by one Fujiwara scale point was

more likely than agreement between two graders. For example,

between graders A and B, the most common combination of scores

was a 3 for grader A and a 2 for grader B (22.1%, Figure 3A). Similarly,

between graders A and C, the most common combination of scores

was a 1 for grader A and a 2 for grader B (28%, Figure 3B). The most

popular combination between graders A and D and between graders

A and E were both selecting a score of 2 (16.4%, Figure 3C and 21%,

Figure 3D). The model was also able to accurately predict Fujiwara

scores of 1 and 2 the most (25% for score 1 and 23.6% for score

2, Figure 3E). In addition, differences in scores that were greater than

2 occurred for all comparisons provided. Fujiwara grade 4 was under-

represented in the initial data (only 6.2% of all the facet joint images

were labeled as grade 4). This imbalanced dataset caused the CNN

F IGURE 2 Histogram of dataset for (A) Fujiwara scores and (B) Pfirrmann scores. IVD, intervertebral disc.

TABLE 3 Summary of deep learning algorithm reliability.

Classification model

% Agr r κ

Fujiwara scores

(facet joint)

49 0.3 0.18

Pfirrmann scores

(IVD)

78 0.82 0.68

Note: % Agr is the percent agreement, r is Pearson's correlation

coefficient, and κ is Fleiss kappa value.
Abbreviations: IVD, intervertebral disc.
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algorithm to become biased toward grades 1, 2, and 3 and disregard

grade 4, with the final result being that the CNN algorithm did not

assign any test images a Fujiwara grade of 4 (Figure 3E).

3.3 | Classification results—Pfirrmann grading of
the IVD

The classification CNN method was able to improve the reliability

of the Pfirrmann scoring system. For the IVD images, the CNN-

generated Pfirrmann scores agreed with the lead grader (grader A)

on 78% of the images (Table 3), which was significantly better

than the human graders (p < 10�6). The Fleiss kappa statistic for

the CNN was 0.68, which was, again, much higher than the

human graders and indicative of substantial agreement.32 The cor-

relation between the CNN results and the lead grader's (grader A)

was also higher than for the human graders (0.82 vs. an average

of 0.73; Tables 2 and 3).

Inter-rater agreement plots show the most common combinations

of Pfirrmann scores between graders of MRI images were for scores

in agreement with each other (Figure 4). Grader A versus B showed

the most images in a group with 3 s (Figure 4A), grader A versus C

showed the most images in a group with 4 s (Figure 4B), grader A ver-

sus D showed the most in a group with 3 s (Figure 4C), while our

model often predicted 3 and 4 s in agreement with grader A

(Figure 4D). Similar to the Fujiwara scores but to a lesser extent, all

inter-rater comparisons showed some scoring image differences

greater than 2 values different.

3.4 | Error analysis

Differences were seen in the type of errors that occurred with the

Fujiwara scoring system versus the Pfirrmann grading. For the Fuji-

wara grading of facet joint images (Figure 5A), 49.2% of the data were

labeled correctly. A substantial fraction of the correct and incorrect

grades were cases of low classifier confidence (< 75% assigned proba-

bility). 51% of all high-confidence predictions were correct and 49%

of all low-confidence predictions were correct. The values were com-

parable to the inter-rater match rate of 40%.

F IGURE 3 Intensity plots showing the fraction of images that were given a unique combination of Fujiwara scores between 2 graders or
between the lead grader and the neural network. (A) Grader A versus grader B. (B) Grader A versus grader C. (C) Grader A versus grader
D. (D) Grader A versus grader E. (E) grader A versus the model.

F IGURE 4 Intensity plots showing the fraction of images that were given a unique combination of Pfirrmann scores between 2 graders or
between our ‘gold standard’ grader and the deep learning model. (A) Grader A versus grader B. (B) Grader A versus grader C. (C) Grader A versus
grader D. (D) Grader A versus the model.
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In contrast, 78.3% of IVD images were labeled correctly

(Figure 5B), and the Pfirrmann grade error was most commonly off by

1 grade point (small error). The 1-point errors occurred with both high

confidence (13.1% of all cases, 60.3% of all errors) and low confidence

(6.7% of all cases, 30.8% of all errors). The CNN was off by more than

1 Pfirrmann grade point on only 1.9% of cases (8.7% of all errors). The

CNN for Pfirrmann grading also showed less severe errors than the

Fujiwara classifier. In addition, 82.5% of high-confidence CNN predic-

tions agreed with the lead reviewer, whereas only 62.7% of the

low-confidence predictions did; as for the Fujiwara grading, the low-

confidence prediction results were comparable to the inter-rater per-

formance (56.2% match). Representative MRI images associated with

errors in the Fujiwara and Pfirrmann deep learning classification

methods are shown in Figure 6.

4 | DISCUSSION

Our CNN-based deep learning algorithm showed similar reliability

to the human graders for the Fujiwara grading system and was able to

improve the reliability of the Pfirrmann grading system. The improve-

ment in the reliability of the Pfirrmann grading system is consistent

with previous results obtained for a deep learning algorithm used to

assess the health of the IVD.18,23 Using deep learning to understand

the facet joint is a relatively new concept. Our deep learning model

for Fujiwara scoring was able to capture and correctly identify a simi-

lar amount of MRI images to the average grader, and the high-

confidence predictions from the model in particular matched the lead

grader at a higher rate than the other human graders. Both the model

reliability and the average inter-rater reliability scores (PA and

F IGURE 5 Analysis of the type of errors generated by the CNN classification system algorithm for the (A) Fujiwara grading of the facet joint
and (B) Pfirrmann grading of the intervertebral disc. The inner rings represent the overall accuracy of the models on predicting the grades same as
lead grader. The outer rings show subdivisions of the inner rings that represent the itemized error based on explanation in Section 2.6.

F IGURE 6 Representative
magnetic resonance imaging (MRI)
images of (A) images that were
accurately labeled by the algorithm
(assigned Fujiwara and Pfirrmann

grade: 2 and 3, predicted Fujiwara and
Pfirrmann grade: 2 and 3) (B) images
that were off by 1 grade with high
confidence (assigned Fujiwara and
Pfirrmann grade: 3 and 3, predicted
Fujiwara and Pfirrmann grade: 2 and 4)
(C) off by 1 grade with low confidence
(assigned Fujiwara and Pfirrmann
grade: 2 and 2, predicted Fujiwara and
Pfirrmann grade: 1 and 3) (D) and off
by more than 1 grade (assigned
Fujiwara and Pfirrmann grade: 4 and
1, predicted Fujiwara and Pfirrmann
grade: 2 and 3).
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Pearson's correlation) were less than ideal for the Fujiwara scoring

system. MRI-based assessment of facet joint health is difficult due to

the low MRI resolution and smaller size of facet joints (compared with

IVDs) in the lumbar spine. This low resolution may contribute to the

high inter-rater variability and the high error content of our model. In

the following paragraphs, we explore a series of potential reasons for

the poor agreement in Fujiwara scoring: (1) lack of image detail,

(2) multifaceted nature of joint degeneration and the grading criteria,

(3) insufficient number of training images, and (4) nonuniform distribu-

tion of the training images. The first presents an imaging challenge,

the second an assessment challenge, and the last two machine learn-

ing / training challenges.

We begin with the lack of image detail—the small size of the tis-

sues in question and the limited resolution of the images resulted in a

relatively small amount of information content, especially for the facet

joint. Better resolution would obviously provide more information and

could thus lead to more consistent grading (from both the humans

and the CNN). Improvements to MRI imaging could also improve the

reliability of a machine-learning tool such as ours. These improve-

ments include quantitative weighted T1 and T2 imaging, as has been

proposed for other diarthrodial joints and the IVD.33–37 Due to the

larger size of the IVDs in MRI images, the IVD images have more and

larger features than the facet joint images. These larger and more

detailed features of IVD images make it easier to detect degeneration

more accurately in the IVD than in the facet joints.

A second challenge arises because degeneration is a multiscale,

multitissue, and heterogeneous process that is difficult to capture in a

single MRI image independent of the image resolution. Facet joint

degeneration in particular is characterized by loss of proteoglycan

content, thinning of the articular cartilage, increased joint calcification,

and changes to the subchondral bone.14,15,38 These features of arthri-

tis can vary both across the surface of the tissue and through the

depth of the articular cartilage and the bone.39–41 If one grader puts

more weight on calcification than cartilage thickness compared to

another grader or examines one region of the image more carefully

compared to another grader, they can easily assign different grades to

the same image. It might be possible to address the challenge of

inconsistent grading by limiting the CNN training to images on which

the graders agreed, but doing so would necessarily omit the more dif-

ficult evaluations and thereby might reduce the robustness of the

trained network. Another possible approach would be to train

the CNN to estimate nominally objective quantities (e.g., IVD height

or facet joint cartilage thickness), which could then be used to deter-

mine how different graders weight those quantities in their evalua-

tions, but the intrinsic subjectivity of the grading systems would

remain.

The spinal level (L1 through S1) also has the potential to affect

the cartilage and joint mechanical and structural properties.15 In our

data, the grading system was generated based on a single MRI slice

(mid-axial slice of the facet joints and mid-sagittal slice of the discs). A

more thorough model that used the full volumetric data along the

depth of the 3D MRI stack could result in a better performance. Fur-

thermore, the inter-rater reliability for our data would go up to 87.2%

if a difference of one grade were considered correct. These off-by-

one-grade images could be a sign that the algorithm might be

improved if we were to create more categories that clearly categorize

more features of degeneration. However, the issue of low image reso-

lution and inconsistent pixel intensities still exists with a larger range

of Fujiwara values. Additionally, MRI images are not good at detecting

bone health changes,16 but CT imaging paired with MRI or x-ray imag-

ing paired with MRI together may improve the accuracy of facet joint

health assessments.42 However, this approach may not be a practical

solution, as exposing a patient to two imaging modalities may not be

justified from a patient care perspective.

In light of the complexity of the problem, one must conclude that

some amount of variability in the grading is inevitable.

Turning from issues inherent in grading spinal health to those spe-

cific to this project, the quantity of images in the training dataset and

the distribution of the images in that training dataset will affect the

ability of the model to predict the facet joint health and the IVD

health. The distribution of Fujiwara scores assigned to our training

dataset for the facet joints was skewed. The lowest scores (scores of

1 and 2), which represent the healthiest facet joints, were more com-

mon than the highly degenerated joint scores (scores of 3 and 4). This

same pattern held true for our test dataset as well. Therefore, it is not

surprising that our model accurately identified more facet joints with

scores of 1 and 2 than degenerated facet joints with scores of 3 and

4. An even distribution over all possible values would help the model

to learn features from all groups and would improve the accuracy of

the deep learning model. In contrast, the distribution of Pfirrmann

grades followed a less skewed distribution that did not contain many

‘healthy’ (grade of 1) or severely degenerated discs (grade of 5). This

distribution of IVD grades for a clinical dataset has been seen previ-

ously.18 These distributions of the training dataset, which were out-

side of our control, likely impacted the accuracy of the deep learning

algorithm.

Additionally, the distributions of image scores seen in this study

may be caused by the type of patient that visits the clinic and gets a

standard MRI scan of their lumbar spine. Most of these patients are

suffering from some form of spinal disease or pain. The high number

of grade 1 Fujiwara images is surprising and may reflect the diffuse

nature of low back pain, the challenges in assessing facet joint health,

and/or a bias in our lead grader. Conversely, we expected to have a

large amount of severely degenerated facet joints and IVDs from the

patients in the database. Since the highest scores for both the Fuji-

wara and Pfirrmann grades were assigned to the least number of

images, this may indicate that while most patients have some spinal

degeneration, the degree of degeneration is not typically severe, at

least as measured by MRI.16

From this study, we can conclude that, despite many challenges,

deep learning algorithms have the potential to improve the reliability

of MRI analysis of lumbar spine degeneration and can already perform

at a level comparable to human graders in terms of inter-rater agree-

ment. As clinical MRI imaging of the facet joint improves with steady

technological advancement, the image resolution and the distinction

of facet joint features will be enhanced. As these MRI improvements
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are made, the deep learning techniques outlined in this paper (and

new techniques that may be developed) for the facet joint can be

retrained and improved concomitantly with the imaging technology.

Moreover, it is important to note that using the models introduced in

this paper, it is not clear what features of MRI images cause some

facet joints and IVDs to be accurately labeled and other images to be

not accurately labeled. However, there exist various interpretability

and feature extraction methods, including but not limited to saliency

maps, layer-wise relevance propagation, integrated gradients, and

gradient-based approaches that could unveil critical features of the

input data that significantly contribute to the neural network predic-

tion process. Future work in this study could focus on implementation

of these interpretability techniques to enhance the transparency and

reliability of the deep learning methods.
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