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Abstract: Aging of the heart is associated with a blunted response to sympathetic stimulation,
reduced contractility, and increased propensity for arrhythmias, with the risk of sudden cardiac
death significantly increased in the elderly population. The altered cardiac structural and
functional phenotype, as well as age-associated prevalent comorbidities including hypertension
and atherosclerosis, predispose the heart to atrial fibrillation, heart failure, and ventricular
tachyarrhythmias. At the cellular level, perturbations in mitochondrial function, excitation-contraction
coupling, and calcium homeostasis contribute to this electrical and contractile dysfunction. Major
determinants of cardiac contractility are the intracellular release of Ca2+ from the sarcoplasmic
reticulum by the ryanodine receptors (RyR2), and the following sequestration of Ca2+ by the
sarco/endoplasmic Ca2+-ATPase (SERCa2a). Activity of RyR2 and SERCa2a in myocytes is not only
dependent on expression levels and interacting accessory proteins, but on fine-tuned regulation via
post-translational modifications. In this paper, we review how aberrant changes in intracellular Ca2+

cycling via these proteins contributes to arrhythmogenesis in the aged heart.

Keywords: calcium signaling; cardiac arrhythmia; ageing; ryanodine receptor; sarco/endoplasmic
Ca2+-ATPase

1. Introduction

Heart disease remains the leading cause of death in the US [1], in part due to the aging population.
There is a significantly increased incidence of cardiovascular disease and arrhythmia in the elderly [2,3],
and over 130 million adults are projected to have a form of cardiac disease by 2035, with costs to the
economy expected to top $1 trillion [1]. An understanding of the molecular and cellular mechanisms
underlying arrhythmogenesis in aging remains paramount for the development of targeted therapeutics
that may reduce this burden.

At the cellular level, the cardiac disease phenotype is a culmination of altered response to
β-adrenergic stimulation [4–6], mitochondrial dysfunction [7], increased reactive oxygen species (ROS)
emission [8,9], and dysregulated Ca2+ homeostasis [10]. This causes impaired systolic and diastolic
function, impaired relaxation, and cardiac arrhythmia.

Contraction and relaxation of the cardiomyocyte is driven by precise, coordinated
excitation-contraction coupling, which is the process linking electrical excitability and intracellular
Ca2+ homeostasis. Triggering action potentials depolarize the cell and open L-type Ca2+ channels
(LTCCs) at the sarcolemma, which initiates Ca2+ release from the sarcoplasmic reticulum (SR) Ca2+

release channels and the cardiac ryanodine receptors (RyR2s). Global increases in intracellular Ca2+

concentration ([Ca2+]i) activate contractile machinery, which initiates cardiac systole. Relaxation
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and diastole ensue when Ca2+ is extruded from the cytosol via the Na+/Ca2+ exchanger (NCX1,
major cardiac isoform) and sequestered into the SR via the sarco/endoplasmic reticulum Ca2+-ATPase
(SERCa2a, major cardiac isoform). Any perturbations in intracellular Ca2+ handling can, therefore,
alter contractility and electrical stability of the heart. It is well established that excitation-contraction
coupling becomes dysfunctional with age, which drives increased propensity for cardiac arrhythmias
in the elderly population [10,11].

We and others have comprehensively reviewed the function, post-translational modifications, and
role of excitation-contraction coupling proteins in the development of cardiac arrhythmia [12–16]. In
this case, we provide a more concentrated focus on aberrant intracellular Ca2+ release and mechanisms
of arrhythmogenesis that occur in the aged heart.

2. Intracellular Ca2+ Homeostasis in the Aged Heart

2.1. Ryanodine Receptor

Much of the intracellular Ca2+ required for cardiac contraction comes via the major intracellular
SR Ca2+ release channel, RyR2 [17]. Within junctional SR, RyR2 channels are in close proximity
of LTCCs to facilitate rapid and coordinated Ca2+ transport upon sarcolemma depolarization. A
small LTCC-mediated influx of Ca2+ into the cytosol activates single clusters of RyR2 channels.
The subsequent increase in local [Ca2+]i, known as a Ca2+ spark [18], activates other clusters of
RyR2 channels and triggers a much larger Ca2+-induced Ca2+ release (CICR) from the SR across the
cardiomyocyte [19]. The summation of Ca2+ sparks results in a global increase in [Ca2+]i, or Ca2+

transient, which initiates muscle contraction.
The open probability of RyR2 channels is finite, which leads to small and unsynchronized SR

Ca2+ release events during diastole known as SR Ca2+ leak [20]. Some of this leak can be visualized as
Ca2+ sparks, while some is effectively invisible due to current detection limits. Although leak plays an
important physiological role in determining SR Ca2+ content, an enhanced leak can be detrimental to
cardiac function [13,16,21]. Increased spontaneous Ca2+ leak during diastole promotes an untimely
inward depolarizing current via NCX1, which leads to early and delayed afterdepolarizations (EADs
and DADs, respectively) and the initiation of triggered activity. A reduction of SR Ca2+ release
during systole also contributes to diminished contractile function, which predisposes the heart to
arrhythmogenesis [14,21,22].

Leak is elevated in the failing heart [23], as well as in conditions characterized by gain-of-function
mutations in proteins of the RyR2 macromolecular complex, such as catecholaminergic polymorphic
ventricular tachycardia (CPVT) [24,25]. It is also evident that Ca2+ leak is elevated in the aging
heart [9,26–28]. The propensity for diastolic Ca2+ sparks and waves was shown to be significantly
increased in aged mice, while stabilization of interdomain interactions in RyR2 via application of
therapeutic dantrolene could reduce excessive SR Ca2+ leak and attenuate these pro-arrhythmic
events [28]. In aged rat ventricular myocytes, Zhu et al. 2005 reported a decreased Ca2+ transient
amplitude and a reduced SR Ca2+ content, as well as an increased spontaneous Ca2+ spark frequency
with a reduced average amplitude [27]. Single channel studies revealed that the open probability of
RyR2 isolated from aged ventricular myocytes was increased, but with a shorter mean open time,
which explains the increase in spark activity. The authors posited that posttranslational modifications
of RyR2 may increase the sensitivity to activating Ca2+.

Dynamic and reversible posttranslational modifications of RyR2 are key to modulating channel
open probability and grading SR Ca2+ release during changing metabolic demands. Phosphorylation of
cardiac ion channels and proteins during β-adrenergic stimulation, including RyR2, is well established
to increase positive chronotropic and inotropic effects on cardiac function [29,30]. Associated kinases
of the RyR2 complex include protein kinase A (PKA), Ca2+/calmodulin-dependent kinase II (CaMKII),
and associated phosphatases include protein phosphatase 1, 2A, and 2B (PP1, PP2A, and PP2B,
respectively). The altered phosphorylation status of RyR2 and changes in the activity of associated
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kinases and phosphatases have long been implicated in aberrant Ca2+ cycling, and this has been well
documented in many animal models of cardiac disease, as well as in humans [29,30]. Our current
understanding is that both maximum phosphorylation and incomplete dephosphorylation of RyR2 can
result in increased activity of the channel [30]. An augmented SR Ca2+ leak that is worsened by these
modifications can initiate triggered activity and premature ventricular contractions (PVCs), which
may degenerate into polymorphic/bidirectional ventricular tachycardia/fibrillation. Since β-adrenergic
signaling is deranged in the aging heart [6], one might expect to see reduced PKA-mediated RyR2
phosphorylation. Cooper et al. (2013) reported unchanged RyR2 phosphorylation at PKA-specific
sites Serine-2808 and Serine-2031 under basal conditions in aged ventricular myocytes from female
rabbits [9], and there are limited data regarding phosphatase association and activity on RyR2 in
cardiac aging. The relevance of PKA-mediated phosphorylation of RyR2 to an enhanced SR Ca2+ leak
remains debated [21,31–33].

On the other hand, there is substantial evidence to support the role of CaMKII-mediated
phosphorylation in modulating RyR2 channel function in both health and disease [34–38]. Cooper et al.
(2013) also demonstrated that, in the presence of β-adrenergic agonist isoproterenol, RyR2
phosphorylation at CaMKII site Serine-2814 was significantly increased in ventricular myocytes
from old rabbit hearts (four to six years old) in comparison to young (five to nine months old) [9]. A
significantly increased activity of stress response kinase JNK2 was reported to activate CaMKII and,
thus, upregulate RyR2-mediated diastolic SR Ca2+ leak in aged mouse atria (24–32 months old) [39].
Guo et al. (2014) observed increased RyR2 phosphorylation at CaMKII-specific site S2814 in aged
mouse atrial myocytes, which increased aberrant intracellular waves and facilitated AF initiation [40].
This was in conjunction with increased oxidation of the channel.

As another possible posttranslational modification of RyR2, oxidation destabilizes interdomain
interactions [41–43] and increases open probability of the channel [44,45]. Accelerated SR Ca2+ leak
via oxidized RyR2s in diseased hearts results in diminished systolic Ca2+ release, due to substantial
depletion of SR Ca2+ content during diastole. At faster pacing rates, this can lead to the occurrence of
Ca2+-dependent action potential duration alternans. These beat-to-beat fluctuations can contribute
as a substrate for arrhythmia [46–49]. Increased RyR2 activity, in conjunction with accelerated
SERCa2a-mediated SR Ca2+ uptake during β-adrenergic stimulation, also enhances the propensity
for the generation of proarrhythmic, diastolic Ca2+ waves [36,45,50–55]. Spontaneous Ca2+ waves
that are large and/or fast enough can evoke NCX1 current that is large enough to reach a threshold
for the generation of an extrasystolic action potential, which underlies triggered activity at the organ
level [56]. We have previously demonstrated that the age-associated increase of ROS production by
mitochondria in aged rabbit ventricular myocytes leads to thiol-oxidation of RyR2, which underlies
channel hyperactivity [9]. The formation of advanced glycation end products (AGEs) on proteins is
an additional posttranslational modification, first reported to modulate RyR2 in a model of chronic
diabetes [57]. Glycation of RyR2 has also recently been documented in myocytes in aged mice
(>20 months old) and atrial appendages of elderly patients (>75 years old) [58] and might contribute
to enhanced SR Ca2+ leak. Increased Ca2+ leak due to an altered refractory period for RyR2-mediated
SR Ca2+ release [51,59,60] contributes to the pathogenesis of triggered activity. Impaired refractoriness
and reduced subsequent Ca2+ transient amplitude in aged myocytes may also facilitate the onset of
cardiac alternans that can drive arrhythmogenesis in the elderly [46–49].

Expression levels of RyR2 in aging are generally reported as unchanged [9,27,61–63]. However, as
large macromolecular complexes, RyR2 can modulate the altered expression and activity of multiple
accessory proteins such as calmodulin (CaM), calsequestrin (CSQ2), triadin, and junctin [64,65]. Most
studies to date report no changes in CSQ2 protein expression levels or transcriptional levels [27,62,66],
but, more recently, significantly decreased CSQ2 protein levels were observed in aged human atrial
myocytes (>75 years old) in conjunction with significantly reduced SERCa2a expression and SR Ca2+

content [67]. Reduced CSQ2-mediated buffering of Ca2+ within the SR has been reported to cause
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spontaneous activation of RyR2 [68,69]. The expression and function of other accessory proteins in
cardiac aging remain to be explored.

2.2. Sarcoplasmic Reticulum Ca2+-ATP-ase

After intracellular Ca2+ release, [Ca2+]i must be sufficiently reduced for muscle relaxation.
Sequestration of Ca2+ from the cytosol back into the SR occurs via SERCa2a, which is an ATP-dependent
process that restores SR Ca2+ content. The affinity of SERCa2a for Ca2+ and, thus, its pumping activity is
negatively regulated by association with inhibitory protein phospholamban (PLB). Phosphorylation of
PLB by PKA or CaMKII relieves this inhibition, which enhances SERCa2a Ca2+ affinity and stimulates
SR Ca2+ uptake [70]. An age-associated reduction in SERCA2a-mediated SR Ca2+ uptake is documented
in most studies, but is not universal [9,61,71,72]. Reduced pump activity can be due to either reduced
expression levels or reduced phosphorylation of the SERCa2a/PLB complex [61,62,66,70,73,74]. Since
the SR Ca2+ load is a critical factor of cardiac alternans [46], depressed SERCa2a activity in cardiac
aging can cause this phenomena, as well as triggered activity, due to increase Ca2+ extrusion via
NCX1 [75].

Protein expression levels of SERCa2a in aged vs. young myocytes are reported as unchanged [9,53,74]
or significantly reduced [66,76–78]. A decreased SR Ca2+ content and depressed Ca2+ transient
amplitude was associated with a decrease in SERCa2a and CSQ2 levels in human atrial myocytes
(>75 years old) [67]. The expression of PLB is purported to progressively increase with age [79],
in which reduces the activity of SERCa2a that may be associated with increased pump inhibition.
Schmidt et al. (2005) reported a 40% decrease in SERCa2a protein content in senescent myocardium
of rats compared to adult (26 months old vs. 6 months old), with reduced activity [76]. Given that
Ca2+ efflux into the SR in an ATP-dependent process, SERCa2a overexpression could increase energy
requirements in the aged heart. Consumption of ATP by SERCa2a accounts for ~15% of cardiac energy
usage [80] and the decreased energy reserve may also contribute to contractile dysfunction in the
aged heart. Although SERCa2a overexpression could increase energy requirements of the aged heart,
restoration of protein levels by adenoviral gene transfer was shown to normalize diastolic function
in vivo, which restores the contractile reserve in aged rat myocardium [76]. Attenuating reduced
SERCa2a-mediated Ca2+ buffering capacity by gene transfer of parvalbumin also improved diastolic
function and force frequency relationship in aged rats [76,81].

As β-adrenergic signaling is deficient in the aged heart, this leads to a markedly reduced
PKA-dependent phosphorylation of PLB [10,82]. Xu and Narayanan (1998) suggested that an age-related
decline in SERCa2a activity may be attributed to altered CaMKII-mediated phosphorylation, given
the reduced expression of CaMKII δ isoform in aged rats (26–28 months old) [61]. This would reduce
endogenous CaMKII-mediated PLB/SERCa2a phosphorylation, which also reduces pump activity.
Altered phosphatase activity may also modulate the phosphorylation status of the SERCa2a/PLB
complex, with dephosphorylation of PLB regulated by PP1. Significantly elevated activity of PP1 has
been reported in models of heart failure, which is attributable, in part, to reduced levels of its endogenous
inhibitor protein I-1 [83–87]. It was shown in the aged mouse heart (20 months old) that inducible
expression of constitutively active I-1 increased phosphorylation of PLB at Serine-16/Threonine-17, and
this maneuver potentially offset enhanced CaMKII-mediated RyR2 phosphorylation, since incidences
of arrhythmia did not increase with age [88].

Much like RyR2, SERCa2a is also susceptible to redox modification by free radicals and reactive
oxygen species. Knyushko et al. (2005) reported significant accumulation of 3-nitrotyrosine in SERCa2a
of aged rat hearts (26 months old) [89]. Declining activity of SERCa2a in aged rat ventricular myocytes
could not be explained by differences in protein expression levels of the pump or of PLB, but increased
oxidative damage of these proteins was indicated by reduced free sulfhydryl groups [90]. More direct
evidence of this modification was shown by Qin et al. [91], whereby hydrogen-peroxide mediated
oxidation of SERCa2a at Cysteine-674 contributed to depressed SERCA2a and impaired relaxation
of ventricular myocytes in the senescent murine heart (21 months old). Adenoviral overexpression
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of SERCa2a with this residue mutated to a serine partially preserved SERCa2a activity during
H2O2 exposure.

2.3. L-Type Ca2+ Channel

Influx of Ca2+ into the cytosol serves as the initiating step of intracellular Ca2+ release, which
activates RyR2 channels by CICR. This occurs at the sarcolemma through LTCCs, which are
voltage-dependent and activated during action potential. Regulation of LTCC activity is complex,
whereby CaMKII-mediated phosphorylation of C-terminal bound CaM can lessen Ca2+-dependent
inactivation. Furthermore, channels can be modulated by β-adrenergic stimulation via PKA. Altered
activation and inactivation properties of LTCCs can widen the window of current, which increases the
propensity of reactivation during late phases of action potential. This can enhance triggered activity in
cardiac disease [92]. There are disparate results regarding expression and activity of LTCCs in aging,
depending on sex, animal species, and the chamber of the heart [11].

A delayed activation of LTCCs has been suggested to contribute to increased action potential
duration in aged rats (24–>27 months old) [93–95], as well as greater amplitude of transient outward
K+ currents (Ito) [93]. Delayed inactivation and a reduced peak ICa density was reported in senescent
rat ventricular myocytes in another study (>27 months old) [94]. In ventricular myocytes of aged
vs. young male mice (24 months old vs. 7 months old), a significant reduction in peak ICa density
as well as significantly slower Ca2+-dependent activation was demonstrated, but not in females [96].
Salameh et al. (2010) reported a significant reduction in LTCC maximal conductance and ICa per cell
volume in aged rabbit ventricular myocytes (26 months old) [72]. This effect was compensated by a
positive shift in steady state inactivation, which enhanced the late ICa component. This can induce
higher SR Ca2+ loading. Decreased ICa has been observed in atria of aged dogs (>8 years old) [97–100].

In ventricular myocytes isolated from aged sheep hearts (>8 years old), Dibb et al. (2004) reported
a larger peak inward ICa, as well as increased fractional SR Ca2+ release and a larger systolic Ca2+

transient [101]. No change in excitation-contraction coupling gain (coupling of LTCCs to the release
of Ca2+ from the SR) was observed in this model, which is suggestive that changes in systolic Ca2+

transient arose via increased peak/integrated ICa rather than due to altered SR content or prolonged
action potential duration. This increased ICa provided increased trigger for RyR2-mediated CICR,
while maintaining SR Ca2+ content, to sustain cardiac output during increased vessel stiffness and
demands of the aged myocardium.

Differences in atrial vs. ventricular LTCC activity with age are evident from a more recent paper
by Clarke et al. (2017), whereby atrial myocytes from aged female sheep (>8 years old) showed a
decreased peak ICa [102]. This served to offset an age-associated increase in SR Ca2+ content, while
enhanced intracellular Ca2+ buffering in this model could explain the reduction in Ca2+ transient
amplitude and the rate of decay of systolic Ca2+. Aged sheep are vulnerable for the development of
AF, and this is associated with cardiac alternans [103].

Reduced expression levels of LTCCs can promote cardiac alternans because of reduced fidelity
of coupling with RyR2 channels [104]. Herraiz-Martínez et al. 2015 reported diminished expression
levels of LTCC pore forming subunit α1c and, thus, reduced ICa in aged human atrial myocytes
(>75 years old) [67]. However, reduced protein expression levels do not always result in altered ICa. In
a study of healthy and failing human hearts, similar ICa was demonstrated in heart failure despite a
significant decrease in expression levels of α1c, which is likely due to enhanced phosphorylation of
LTCCs [105]. In cardiac aging, defective β-adrenergic signaling may lead to reduced stimulation of ICa

through PKA [4].
The fidelity of LTCC coupling with RyR2 channels and the efficiency of Ca2+ release initiation

is not only dependent on expression levels, but on the distribution of channels within the myocyte.
Primarily located in T-tubules in junctional SR, LTCCs form clusters that oppose clusters of RyR2
channels, and changes in T-tubule structure and function have been implicated in impaired contractility
observed in cardiac disease [106–109]. In ventricular myocytes of aged mice (24 months old), Kong et al.



Int. J. Mol. Sci. 2019, 20, 2386 6 of 22

(2018) recently reported reduced ICa density at the T-tubules, but not at the sarcolemma [110], which
further highlights the complexity of LTCC regulation in the aging heart.

2.4. Na+/Ca2+ Exchanger

Although SERCa2a sequesters Ca2+ from the cytosol and replenishes SR Ca2+ stores, efflux of Ca2+

from the cytosol also occurs via NCX1, which is the main route of extrusion from the cardiomyocyte.
Working in reversal mode during the early stage of action potential, intracellular Ca2+ influx ‘primes’
RyR2 channels and improves the efficiency of CICR [111]. During the late phases of action potential,
NCX1 works in a forward mode to extrude Ca2+ from the cytosol. Given its electrogenic properties,
NCX1 serves as a regulator of action potential during late phases of repolarization and decay of the
intracellular Ca2+ transient. In the failing heart, upregulation of NCX1 in heart failure contributes
to prolongation of action potential duration, reactivation of LTCCs, and the generation of triggered
events [56,112,113]. Increased levels of intracellular [Na+] in heart failure also enhances reverse mode
activity, which may increase [Ca2+]i and, thus, RyR2 activity. It is well established that aging also
prolongs action potential and diastole [10], which implicates deranged NCX1 activity. However, reports
of NCX1 expression levels and activity in aged myocardium vary.

Reduced expression levels of NCX1 were reported in the hearts of aged male rats and mice
(24 months old) [114,115], while others demonstrated unchanged levels of the protein [62,72,116,117].
Mace et al. (2003) demonstrated that, under conditions of controlled [Ca2+] and [Na+], advancing age
in ventricular myocytes of male rats (27–31 months old) was associated with increased forward NCX1
activity, which contributes to prolongation of action potential duration and arrhythmogenesis [116].
In ventricular myocytes, which are isolated from aged sedentary female rats (24 months old), both
caffeine-induced Ca2+ transients and integrated NCX1 current were increased in comparison to young
controls, contributing to diminished contractile function [118].

2.5. Sexual Dimorphism of Intracellular Ca2+ Release

While the risk for cardiovascular disease grows with aging in both sexes, there remains a
predisposition to different cardiovascular disease between men and women, with evidence of
sex-specific variation in cardiac remodeling [119]. This variation is not only in the morphological
structure and vasculature of the aged heart [120], but in Ca2+ homeostasis at the cellular level [11].
For an extensive review of sexual differences in cardiac aging and excitation-contraction coupling, see
Feridooni et al. [11].

Most aging studies described in this review utilized male rodents, whereby the systolic Ca2+

transient amplitude was generally reported to decline [27,79,91,96,121]. However, this is not
universal [28,122]. Conversely, the Ca2+ transient amplitude does not appear to decline with
age in female rodents [9,96,121,123], and is demonstrated to increase in aged female sheep [101].
Age-related alterations in excitation-contraction coupling, including peak ICa density, fractional
shortening, and SR Ca2+ content were demonstrated to be more prominent with age in male mouse
hearts vs. female [96,121]. This sexual dimorphism may aid in explaining why myocardial contractility
appears to be better preserved in females in comparison to age-matched males [124]. Age-associated
changes in cardiac excitation-contraction coupling proteins are summarized in Table 1. Although
differences in intracellular Ca2+ homeostasis between aged males and females are apparent, an increase
in mitochondrial ROS has been demonstrated in the senescent heart of both sexes [125].
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Table 1. Changes in excitation-contraction coupling proteins during cardiac aging. Abbreviations: mo—months old, yrs—years old.

Change in Function Species Sex Ages Studied Myocyte Type Comments Reference

Ryanodine Receptor (RyR2)

↑

Mouse Both 6 vs. 24 mo (young adult vs. old) Ventricular Increased spontaneous Ca2+ spark activity [26]

Mouse Unreported 6 vs. 24 mo (young adult vs. old) Ventricular Increased single channel open probability, increased
spontaneous Ca2+ spark activity [27]

Mouse Male 3–4 vs. 24–26 mo (young vs. old) Ventricular Increased RyR2-mediated diastolic sparks and waves [28]

Rabbit Female 5–9 mo vs. 4–6 yrs (young adult vs. old) Ventricular Increased oxidation and SR Ca2+ leak, unchanged PKA-
but increased CaMKII-mediated phosphorylation

[9]

Mouse Male 4–6 vs. >20 mo (young adult vs. old) Atrial Increased glycation [58]

Mouse Male 2–2.5 vs. 24–32 mo (young vs. old) Atrial Increased JNK2/CaMKII activity, enhanced SR Ca2+ leak [39]

Mouse Male 4–5 vs. 24 mo (young adult vs. old) Atrial Increased CaMKII-mediated phosphorylation and
oxidation [40]

Human Both <75 vs. >75 yrs (adult vs. old) Atrial Increased glycation [58]

Human Both <55, 55–74, >75 yrs (young, middle aged, old) Atrial Reduced CSQ2 expression and increased spontaneous
RyR2 activity [67]

Sarco-endoplasmic reticulum Ca2+-ATPase (SERCa2a)

↔

Rabbit Female 5–9 mo vs. 4–6 yrs (young adult vs. old) Ventricular Unchanged protein levels [9]

Rat Unreported 3 vs. 6 mo (young vs. adult) Ventricular Unchanged protein levels [53]

Rat Male 5, 15, 26 mo (young adult, adult, old) Ventricular Unchanged mRNA levels [74]

Rabbit Male 6 vs. 26 mo (young vs. adult) Atrial and
ventricular No change in protein expression [72]

↓

Rat Male 6 vs. 26 mo (young vs. adult) Ventricular Reduced protein expression and pump activity [76]

Rat Male 6–8 vs. 26–28 mo (adult vs. old) Ventricular Reduced PKA-dependent PLB phosphorylation [82]

Mouse Male 5, 24, and 34 mo (young adult, old, senescent) Ventricular Increased PLB expression [79]

Rat Male 6–8 vs. 26–28 mo (adult vs. old) Ventricular Depressed activity associated with reduced CaMKII
expression [61]

Rat Male 5 vs. 26 mo (young adult vs. old) Ventricular Increased 3-Nitrotyrosine modification [89]

Rat Male 2–26 mo (young-old) Whole heart Oxidative damage associated with reduced activity [90]

Mouse Unreported 5 vs. 21 mo (adult vs. old) Ventricular Increased SERCa2a oxidation [91]

Human Both <55, 55–74, >75 yrs (young, middle aged, old) Atrial Decreased expression levels associated with reduced SR
Ca2+ content [67]
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Table 1. Cont.

Change in Function Species Sex Ages Studied Myocyte Type Comments Reference

L-Type Ca2+ Channel (LTCC)

↔
Mouse Female 7 vs. 24 mo (adult vs. old) Ventricular No alterations in activation or peak ICa [96]

Rabbit Female 5–9 mo vs. 4–6 yrs (young adult vs. old) Ventricular No change in peak ICa, reduced responsiveness to
β-adrenegic stimulation [9]

↓

Mouse Male 3 vs. 24 mo (young vs. old) Ventricular Reduced ICa density at T-tubules [110]

Rat Male 2–3, 8–9, 25–26 mo (young, middle aged, old) Ventricular Delayed activation [93]

Rat Male 6 vs. >27 mo (adult vs. old) Ventricular Delayed inactivation and reduced peak ICa density [94]

Rat Male 3, 6–8, 24 mo (young, adult, old) Ventricular Delayed activation [95]

Mouse Male 7 vs. 24 mo (adult vs. old) Ventricular Slower activation and reduced peak ICa [96]

Rabbit Male 6 vs. 26 mo (young vs. adult) Ventricular Reduced ICa and maximal conductance, enhanced late
component [72]

Sheep Female 18 mo vs. >8 yrs (young vs. old) Ventricular Increased peak/integrated ICa [101]

Dog Unreported 2–5, >8 yrs (adult vs. old) Atrial Reduced ICa, increased Ito [97]

Dog Both 2–5, >8 yrs (adult vs. old) Atria Decreased mRNA and protein expression levels, reduced ICa [98]

Dog Unreported 1–3, >8 yrs (adult vs old) Atria Decreased mRNA and protein expression levels, lower peak
ICa density [99,100]

Sheep Female 18 mo vs. >8yrs (young adult vs. old) Atrial Decreased peak ICa [102]

Human Both <55, 55–74, >75 yrs (young, middle aged, old) Atrial Decreased peak ICa [67]

Na+/Ca+ exchanger (NCX1)

↔

Rats Male 6 vs. 26 mo (adult vs. old) Ventricular Unchanged expression levels [62]

Rabbits Male 6 vs. 26 mo (young vs. adult) Atrial and
ventricular No change in protein expression [72]

Rabbits Female 5–9 mo vs. 4–6 yrs (young adult vs. old) Ventricular No change in protein expression [9]

Rat Male 14–15 vs. 27–31 mo (adult vs. old) Atrial and
ventricular No change in protein expression [116]

Mice Unreported 3 vs. 26–28 mo (young vs. old) Ventricular No change in protein levels [117]

↑
Rat Male 14–15 vs. 27–31 mo (middle aged vs. old) Atrial and

ventricular Increased forward activity [116]

Rat Female 3 vs. 24 mo (young vs. old) Ventricular Increased integrated current [118]

↓ Rat Male 4 vs. 24 mo (young vs. old) Ventricular Reduced protein expression levels [114,115]
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2.6. Effects of Mitochondria on Intracellular Ca2+ Release

The heart is particularly vulnerable to mitochondrial dysfunction given the huge energetic needs
of the contracting myocardium [126]. Cardiac aging is associated with a decline in mitochondrial
function, a diminished capacity to maintain redox balance, and an increased emission of ROS [127].
Mitochondria-derived ROS are well established to alter the function of multiple ion channels [29,128]
including RyR2 [9,36,41,129], SERCa2a [91,130], LTCCs [131], and NCX1 [132].

As evident from the previous discussion, an altered redox status of excitation-contraction coupling
proteins appears to be a common mechanism of dysfunction in cardiac aging. It is well established that
mitochondrial-mediated oxidative stress contributes to the derangement of cardiac Ca2+ homeostasis
outlined in this review and it is implicated in the development of both atrial [133,134] and ventricular
fibrillation [135]. Scavenging mitochondrial ROS or improving antioxidant activity, therefore, remains
an attractive therapeutic strategy in cardiac disease [136]. Mitochondrial-targeted scavenger XJB-5-131
attenuated age-induced loss of cardio-protection and enhanced resistance to IR injury in aged rats
(29 months old) [137], while mitoTEMPO reduced oxidative stress in both senescent rat (24 months
old) and rabbit (4 to 6 years old) ventricular myocytes [9,138]. Genetic enhancement of mitochondrial
antioxidant activity via overexpression of catalase reduced oxidative modifications and attenuated
age-related changes in excitation-contraction coupling protein expression [139,140]. Electron and
ROS scavenging or inhibition of mitochondrial oxidase has been shown to improve intracellular Ca2+

handling and reduce arrhythmic potential in other disease models as well as aging, including heart
failure and diabetic cardiomyopathy [9,12,45,141,142].

Diminished mitochondrial function and enhanced ROS emission has been attributed to changes
in the mitochondrial matrix [Ca2+] ([Ca2+]m). Both increased and decreased [Ca2+]m are reported as
deleterious to cardiac function [143–150]. Discrepancies in the data may stem from different methods
used by experimentalists to measure [Ca2+]m, including harsh procedures to isolate mitochondria,
or loading myocytes with membrane-permeable dyes that can impair membrane integrity. The
development of mitochondrial-targeted genetic Ca2+ probes and in vivo delivery methods should help
resolve ongoing controversies [55,143,151–154]. Utilizing one such probe, we recently demonstrated
that enhancement of mitochondrial Ca2+ accumulation increased mitochondrial ROS production and
enhanced proarrhythmic spontaneous Ca2+ release in a rat model of hypertrophy [55]. On the contrary,
inhibition of mitochondrial Ca2+ influx attenuated pro-arrhythmic activity in this model and reduced
mitochondrial ROS emission. In pathophysiology, it would be rational to reduce mitochondrial
Ca2+ influx, despite some evidence that SR-mitochondria communication may be diminished in
aging [58,63,155]. This reduction may be viewed as an adaptive mechanism to reduce mitochondrial
[Ca2+] and, thereby, limit deleterious mitochondrial ROS production in the senescent myocardium.

3. Perspective

Since an explosive growth in the elderly population is expected over the next 20 years [1], it
is critical to develop therapies for age-associated cardiovascular disease and to reduce prevalence
of sudden cardiac death. It is well established that intracellular Ca2+ homeostasis is perturbed in
the aged heart, which contributes to increased arrhythmogenesis [10,11]. However, current findings
are disparate, depending on species, stage, and sex. These differences must be addressed in future
studies and in larger animal models of aging, as well as human tissues. Furthermore, for an improved
understanding of the mechanisms that drive Ca2+-dependent cardiac dysfunction in the elderly, it is
necessary to investigate other proteins that modulate intracellular Ca2+ handling including associated
accessory proteins, kinases, and phosphatases.

Although many differences are reported regarding the expression and function of
excitation-contraction coupling proteins in the aged heart, virtually universal findings include
deficient β-adrenergic signaling, mitochondrial dysfunction, and increased ROS emission, as well
as a reduction in intrinsic antioxidant defenses and enhancement of RyR2 activity, regardless of
sex [9,26–28,40,127,133,134,136]. These universal findings are summarized in Figure 1. Reactive
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oxygen species have long been identified to play a pathophysiological role in aging, with the theory
of free radicals as a primary driving force in determining lifespan introduced in 1956 [156]. It
has since been well established that altered redox balance modulates cardiac excitation-contraction
coupling [9,36,41,129–132]. Targeting of mitochondrial ROS and, thus, hyperactive RyR2, therefore,
remains an attractive therapeutic target for arrhythmogenesis in cardiac disease and aging [9,55,129,136].
It has been demonstrated that ROS scavenger MitoQ can attenuate ischemia-reperfusion induced
cardiac injury [157], hypertrophy [158], and aortic stiffness [159] in animal models of cardiac disease and
aging. MitoQ was also shown to improve vascular endothelial function in healthy, older adults [160].
By reducing ROS formation at the mitochondrial respiratory chain, antioxidant peptide SS-31 prevented
pressure-overload heart failure in mice [161,162], and many clinical trials with this drug are currently
underway (www.clinicaltrials.gov, drug named Elamipretide or MT-131). While these tools hold
promise, limited success of ROS scavenging strategies have been reported in most clinical studies [136],
which is likely due to insufficient targeting and poor cellular distribution of drugs [136,163]. Given
that the balance of ROS production and detoxification is essential to cell function in physiology [164], it
also remains unclear as to what level of ROS may be beneficial or detrimental in pathophysiology [136],
with some evidence that increased ROS can be beneficial for the function of cardiovascular endothelial
cells, depending on source and subcellular localization [165].
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Figure 1. Schematic summarizing the effects of cardiac aging on intracellular Ca2+ release in senescent
myocytes, via a mitochondrial ROS-RyR2 axis. Virtually universal findings in aged myocytes include (1)
deficient signaling through β-adrenergic receptors (β-AR) and (2) mitochondrial dysfunction, including
diminished activity of the electron transport chain (ETC) and ATP production, as well an increased
ROS emission. (3) It also includes enhanced activity of RyR2, due to oxidation by ROS. CaMKII
phosphorylation may also increase RyR2 activity. Increased spontaneous intracellular Ca2+ release via
oxidized RyR2s underlies arrhythmogenesis. Question marks indicate disparate findings regarding the
effects of aging on LTCC, NCX, and SERCa2a/PLB function, whereby activity has been reported as
unchanged, increased, or decreased. There is some evidence that mitochondrial Ca2+ levels may be
diminished in cardiac aging even though this remains to be fully explored.

An alternative approach to modulating redox balance in aged myocytes is the normalization of
mitochondrial Ca2+ homeostasis. Oxidative phosphorylation and generation of ATP in the mitochondria
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is highly dependent on [Ca2+]m, and there is evidence that mitochondrial Ca2+ cycling is altered in
cardiac disease [143–150]. Whether reduction or enhancement of [Ca2+]m holds therapeutic potential
remains controversial [55,143,146,166–168], as does the overall contribution of mitochondrial Ca2+ to
cardiac excitation-contraction coupling [13,169–173]. While we have demonstrated that enhancement
of mitochondrial Ca2+ accumulation augments RyR2 function and SR Ca2+ leak via increased ROS
emission [55], there also remains a question as to the reverse: does enhanced SR Ca2+ leak via
RyR2 directly modulate [Ca2+]m and mitochondrial function? Using phosphomimetic mutations of
Serine-2808 to modulate RyR2 function, Santulli et al. (2015) suggested that [Ca2+]m increases as a
result of SR Ca2+ leak results in mitochondrial dysfunction in mice [145]. The topology of RyR2 facing
the dyad to prime for CICR, rather than the SR-mitochondrial cleft, means only a small amount of Ca2+

is likely to be taken up by mitochondria [174], so how much this can be increased under conditions of
enhanced leak is unclear. The sensitivity of the mitochondrial Ca2+ uniporter (MCU) complex to Ca2+

is not thought to be affected by aging [63], and as of yet, there have been few studies investigating
mitochondrial Ca2+ homeostasis in the senescent heart.

The impact of exercise and physical activity on the progression of cardiac aging is also an active
area of research. There is evidence in both healthy animal models and models of other cardiac disease
phenotypes that exercise can induce alterations in cardiac Ca2+ cycling [175–177]. Endurance exercise
attenuated increased Ca2+ spark frequency, CaMKII-mediated RyR2 phosphorylation at Serine-2814,
and Ca2+ alternans in a dog model of sudden cardiac death, which reduced ischemically-induced
VF [175]. Long-term interval training also reduced CaMKII-dependent phosphorylation of RyR2 and
the incidence of VT in a mouse model of CPVT [176]. In spontaneously hypertensive rats, endurance
exercise training reversed increased RyR2 expression and attenuated the proarrhythmic increase in
Ca2+ spark activity in left ventricular myocytes [177]. In the context of the aging heart, research on
the effects of exercise on intracellular Ca2+ homeostasis remains limited. There is some evidence that
exercise training improved Ca2+ cycling and contractility, which is associated with increased expression
of SERCA2a in aged rodents (28 months old) [178], while others report no change in the expression
or function of excitation-contraction coupling proteins in exercise-trained aged rodents [179,180]. In
clinical trials, there is evidence that training can improve diastolic function and systolic reserve capacity
in the elderly [181,182]. Two years of exercise training in middle-aged adults was recently shown to
improve maximal oxygen uptake and decrease arterial stiffness, with authors suggesting this may
protect against future cardiac pathologies that are attributable to sedentary aging [183]. There is
also modest evidence that exercise improves the blunted response of the aged heart to β-adrenergic
stimulation and increases cardiac reserve [184,185]. However, there are several studies that have shown
that, while exercise training can improve exercise capacity of the heart, it does not significantly alter
cardiac aging phenotypes [185–188].

Calorific restriction and fasting remains the only strategy demonstrated to significantly increase
one’s health span and lifespan, both in animal models and humans [189]. The efficacy of calorific
restriction highlights that mitochondrial dysfunction and metabolic derangement may contribute
significantly to cardiac contractile dysfunction in the elderly. It has been suggested that sirtuins, which
is a subgroup of deacetylases that are expressed in many tissues including the heart, mediate the
anti-aging effects of calorific restriction [190]. Protein acetylation is a post-translational regulatory
mechanism known to play roles in autophagy, ROS emission, and cell death [191,192]. Reduced
expression of sirtuins and increased protein acetylation can result in enzymatic dysfunction and this
is associated with multiple chronic and cardiac diseases [193–196]. Extensive lysine acetylation of
mitochondrial proteins has been observed in mouse models of heart failure, as well as in the end-stage
human failing heart [197]. Acetylation of excitation-contraction coupling proteins and downstream
effects remains relatively unexplored. Application of Sirtuin 1 activator resveratrol enhanced the
expression and activity of SERCa2a, which attenuated depressed contractile function in both a mouse
model of diabetic cardiomyopathy and a rat model of hypertrophy [198,199]. Acetylation of SERCa2a
was recently demonstrated to directly modulate pump function, with elevated acetylation observed
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in both animal and human failing hearts [200]. There remains limited knowledge of the effects of
acetylation and sirtuins on intracellular Ca2+ handling proteins and arrhythmogeneses in the aged
heart, but this is worthy of future investigation.
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Abbreviations

AF Atrial fibrillation
CaM Calmodulin
CaMKII Ca2+/calmodulin-dependent protein kinase II
CPVT Catecholaminergic polymorphic ventricular tachycardia
CSQ Calsequestrin
DAD Delayed afterdepolarization
EAD Early afterdepolarization
LTCC L-type Ca2+ channel
NCX1 Na+/Ca2+ exchanger
PKA Protein kinase A
PP1 Protein phosphatase 1
PP2A Protein phosphatase 2A
PP2B Protein phosphatase 2B
ROS Reactive oxygen species
RyR2 Ryanodine receptor, type 2
SERCa2a Sarco/endoplasmic reticulum Ca2+-ATPase, type 2a
VF Ventricular fibrillation
VT Ventricular tachycardia
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