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Abstract: Zearalenone (ZEA), a mycotoxin produced in the genus Fusarium, binds to estrogen
receptors (ER) and is therefore regarded as an endocrine disruptor. ZEA has also been found to
modulate the proliferation and apoptosis of prostate cancer cells in a dose-dependent manner.
This study evaluates whether the effect of a low dose of ZEA (0.1 and 0.001 nM) on the
invasion and migration of prostate cancer cell line PC3 is associated with ERs expression.
The invasion and migration was evaluated by modified Boyden chamber assay, scratch assay,
gelatin zymography, Real Time qPCR (RTqPCR) and Western blot. The involvement of
ERs was evaluated with the selective ER antagonists: estrogen receptor α (ERα) antagonist
1,3-bis (4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy) phenol]-1H-pyrazole dihydrochloride
(MPP) and estrogen receptor β (ERβ) antagonist 4-[2–phenyl-5,7–bis (trifluoromethyl) pyrazolo
[1,5-a]-pyrimidin-3-yl] phenol (PHTPP). ZEA was found to modulate cell motility dependent on
estrogen receptors, particularly ERα. Increased cell migration and invasion were associated with
increased MMP-2 and MMP-9 activity as well as the up-regulation of the EMT-associated genes
vimentin (VIM), zinc finger E-box-binding homeobox 1/2 (ZEB1/2) and transforming growth factor
β 1 (TGFβ1). In conclusion, ZEA might modulate the invasiveness of prostate cancer cells dependently
on ERα expression.
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Key contribution: Zearalenone (ZEA) might modulate the invasiveness and migration of prostate
cancer cells dependently on estrogen receptor α (ERα).

1. Introduction

Mycotoxin contamination is a global problem, concerning both developing and developed
countries [1]. Mycotoxins, products of fungal metabolism, are present in human and
animal food products and are stable under high pressure and temperature conditions [2].
Zearalenone (ZEA), chemically described as 6-(10-hydroxy-6-oxo-trans-1-undecenyl)-β-resocyclic
acid lactone, is a secondary metabolite synthesized in the genus Fusarium, mainly F. graminearum and
F. cuolmorum [3,4]. ZEA contaminates cereals before harvesting and is present in lower extend in meat,
milk, wine, beer, dried fruit and spices [4,5] and might accumulates in the body [6]. The main
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harmful effect of ZEA derives from estrogenic activity, facilitated by its structural similarity to
naturally-occurring estrogens and binding affinity to the estrogen receptors (ERs): ERα and ERβ [3].
ZEA is considered to act as an endocrine disruptor due to the fact that it is able to modulate the
production of progesterone, estradiol, testosterone and cortisol [7], as well as hormone production
and fertility and cause premature birth in domestic animals [3]. It is also well documented that ZEA
modulates the process of cancerogenesis by influencing the process of apoptosis, ROS generation,
the action of oxidative enzymes, DNA adduct formation and fragmentation [8,9]. It has been suggested
that ZEA influences the incidence of breast cancer [10] and esophageal cancer [11]; it has also been
observed to have a dose-dependent effect on prostate cancer (PCa) [12].

Motility is a key part of cell development and takes place both in physiological as well as
pathological processes: embryogenesis, wound healing, tissue regeneration and cancer formation [13].
During the process of carcinogenesis, cell migration plays a central role in the metastasis and invasion
of cancer cells [14]. The process of cell invasion is also associated with the epithelial- mesenchymal
transition (EMT), resulting in the transformation of the cells: a process mainly associated with the
expression of EMT markers and induction of cancer cell invasiveness [15]. Changes in the expression
of transcription factors like Zinc finger E-box-binding homeobox 1/2 (ZEB1/2), Zinc finger protein
SNAIL1 (SNAIL), Twist-related protein 1 (TWIST) or vimentin (VIM) might act as prognostic factors
in the process of carcinogenesis [16]. Interestingly, a body of evidence indicates that ERs regulate the
process of EMT through the expression of Transforming Growth Factor beta 1 (TGFβ1), E-cadherin and
Hypoxia-Inducible Factor 1-alpha (HIF-1α) [17].

It has been found that ZEA might induce both apoptosis and proliferation in prostate cancer
cells in a concentration-dependent manner [12]. The present study evaluates the effect of ZEA
on the cell migration and invasiveness of the prostate adenocarcinoma cell line PC3, at two doses
believed to have a stimulatory effect on PCa cells. It also determines whether the observed effect
is associated with the expression of ERs. It uses the highly-specific ERα and ERβ antagonists
1,3-bis (4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy) phenol]-1H-pyrazole dihydrochloride
(MPP) and 4-[2–phenyl-5,7–bis (trifluoromethyl) pyrazolo [1,5-a]-pyrimidin-3-yl] phenol (PHTPP) to
evaluate whether ERα or ERβ influence the observed effect of ZEA on PC3 cells.

2. Results

2.1. ERα is Responsible for ZEA- Induced PC3 Cell Invasion

The ICC was conducted to evaluate the expression of ERα and ERβ in PC3 cells before and during
the experiment. Both receptors were present in PC3 cells in controls (Cnt) and ZEA with or without
ERs inhibitors treated cells. Interestingly, 0.001 nM ZEA caused visible translocation of ERα to nuclei,
indicating its activation, nevertheless this statement needs conformation in other studies.

A previous study found that ZEA at concentrations of 0.1 and 0.001 nM caused an increase in PC3
cells proliferation and metabolism [12]. Our present findings indicate that while both concentrations
caused an increase in cell invasion, a greater degree was observed for cells treated with 0.001 nM ZEA
than control cells (*** p < 0.001) and non-significant for 0.1 nM ZEA (p > 0.05) (Figure 1B,C).

To determine whether the ERs, together or alone, influence the observed cell invasion, it was
examined whether the presence of ER inhibitors has any effect on control cells. It was found that
inhibition of ERα (MPP) caused a statistically significant increase of PC3 cell invasion (* p < 0.05)
whereas inhibition of ERβ (PHTPP) had the opposite effect and was not significant (p > 0.05). PC3 cells
treated with 0.1 nM ZEA and either MPP, PHTPP or MPP + PHTPP showed no significant change in
cell invasiveness. Treatment with 0.001 nM ZEA + MPP caused a significant decrease in cell invasion
compared to 0.001 nM ZEA alone (*** p < 0.001) or controls with MPP (*** p < 0.001). Treatment with
0.001 nM ZEA + PTHPP also caused a decrease but to a lesser degree and insignificantly than 0.001 nM
ZEA alone (p > 0.05). A similar significant decrease was observed following treatment with 0.001 nM
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ZEA combined with MPP + PHTPP as compared to 0.001 nM ZEA alone (*** p < 0.001), or controls
with both inhibitors (*** p < 0.001) (Figure 1B,C).
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Figure 1. ZEA induces PC3 cell invasion dependent on ERα. (A) the results of ICC of ERα and ERβ 
(red stained) and DAPI (nuclei staining in blue); (B) the results from the cell invasion assay (modified 
Boyden chamber) are expressed as mean ± SE and presented as % of control; (C) representative 
results from cell invasion experiment, cells were stained with crystal violet and photographed in 
inverted microscopy; (D,E) the results from zymography assay are expressed as mean ± SE value as 
% of control cells; (F) representative results from zymography assay; (G,H) the results from the 
RT-qPCR study are expressed as mean ± SE and relative expression of genes was calculated as a ratio 
of ΔΔCt calculated expression of the gene od interest and reference genes: H3F3A, RPLP0 and RPS17; 
(I) the results from Western blot conducted to evaluate the expression of MMP-2, GAPDH was used 
as a reference. Statistically significant results were marked with lines, * p < 0.05, *** p < 0.001. 
ICC—immunocytochemistry, ER—estrogen receptor, DAPI—4’,6-diamidino-2-phenylindole, 
MMP-2—metalloproteinase 2, MMP-9—metalloproteinase 9, RPLP0—60S acidic ribosomal protein 
P0, RPS17—40S ribosomal protein S17, H3F3A—histone H3.3, MPP—ERα antagonist, PHTPP—ERβ 
antagonist, ZEA—zearalenone, Cnt—control cells. 

The next part of the study evaluated whether the observed changes in cell invasion are 
associated with MMP-2 and MMP-9 activity (Figure 1D,E). Treatment with 0.1 nM or 0.001 nM ZEA 
alone was found to have no effect on MMP-2 activity, or only slightly decreased it (p > 0.05) (Figure 
1D). The use of 0.1 nM ZEA + MMP caused non-significant effect on treated cells, whereas 
significantly lower MMP-2 activity was observed following 0.001 nM ZEA + MPP treatment than in 
cells treated with 0.001 nM ZEA alone (* p < 0.05) or in control cells treated with MPP (* p < 0.05, *** p 
< 0.001). No significant decrease in MMP-2 activity was observed for 0.1 nM ZEA + PHTPP as well as 
0.001 nM ZEA + PHTPP as compared to ZEA alone (p > 0.05), although a significant decrease of 
MMP-2 activity was observed for 0.1 nM ZEA + PHTPP as compared to controls with PHTPP (*** p < 
0.001). For both concentrations of ZEA, treatment with both ER blockers together (MPP + PHTPP) 
caused MMP-2 activity to be significantly lower than in controls also treated with MPP + PHTPP (*** 
p < 0.001). 

Figure 1. ZEA induces PC3 cell invasion dependent on ERα. (A) the results of ICC of ERα
and ERβ (red stained) and DAPI (nuclei staining in blue); (B) the results from the cell invasion
assay (modified Boyden chamber) are expressed as mean ± SE and presented as % of control;
(C) representative results from cell invasion experiment, cells were stained with crystal violet and
photographed in inverted microscopy; (D,E) the results from zymography assay are expressed
as mean ± SE value as % of control cells; (F) representative results from zymography assay;
(G,H) the results from the RT-qPCR study are expressed as mean ± SE and relative expression
of genes was calculated as a ratio of ∆∆Ct calculated expression of the gene od interest and
reference genes: H3F3A, RPLP0 and RPS17; (I) the results from Western blot conducted to evaluate
the expression of MMP-2, GAPDH was used as a reference. Statistically significant results were
marked with lines, * p < 0.05, *** p < 0.001. ICC—immunocytochemistry, ER—estrogen receptor,
DAPI—4’,6-diamidino-2-phenylindole, MMP-2—metalloproteinase 2, MMP-9—metalloproteinase 9,
RPLP0—60S acidic ribosomal protein P0, RPS17—40S ribosomal protein S17, H3F3A—histone H3.3,
MPP—ERα antagonist, PHTPP—ERβ antagonist, ZEA—zearalenone, Cnt—control cells.

The next part of the study evaluated whether the observed changes in cell invasion are associated
with MMP-2 and MMP-9 activity (Figure 1D,E). Treatment with 0.1 nM or 0.001 nM ZEA alone was
found to have no effect on MMP-2 activity, or only slightly decreased it (p > 0.05) (Figure 1D). The use of
0.1 nM ZEA + MMP caused non-significant effect on treated cells, whereas significantly lower MMP-2
activity was observed following 0.001 nM ZEA + MPP treatment than in cells treated with 0.001 nM
ZEA alone (* p < 0.05) or in control cells treated with MPP (* p < 0.05, *** p < 0.001). No significant
decrease in MMP-2 activity was observed for 0.1 nM ZEA + PHTPP as well as 0.001 nM ZEA + PHTPP
as compared to ZEA alone (p > 0.05), although a significant decrease of MMP-2 activity was observed
for 0.1 nM ZEA + PHTPP as compared to controls with PHTPP (*** p < 0.001). For both concentrations
of ZEA, treatment with both ER blockers together (MPP + PHTPP) caused MMP-2 activity to be
significantly lower than in controls also treated with MPP + PHTPP (*** p < 0.001).

The addition of both inhibitors to controls caused an insignificant increase in MMP-9 activity
compared to control cells (p > 0.05) (Figure 1E). The increase in MMP-9 activity caused by ZEA alone
was concentration dependent and not significant as compared to controls (p > 0.05). Compared to
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treatment with ZEA alone, 0.1 nM ZEA + MMP induced significantly lower MMP-9 activity (* p < 0.05)
than 0.001 nM ZEA + MMP (p > 0.05). The decrease in MMP-9 activity was significant for 0.001 nM
ZEA + MPP as compared to controls with MPP (* p < 0.05) A statistically significant decrease in
MMP-9 activity was also observed for 0.1 nM ZEA + PHTPP treatment as compared to controls
with PHTPP (* p < 0.05). Treatment with both inhibitors had no significant effect on cell invasion at
either ZEA concentration, although MMP-9 activity was reduced as compared to control (p > 0.05).
A non-significant effect was observed on control cells after addition of MPP and PHTPP (p > 0.05).
The representative results of zymography are presented in the Figure 1F.

The invasion of cells was also evaluated on the mRNA level (Figure 1G,H). MMP-2 expression
was upregulated after ZEA treatment and higher expression was observed for the lower concentration
of ZEA (p > 0.05) (Figure 1G). For the control group, an increase in MMP-2 expression was observed
only following PHTPP addition and was not significant (p > 0.05). At lower concentration of ZEA,
the addition of MPP caused a significant decrease in MMP-2 expression compared to 0.001 nM ZEA
alone (*** p < 0.001). Similar effect was observed for 0.1 nM ZEA + MPP dose and was non-significant as
compared to ZEA alone (p > 0.05). The addition of PHTPP caused a similar effect but to a lower extent
and non-significant (p > 0.05). A decrease in MMP-2 expression was observed for ZEA + MPP + PHTPP
treatment as for ZEA + MPP and this effect was significantly lower for 0.001 nM ZEA + MPP + PHTPP
than 0.001 nM ZEA treatment alone (* p < 0.05).

Compared to controls, MMP-9 expression was significantly higher in cells treated with
0.001 nM ZEA (* p < 0.05) (Figure 1H) but insignificantly higher in cells treated with 0.1 nM ZEA
(p > 0.05). As observed previously, the addition of inhibitors to control cells caused a decrease
in MMP-9 expression in all cases. The expression of MMP-9 was significantly lower for 0.1 nM
ZEA + MPP and 0.001 nM ZEA + MPP as compared to ZEA alone (* p < 0.05 and *** p < 0.001,
respectively). Administration of 0.1 nM ZEA + PHTPP also caused a decrease in MMP-9 expression
but not a significant one; no effect was observed for 0.001 nM ZEA + PHTPP. In addition,
ZEA + MPP + PHTPP treatment caused a decrease in MMP-9 expression at both ZEA concentrations
compared to ZEA treatment alone; however, this decrease was significant only for 0.1 nM ZEA
(*** p < 0.001).

A similar effect was observed for the Western blot results: MMP-2 expression was higher than
control cells values for 0.1 nM ZEA and 0.001 nM ZEA but this decreased after the addition of MPP
alone (Figure 1I). Elevated MMP-2 expression was observed after ZEA + PHTPP administration.
For control cells, MMP-2 expression was suppressed by the administration of MPP or PHTPP alone
and higher in both inhibitors, as compared to control cells alone. MMP-9 activity was not detectable
on Western blot.

2.2. ZEA Modulates the Expression of EMT Genes Dependent on ERα

The next part evaluated the expression of genes associated with EMT: VIM, ZEB1, ZEB2,
TGFβ1 (Figure 2). A tendency in increased VIM expression was observed for lower dose of ZEA
which was decreased after blocking ERα with MPP (Figure 2A). A slight decrease was observed for
PHTPP treatment and a greater decrease for MPP + PHTPP (p > 0.05).

A similar effect was observed for ZEB1 and ZEB2. Cells treated with ZEA alone demonstrated
greater ZEB1 expression than the untreated cells (p > 0.05) (Figure 2B). ZEA + PHTPP treatment caused
no effect on ZEB1 expression; however, expression fell significantly following 0.1 nM ZEA + MPP
or 0.001 nM ZEA + MMP treatment as compared to ZEA treatment alone (* p < 0.05 and ** p < 0.01,
respectively). ZEA + MPP + PHTPP administration reduced ZEB1 expression, although not as much
as MPP alone (p > 0.05). Interestingly, the addition of PHTPP to untreated cells caused significantly
greater ZEB1 expression than in controls without PHTPP (* p < 0.05). A similar effect was observed
for ZEB2 expression, although a significant decrease was observed for treatment with MPP or PHTPP,
or MPP + PHTPP as compared to ZEA alone (Figure 2C). Addition of MPP in both ZEA treatments
caused significant decrease in ZEB2 expression (** p < 0.01 and *** p < 0.001). The decrease was
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also observed after addition of PHTPP and MPP + PHTPP and was significant for 0.1 nM ZEA as
compared to ZEA treatment alone (* p < 0.05 and ** p < 0.01, respectively). Treatment with 0.1 nM
ZEA or 0.001 nM ZEA alone increased TGFβ1 expression but this fell after treatment with ZEA + MPP;
however, this decrease was only significant for 0.001 nM ZEA + MPP compared to 0.001 nM ZEA
alone (** p < 0.01) (Figure 2D). ZEA + PHTPP caused only a slight decrease in TGFβ1 expression and
a similar decrease was observed for MPP + PHTPP (p > 0.05). Similar to ZEB1, the expression of ZEB2
was also upregulated in control cells following treatment with PHTPP (p > 0.05).
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2.3. ERs Are Crucial in ZEA-Induced PC3 Cell Migration 

The next stage examined whether ZEA modulates the migration of PC3 cells and whether these 
effects are associated with ERs (Figure 3). It was found that ZEA might modulate cell migration, 
with those cells treated with 0.001nM ZEA demonstrating a higher level of migration than untreated 

Figure 2. ZEA modulates expression of VIM, ZEB1, ZEB2 and TGFβ1 dependent on ERα expression.
(A) the relative expression of VIM; (B) the relative expression of ZEB1; (C) the relative expression
of ZEB2; (D) the relative expression of TGFβ1. The relative expression of genes are the results from
RTqPCR calculated as the ratio of ∆∆Ct calculated expression of gene of interest and reference genes
RPLP0, RPS17 and H3F3A and are expressed as mean ± SE. Statistically significant results were marked
with lines, * p < 0.05, ** p < 0.01, *** p < 0.001. RPLP0—60S acidic ribosomal protein P0, RPS17—40S
ribosomal protein S17, H3F3A—Histone H3.3, VIM—vimentin, ZEB1—Zinc finger E-box-binding
homeobox 1, ZEB2—Zinc finger E-box-binding homeobox 2, TGFβ1—Transforming growth factor beta
1, MPP—ERα antagonist, PHTPP—ERβ antagonist, ZEA—zearalenone, Cnt—control.

2.3. ERs Are Crucial in ZEA-Induced PC3 Cell Migration

The next stage examined whether ZEA modulates the migration of PC3 cells and whether these
effects are associated with ERs (Figure 3). It was found that ZEA might modulate cell migration,
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with those cells treated with 0.001nM ZEA demonstrating a higher level of migration than untreated
cells (** p < 0.01) (Figure 3A). Significant decrease in cell migration was observed following the addition
of MPP+PHTPP to 0.001 nM ZEA, compared to 0.01 nM ZEA alone (*** p < 0.001). The addition of
MPP and PHTPP to 0.001 nM ZEA caused non-significant decrease in cell migration as compared to
ZEA alone. For the higher ZEA concentration the migration was increased as compared to controls
(p > 0.05); similar cell migration was observed for 0.01 nM ZEA+PHTPP but slightly lower for 0.01nM
ZEA + MPP + PHTPP (p > 0.05). Control cells demonstrated elevated migration only following the
addition of MPP (p > 0.05). Representative images are given in Figure 3B.
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Figure 3. ERs are crucial in PC3 cell migration caused by ZEA. (A) the results of the scratch assay
were expressed as a % of control cells wound closure calculated as a difference between the scratched
area after 0 and 24 h, the results are expressed as mean ± SE, statistically significant differences were
marked with lines, ** p < 0.01, *** p < 0.001; (B) representative results of the scratch assay. MPP—ERα
antagonist, PHTPP—ERβ antagonist, ZEA—zearalenone, Cnt—control.

2.4. The Effect of ZEA on Cell Adhesion to ECM Proteins is Associated with ERα

The next stage examined the effect of ZEA on adhesion to the ECM proteins: collagen I, collagen IV,
laminin and fibronectin. No significant changes were observed regarding PC3 cell adhesion to
fibronectin, collagen I or laminin, although slightly greater adhesion was observed after treatment
with ZEA (Figure 4) (p > 0.05). In all experiments, 0.1 nM ZEA + MPP treatment resulted in either
no effect or an increase in cell adhesion, with a smaller increase observed for 0.001 nM ZEA + MPP.
No such effect was observed for ZEA + PHTPP or ZEA + MPP + PHTPP, indicating that ZEA might
modulate PC3 cell adhesion and ERα might be involved in this effect. Adhesion to collagen IV was only
slightly elevated after ZEA treatment as compared to control cells (Figure 4C) (p > 0.05). Greater cell
adhesion was observed for 0.1 nM ZEA + MPP but the opposite was found for 0.001 nM ZEA + MPP
(p > 0.05). Treatment with 0.001 nM ZEA + MPP caused significantly reduced adhesion as compared
to controls treated with MPP (* p < 0.05). Addition of PHTPP to both ZEA doses caused increase
in cell adhesion as compared to ZEA alone, significant only for 0.1 nM ZEA + PHTPP (* p < 0.05).
In both cases addition of PHTPP and MPP + PHTPP to 0.001 nM ZEA caused significant increase in
cell adhesion to collagen IV as compared to 0.001 nM ZEA + MPP (** p < 0.01). Addition of PHTPP
to both ZEA doses caused significant increase in cell adhesion as compared to controls with PHTPP
(*** p < 0.001). Controls treated with MPP caused non-significant increase in cell adhesion to collagen IV,
whereas contradictory effect was observed for addition of PHTPP as well as the similar one observed
after addition of both inhibitors (* p < 0.05).
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Figure 4. ZEA modulates the adhesion of PC3 cells to ECM proteins. (A) cell adhesion to fibronectin;
(B) cell adhesion to collagen I; (C) cell adhesion to collagen IV; (D) cell adhesion to laminin. The results
are expressed as mean ± SE of % of control. Statistically significant differences were marked with lines,
* p < 0.05, ** p < 0.01, *** p < 0.001. ECM—extracellular matrix, MPP—ERα antagonist, PHTPP—ERβ
antagonist, ZEA—zearalenone, Cnt—control.

3. Discussion

Prostate cancer is the second greatest cause of cancer- related deaths in Poland and represents
a global problem in other European countries as well as the United States [18,19]. Age, ethnicity,
place of residence and diet may be causative factors in prostate tumorigenesis [20]. Estrogens take
part in many physiological processes in men, including both reproduction and carcinogenesis [21].
It is believed that ERα is associated with proliferation whereas ERβ plays a pro- apoptotic role [22],
although some research indicates that the role of ERβ might be twofold, depending on its subtype [23].

The present study examines the proliferation-stimulating effect that low doses of ZEA (0.1 and
0.001 nM) have been found to have on PC3 cells. It examines whether these characteristics are
associated with the process of cell motility and evaluates the role of estrogen receptors in this process.
As ZEA has been reported to bind to both ERs in a similar way to β-estradiol, both antagonists of ERs
were used. A significant finding is that our results indicate that ZEA acts directly on prostate cancer
cells via ERs. A relationship was found between the increase in cell viability observed previously [12]
and the increase in cell invasiveness, cell migration, MMP-2 and MMP-9 activity, as well as with the
expression of genes associated with the EMT process, observed in the present study. This effect appears
to be more associated with ERα than ERβ signaling, although it is possible that differences in the cell
motility processes might be associated with differences in ER type.
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ZEA has been reported to have concentration-dependent pro-apoptotic activity in both prostate
cancer cells [12] and breast cancer cells [24]. The discrepancies in the observed results might be
associated with the fact that a strong estrogenic signal is observed after treatment with the lower dose
of ZEA (0.01 nM) [25], as were greater pro- proliferative and invasive effects.

It was previously reported that ZEA might modulate the proliferation and cell migration of
a colon carcinoma cell line [13] as well as a breast cancer cell line [10,26]. Yip et al. showed that the
observed effect of ZEA on breast cancer cells might be associated with the direct influence on ERs and
the modulation of MAPK signaling pathways, which are mostly associated with ERα activation [26].
Our results also confirm that the pro-invasive effect of ZEA is associated with the activation of ERα
receptor rather than ERβ. In breast cancer cells, ERα is responsible for the proliferation and survival
of cells due its two-fold action: via classical ERs activation and gene regulation through estrogen
response elements (ERE), as well as via non-classical activation through signal transduction via
Ras/mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K/Akt) [27].

ZEA is known to be a selective modulator of estrogen receptors (SERM) and an endocrine
disruptor chemical (EDC) because of its hormonal-balance disturbances in animals and humans [3].
This has been confirmed by other studies where ZEA was reported to modulate the proliferation
of cells through ERs [28,29]. Similar to estradiol, ZEA might modulate the process of both
EMT and cell invasiveness. Estrogens have been reported to modulate cell invasion via MMP-2
up-regulation [30]. Our results show that ZEA might up-regulate the expression of both MMP-2 and
MMP-9; however, the blockage of ERα with MPP diminished both their activity and expression.
Moreover, those changes were also confirmed by up-regulation of TGFβ1, a multifunctional
cytokine known to modulate the expression of MMP, as well as other ECM components [30].
Interestingly, we observed that changes in the adhesion to ECM molecules after ZEA treatment
were not so spectacular and a visible decrease in adhesion was observed only for the lower dose of
ZEA. This fact might be associated with previous observations indicating that 0.001 nM ZEA had
a greater stimulatory effect on cell proliferation than 0.1 nM ZEA [13].

EMT is a complex process mainly associated with embryogenesis and development; in addition
to basic physiological process, it is also associated with cancer progression and metastasis [17].
Recent research indicates that ERs might also be involved in EMT in prostate tissue, mainly by
modulation of MMP-2, MMP-3 [31] via ERα, as well as VEGF and HIF-1α via ERβ activation [32].
Our present findings indicate that ZEA is able to modulate MMP-2 and MMP-9 activity and expression,
as well as the expression of other EMT genes: VIM, ZEB1, ZEB2 and TGFβ1. Moreover, our results
suggest that ERα is more closely associated with observed effect of ZEA than ERβ, due to the decrease
in expression observed after the addition of MPP, an ERα antagonist.

Our findings confirm that ZEA might act as estrogen in prostate tissue and that it modulates
both hormonal balance and tumorigenesis [3]. The estrogenic activity of ZEA in prostate tissue,
possibly acting through ERα, whose effect might be associated with the proliferation, invasiveness
and migration of cancer cells, is similar to those that caused by estrogen: It is known that generally
ERα is responsible for the proliferation of prostate cancer cells, whereas ERβ is believed to have the
opposite effect [32,33]. Moreover, up-regulation of the TGFβ1 gene, as well as ZEB1, indicates that
ZEA-induced proliferation might be associated with MAPK signaling, known to be involved with ERα
activity in prostate tissue [34], although this statement needs to be confirmed in further studies.

4. Conclusions

To our knowledge, this is the first study to demonstrate that the proliferative effect of ZEA
on prostate cancer cells is associated with increased cell invasiveness and migration and that these
processes are probably triggered by ERα. Due to the fact that more studies have been carried out to
present the dual role of ZEA on cancer cells, a possible explanation of these effects is associated with
the present and direct stimulation of one type of ER, i.e., ERα or ERβ, which are known to play complex
and contradictory roles in the process of carcinogenesis. To confirm this statement, more research
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studies, including in vivo models should be carried out to evaluate the effect of ZEA contamination in
the diet on the process of carcinogenesis in hormone-sensitive tissues.

5. Materials and Methods

5.1. Cell Culture

The PC3 human prostate cancer cell line was purchased from DSMZ (Leibniz Institute DSMZ-
German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany) cells were
cultured in a humidified incubator at 37 ◦C with 5% CO2 in RPMI 1640 medium (Thermo Fisher
Scientific Inc/Life technologies, Waltham, MA, USA) supplemented with 10% heat-inactivated Fetal
Bovine Serum (FBS) (Thermo Fisher Scientific Inc/Life technologies, Waltham, MA, USA), 1 mM
Sodium Pyruvate (Thermo Fisher Scientific Inc/Life technologies, Waltham, MA, USA), 10 mM
HEPES Buffer (Thermo Fisher Scientific Inc/Life technologies, Waltham, MA, USA) and antibiotics
(Penicillin 50 U/mL; Streptomycin 50 µg/mL; Neomycin 100 µg/mL) (Thermo Fisher Scientific
Inc/Life technologies, Waltham, MA, USA). During each experiment, PC3 cells were serum deprived
and cultured in phenol red-free medium.

Stock solutions of ZEA (Sigma-Aldrich, Saint Louis, MO, USA). MPP (Santa Cruz Biotechnology,
Dallas, TX, USA) and PHTPP (Santa Cruz Biotechnology, Dallas, TX, USA) were prepared in methanol,
water and DMSO, respectively. The final concentrations of tested ZEA, MPP and PHTPP were
achieved by the addition of phenol red- free RPMI culture medium. To exclude the potential influence
of the solvent, the cells were treated with methanol/DMSO at the highest concentrations used in the
study and no statistically significant decrease in viability was observed. Therefore, for the rest of
experiment, non-treated cells were used as control cells. For all experiments, the cells were treated
with ZEA (0.1 nM, 0.001 nM), combinations of ZEA with 100 pM MPP and/or 100 pM PHTPP (0.1 nM
ZEA + MPP, 0.001 nM ZEA + MPP, 0.1 nM ZEA + PHTPP, 0.001 nM ZEA + PHTPP, 0.1 nM ZEA + MPP
+ PHTPP, 0.001 nM ZEA + MPP + PHTPP) or inhibitors alone (Cnt + MPP, Cnt + PHTPP, Cnt + MPP
+PHTPP) to evaluate its effect on control cells. The cells were incubated for 24 or 72 h as indicated.

5.2. Immunocytochemistry (ICC)

To prepare the cultures, 15 × 104 cells were seeded on a 96-well plate and incubated under
standard conditions. Next day, the medium was exchanged for the experimental medium and the
cells were incubated for 72 h. After the incubation time, the media were removed and wells were
fixed with 4% paraformaldehyde (PFA), washed three times with phosphate- buffered saline (PBS) and
permabilizated in PBST (PBS-Tween 20) for 10 min. The wells were then blocked in 1% non- fat milk in
PBST for 30 min and incubated overnight at 4 ◦C with primary antibodies against ERα (1:50, sc-8005,
Santa Cruz Biotechnology, Dallas, TX, USA), ERβ (1:50, sc-6820, Santa Cruz Biotechnology, Dallas,
TX, USA) in PBST. The following day, the plate was washed three times with PBS and incubated with
secondary antibodies: AlexaFluor® 594 rabbit anti-goat IgG and AlexaFluor® 594 goat anti-mouse IgG
(1:100) in PBST for one hour. Following this, they were washed once again with PBS and stained with
DAPI (Sigma Aldrich, Saint Louis, MO, USA) before being washed two times with PBS and visualized
at a FLoid Cell Imaging Station (ThermoFisher Scientific, Waltham, MA, USA).

5.3. Cell Adhesion Assay

The cells were seeded on six-well plates at a density of 5 × 105/well and incubated to reach
80% confluence (one to two days). The medium was then exchanged for experimental media. After 72 h,
the cells were detached with Trypsin/EDTA solution (ThermoFisher Scientific Inc., Waltham, MA, USA)
and counted on an automated Cell Counter (ThermoFisher Scientific Inc, Waltham, MA, USA).
Following this, 1 × 105 of cells were seeded on 24-well plates coated with collagen type I, collagen type
IV, laminin or fibronectin (Corning, New York, NY, USA). The plates were then incubated at 37 ◦C
in a standard culture conditions for 1.5 h. After the incubation medium was removed, the wells
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were washed three times with PBS to remove the unattached cells. The cells were then stained with
0.1% crystal violet for 10 min, washed three times with water and dried. The cells were dissolved in
10% acetic acid. The solute mixture was transferred to a 96-well plate (200 µL/well) and absorbance
was measured at 550 nm on an ELX U808IU plate reader (BioTek, Winooski, VT, USA). The experiment
was conducted in three replicates.

5.4. Monolayer Wound Migration Assay

PC3 cells were seeded on 12-well plates and left to reach 100% confluence. Cell monolayers were
wounded as described previously [35] and the medium was exchanged for experimental medium
supplemented with 0.5 mM solution of hydroxyurea (Sigma-Aldrich, Saint Louis, MO, USA). At the
beginning of incubation time (0 h) and after 24 h, cells were photographed with an Olympus DP20
camera (Olympus, Shinjuku, Tokyo, Japan), magnitude 40×. Migration was calculated as the difference
between the area of the wound after 24 h and 0 h and expressed as % of control (migration assay for
control cells). All calculations were performed in MicroImage (Olympus, Shinjuku, Tokyo, Japan).
The experiment was conducted in triplicate.

5.5. Cell Invasion Assay

Units of 1.5 × 105 of cells in 600 µL of experimental media were seeded on 8 µm pore transwell
12-well inserts coated with 100 µL GeltrexTM (ThermoFisher Scientific Inc, Waltham, MA, USA) at
a final concentration of 200 µg/mL (modified Boyden chamber assay) and incubated for 24 h on
companion plates filled with 2 mL of standard culture medium (10% FBS) without antibiotics. The cell
inserts and companion plates were washed three times with PBS, fixed with 4% PFA (five minutes),
washed once again with PBS and stained with 0.1% crystal violet for 10 min. The non-invasive cells
that remained on the upper surface of the filter were removed with cotton wool. The stained invasive
cells on the inserts were photographed with an Olympus DP20 camera before being dissolved in
200 µL of 10% acetic acid and transferred to a 96-well plate. The absorbance was measured at 550 nm
on an ELX U808IU plate reader. The experiment was conducted in triplicate.

5.6. Gelatin Zymography

Units of 5 × 105 cells were seeded onto six-well plates and incubated until 90% confluence.
Next, the cells were treated with experimental media, as described previously, for 24 h, after which
time, the media were collected. The concentration of the protein content was calculated with
a QubitR Protein Assay Kit (ThermoFisher Scientific, Inc, Waltham, MA, USA) according to the
manufacturer’s instructions. After assay, 7 µg of protein was loaded on 10% gelatin zymography
gels and subjected to electrophoresis (120 V, two hours, on ice) and then incubated in 2.5% Triton
X-100 (Sigma-Aldrich, Saint Louis, MO, USA) two times for 30 min. Next gels were incubated 48 h
in developing buffer in 37 ◦C to enable the determination of total proteolytic MMP activity. The next
day, the gels were stained with Coomassie brilliant blue (Sigma-Aldrich, Saint Louis, MO, USA) and
destained with 50% methanol and 20% acetic acid. Areas of enzymatic activity appeared as clear
bands over a dark blue background. Gels were scanned and the intensity of bands was calculated
in inverted negative image using ImageJ software (Wayne Rasband, National Institutes of Health,
Bethesda, MD, USA). The experiment was run in triplicate.

5.7. Western Blot

The cells were seeded on Petri dishes and induced as described previously. After 72 h, the cells
were detached and the protein was isolated with RIPA buffer (Sigma-Aldrich, Saint Louis, MO, USA)
as described previously [12]. Membranes were blocked in 5% fat-free milk in TBST buffer prior
to overnight incubation in 4 ◦C in the primary antibodies anti- MMP-2 (1:200 in 1% fat-free milk,
SantaCruz Biotechnology, Dallas, TX, USA) or anti-GAPDH (1:1000, SantaCruz Biotechnology, Dallas,
TX, USA) as a reference. After incubation, the membranes were washed three times with TBST
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buffer and incubated with anti-rabbit and anti-mouse secondary antibodies (1:15,000, Sigma-Aldrich,
Saint Louis, MO, USA) for MMP-2 and GAPDH, respectively, for four hours at 4 ◦C. The membranes
were washed once again and the bands were visualized with using Novex® AP Chromogenic Substrate
(BCIP/NBT) (Thermo Fisher Scientific, Inc, Waltham, MA, USA). Densitometric analysis was conducted
with ImageJ [36] (National Institutes of Health, Bethesda, MD, USA). The experiment was conducted
in triplicate.

5.8. Real Time qPCR (RTqPCR)

cDNA was synthesized from 5 µg of total RNA using ImProm RT-IITM reverse transcriptase
(Promega, Madison, WI, USA) according to the manufacturer’s instructions. Reverse transcription
was conducted as described previously [17]. A LightCycler 96 (Roche) was used to perform
the RT-qPCR reaction with 2 µL of cDNA. Primers were designed using Primer3 software [37]
(Cambridge, MA, USA) (Table 1). The analysis was performed using DFS-Taq DNA Polymerase
kit (BIORON, Ludwigshafen, Germany) according to the manufacturer’s instructions. The Human
Reference RNA (Stratagene, San Diego, CA, USA) was used as a calibrator for each reaction.
The relative expressions of TGFβ1, VIM, ZEB1, ZEB2, MMP-2 and MMP-9 were normalized to
three reference genes: ribosomal protein S17 (RPS17), ribosomal protein P0 (RPLP0) and histone
H3.3A (H3F3A). In order to avoid detection of non-specific products for each reaction, melting curve
analysis was performed. Meting curve analysis showed specificity of the product for each primer set.
The efficacy of all primers sets determined on standard curve was from 91.72 to 121.82%. The linearity
of each primer set was determined (R2) in range 0.93–0.99. The qPCR array data was analyzed using
the ∆∆Ct method. The results were obtained in duplicate from three repeats of the experiment.

Table 1. Primers used in RTqPCR. VIM-vimentin; ZEB1—zinc finger E-box binding homolog
1; TGFβ1—transforming growth factor β1; ESR1-estrogen receptor α; MMP-2—metalloproteinase
2; MMP-9—metalloproteinase 9; RPLP0—ribosomal protein P0; RPS17—ribosomal protein R17;
H3F3A—histone H3.3A; bp—base pair.

Gene Primer Sequence (5’-3’) Product Size (bp)

H3F3A AGGACTTTAAAAGATCTGCGCTTCCAGAG
ACCAGATAGGCCTCACTTGCCTCCTGC 74

MMP-2 ACCAGCTGGCCTAGTGATGATGTT
TGTCCTTCAGCACAAACAGGTTGC 184

MMP-9 CTGGCAGGGTTTCCCATCAG
GCAGTACCACGGCCAACTAC 101

RPLP0 ACGGATTACACCTTCCCACTTGCTAAAAGGTC
AGCCACAAAGGCAGATGGATCAGCCAAG 69

RPS17 AAGCGCGTGTGCGAGGAGATCG
TCGCTTCATCAGATGCGTGACATAACCTG 87

TGFβ1 CAATTCCTGGCGATACCTCAG
GCACAACTCCGGTGACATCAA 86

ZEB1 GGAAATCAGGATGAAAGACA
CACACAAATCACAAGCATAC 136

ZEB2 CTAACCCAAGGAGCAGGTAATC
GTGAATTCGCAGGTGTTCTTTC 96

VIM AGCCGAAAACACCCTGCAAT
CGTTCAAGGTCAAGACGTC 72
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5.9. Statistical Analysis

The results are expressed as a mean ± SE and were analyzed with one-way ANOVA.
Values below p = 0.05 were considered statistically significant. GraphPad Prism (GraphPad Software,
La Jolla, CA, USA) was used for all statistical analyses.
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