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Purpose: The variation in inflammation in chronic obstructive pulmonary disease (COPD) 
between individuals is genetically determined. This study aimed to identify gene signatures 
of COPD through bioinformatics analysis based on multiple gene sets and explore their 
immune characteristics and transcriptional regulation mechanisms.
Methods: Data from four microarrays were downloaded from the Gene Expression 
Omnibus database to screen differentially expressed genes (DEGs) between COPD patients 
and controls. Weighted gene co-expression network analysis was applied to identify trait- 
related modules and then select key module-related DEGs. The optimized gene set of 
signatures was obtained using the least absolute shrinkage and selection operator (LASSO) 
regression analysis. The CIBERSORT algorithm and Pearson correlation test were used to 
analyze the relationship between gene signatures and immune cells. Finally, public databases 
were used to predict the transcription factors (TFs) and upstream miRNAs.
Results: A total of 127 DEGs in COPD were identified from the combined dataset. By consider-
ing the intersection of DEGs and genes in two trait-related modules, 83 key module-related DEGs 
were identified, which were mainly enriched in interleukin-related pathways. Seven-gene signa-
tures, including MTHFD2, KANK3, GFPT2, PHLDA1, HS3ST2, FGG, and RPS4Y1, were further 
selected using the LASSO algorithm. These gene signatures showed the predictive potential for 
COPD risks and were significantly correlated with 18 types of immune cells. Finally, nine miRNAs 
and three TFs were predicted to target MTHFD2, GFPT2, PHLDA1, and FGG.
Conclusion: We proposed the seven-gene-signature to predict COPD risk and explored its 
potential immune characteristics and regulatory mechanisms.
Keywords: COPD, gene signatures, immune infiltration, transcriptional regulation

Highlights
1. Key module-related DEGs in COPD were found to involve in interleukin-related 
pathways.

2. An optimized gene set, including seven-gene signatures, was identified using 
LASSO analysis.

3. The seven-gene signature was significantly correlated with 18 types of 
immune cells in COPD.

4. The upstream miRNAs and TFs of gene signatures were predicted.

Introduction
Chronic obstructive pulmonary disease (COPD) is a complex heterogeneous disease 
characterized by persistent respiratory symptoms and airflow limitation because of 
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respiratory and/or alveolar abnormalities.1,2 A forced 
expiratory volume in 1s (FEV1)/forced vital capacity 
(FVC) less than 0.70 after using bronchodilators is 
a necessary condition for the diagnosis of COPD.3 It is 
estimated to cause more than three million deaths world-
wide annually, affecting about one in 10 adults aged over 
45.4,5 Although smoking is the leading cause of COPD, 
the unsatisfactory prevalence of COPD in non-smokers 
suggests that chronic inflammation in patients may be 
caused by different cellular and pathophysiological 
changes in different genetic backgrounds.6 Some studies 
believe that genetic risk factors contribute to the develop-
ment of airflow restriction, and the huge variation in lung 
inflammation between individuals is also genetically 
determined.7 Therefore, effective biomarkers are needed 
to predict risk and guide personalized treatment of patients 
with COPD.

Biomarkers are of great significance in the diagnosis, 
prognosis, and treatment of diseases. In recent years, many 
clinically relevant COPD biomarkers, including plasma fibri-
nogen, CRP, IL-6, IL-8, total bilirubin, SAA, SP-D, CCSP- 
16, MMP-8, and MMP-9, have been developed using the 
candidate gene approach.8–12 However, the influence of 
a single biomarker is often limited in predicting the disease. 
It has been reported that multiple biomarkers are more 
powerful than a single biomarker, and their combination 
with clinical variables can better predict disease 
progression.13 Based on shared data from high-throughput 
sequencing and microarray technology, it is possible to 
observe changes in the expression of numerous genes in 
different samples at one time.14 Moreover, bioinformatics 
methods that integrate multiple datasets can help identify 
reliable and repeatable genetic signatures associated with 
disease development.15 Therefore, data from four microar-
rays were used to analyze differentially expressed genes 
(DEGs) in this study. Then, a weighted gene co-expression 
network analysis (WGCNA) and the least absolute shrinkage 
and selection operator (LASSO) regression analysis were 
performed to obtain the optimized gene set from the trait- 
related module, which was also shown to have a great pre-
dictive ability among COPD patients.

Additionally, inflammation in the lungs of patients with 
COPD is associated with abnormal immune responses, and 
both the innate and adaptive immune systems are involved, 
linked by the activation of dendritic cells.16 Furthermore, an 
increase in the number of macrophages, neutrophils, and 
T and B lymphocytes has also been observed in the COPD 
process, and they are recruited in the immune cycle. They can 

secrete proinflammatory factors, such as cytokines, chemo-
kines, growth factors, and lipid mediators.17,18 Considering 
the key roles of these immune cells, we attempted to identify 
the changes in the immune microenvironment defined by the 
gene signatures selected above and explain the molecular 
regulation mechanisms of upstream transcription factors 
(TFs) and miRNAs. A flowchart of this study is presented 
in Figure S1.

Methods
Data Acquisition and Process
All data were downloaded from the Gene Expression 
Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/ 
geo/). Using COPD, lung, and smokers as keywords, the 
relevant data of humans in the last five years were searched, 
and a total of four microarrays were obtained, including 
GSE37768, GSE106986, GSE103174, and GSE76925. 
Among them, GSE37768 included 18 lung tissue samples 
from COPD patients and nine healthy smokers and non- 
smokers, which were detected by GPL570 [HG-U133 
_Plus_2] Affymetrix Human Genome U133 Plus 2.0 
Array; GSE106986 included 14 lung tissue samples from 
COPD patients and five healthy non-smoker samples, 
which were detected by GPL13497 Agilent-026652 
Whole Human Genome Microarray 4×44K v2; 
GSE103174 included 37 lung tissue samples from COPD 
patients and 10 healthy non-smoker samples which were 
detected by GPL13667 [HG-U219] Affymetrix Human 
Genome U219 Array; GSE76925 included 111 COPD sam-
ples and 40 smoker control samples which were detected by 
GPL10558 Illumina HumanHT-12 V4.0 expression bead-
chip. Among them, GSE76925 was used for the external 
validation. The detailed clinical information of the samples 
from these four datasets is summarized in Table S1.

Data Pre-Processing
The standardized probe expression value matrices of the 
above datasets were downloaded from GEO, and annota-
tion files were downloaded from the corresponding plat-
forms. Probes that did not match the gene symbol were 
removed, and when different probes were mapped to the 
same gene, the mean value of the probes was taken. Based 
on GSE37768, GSE106986, and GSE103174, the ComBat 
function in R sva (version 3.34.0, http://www.bioconduc 
tor.org/packages/release/bioc/html/sva.html)19,20 was used 
to remove the batch effect, and a combined dataset was 
obtained for further analysis.
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DEGs Analysis
To analyze the expression differences between COPD sam-
ples and controls in the combined dataset, the Limma pack-
age (version 3.10.3, http://www.bioconductor.org/packages/ 
release/bioc/html/limma.html)21 was used. The p-value 
obtained after the t-test was corrected by multiple tests 
using the Benjamini & Hochberg (BH) method, and the 
results were then evaluated in terms of difference multiples 
and significance. Adjusted p-value < 0.05, and |log fold 
change (FC)| > 0.585 were set as standards to select DEGs.

WGCNA
Genes with an absolute deviation of median expression in the 
top 2000 were selected for the WGCNA algorithm (version 
1.61, https://cran.r-project.org/web/packages/WGCNA/).22 

WGCNA defined the correlation matrix of gene co- 
expression and the power exponential linkage function of 
the gene network, and the power value was captured when 
the square value of the correlation coefficient reached 0.9 for 
the first time. Then, a hierarchical clustering tree was con-
structed by calculating the dissimilitude degree of different 
nodes. The module was screened with a minimum number of 
genes in each gene network set to 30 and a pruning cut height 
of 0.3. Finally, the trait-related module was identified by ana-
lyzing the correlation between the module and disease pheno-
type with standards of p < 0.05 and |r| > 0.3. By considering the 
intersection of DEGs and genes in trait-related modules, key 
module-related DEGs were screened out using the R package 
VennDiagram (version 1.6.20, https://CRAN.R-project.org/ 
package=VennDiagram).23

Enrichment Analysis
Based on the key module-related DEGs obtained above, 
over-representation analysis in the functional profiling 
module of gprofiler online tools (https://biit.cs.ut.ee/gprofi 
ler/convert)24 was performed for gene ontology (GO) 
functions25 and pathways26 enrichment analyses. GO func-
tions included biological process (BP), cellular component 
(CC), and molecular function (MF), whereas pathways 
were enriched in the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and Reactome databases. BH adjusted 
p < 0.05 was considered statistically significant.

Screening and Validation of Gene 
Signatures
The key module-related DEGs were then incorporated 
into the LASSO regression model using the glmnet 

package (version 4.0–2, https://cran.r-project.org/web/ 
packages/glmnet/index.html),27 and the gene signatures 
were obtained with 20-fold cross-validation. Gene sig-
natures were further verified on the combined datasets 
and GSE76925 by constructing a support vector 
machine (SVM) model using the e1071 SVM package 
(version 1.7–4, https://CRAN.R-project.org/package= 
e1071).28 Receiver operator characteristic (ROC) 
curves were also created to verify the accuracy of the 
model.

Immune Cell Infiltration Analysis
The CIBERSORT deconvolution algorithm (https://ciber 
sort.stanford.edu/index.php)29 was used to estimate the 
infiltration abundance of 22 types of immune cells in 
each sample of the combined datasets, with the para-
meters set as perm = 100 and QN = F. Then, the 
Wilcoxon test was used to analyze the differences in 
the abundance of immune cell infiltration between the 
COPD and control groups, and a violin plot was created 
using the vioplot in R package (version 0.3.5, https:// 
github.com/TomKellyGenetics/vioplot).30 Finally, the 
Pearson correlation coefficient of gene signatures and 
immune cell infiltration abundance was calculated, and 
relation pairs (p < 0.05) were selected.

Predicting Upstream TFs and miRNA of 
Gene Signatures
The relationships between miRNA and gene signatures 
were predicted using miRWalk 3.0 (http://zmf.umm. 
uni-heidelberg.de/apps/zmf/mirwalk3.html).31 The rela-
tionship pairs appearing in both miRDB (http://www. 
mirdb.org/miRDB/download.html)32 and miRTarBase 
(http://mirtarbase.cuhk.edu.cn/php/index.php)33 data-
bases with scores over 0.9 were selected to construct 
a miRNA regulatory network. The TH-mRNA relations 
were predicted in the TRRUST database (https://www. 
grnpedia.org/trrust/),34 and the TF-mRNA and miRNA- 
mRNA relation pairs were integrated into a TF-mRNA- 
miRNA network.

Results
Screening of DEGs Between COPD and 
Healthy Controls
To remove the batch effect between GSE37768, 
GSE106986, and GSE103174, a principal component ana-
lysis was performed, and a combined dataset was obtained 
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with thresholds of |logFC| > 0.585 and adjusted p < 0.05. 
A total of 127 DEGs between COPD and control samples 
in the combined dataset were screened out, as shown in 
Figure 1A. Detailed information on these DEGs is pre-
sented in Table S2. Among them, 104 DEGs were up- 
regulated, and 23 DEGs were down-regulated (Figure 1B).

WGCNA to Identify Trait-Related 
Modules and Key Genes
The WGCNA algorithm was then used to select trait- 
related modules and key genes. To satisfy the premise of 

a scale-free network distribution, the value of the power 
(weight parameter) of the adjacency matrix was explored. 
The selection range of network construction parameters 
was first set, then the scale-free distribution topology 
matrix was calculated, and the graph was created as 
shown in Figure 2A. When the square value of the corre-
lation coefficient reaches 0.9 for the first time, the value of 
power is 6. A systematic cluster tree was obtained by 
calculating the coefficient of dissimilarity between genes. 
Then, the dynamic mixing cutting method was used to 
divide the modules, and finally, eight disease-related 

Figure 1 Screening of DEGs between COPD and healthy controls. (A) The heatmap shows the DEGs between COPD and control samples from the combined dataset of 
GSE37768, GSE106986, and GSE103174, with thresholds of |logFC| > 0.585 and adjusted p < 0.05. (B) Volcano plot showing up-regulated (red) and down-regulated (blue) 
DEGs. The top five up-regulated and down-regulated DEGs ranked by |logFC| are labeled in red and blue, respectively. 
Abbreviations: COPD, chronic obstructive pulmonary disease; FC, fold change.
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Figure 2 WGCNA algorithm was conducted to identify trait-related modules and genes. (A) Selection of power, weight parameter of the adjacency matrix. The x-axis 
represents the soft threshold (power), whereas the y-axis represents the square of the correlation coefficient between log2k and log2p(k) in the network. The red line 
represents the standard line, where the square value of the correlation coefficient reaches 0.9. (B) Module partition tree. The upper diagram represents the systematic 
cluster tree, and the different colors in the lower dynamic tree cut represent different gene modules. (C) Correlation between each module and disease traits. Statistical 
significance was set at p < 0.05. (D) The Venn plot shows the key module-related DEGs by taking the intersection of genes in trait modules and DEGs in COPD. 
Abbreviation: DEG, differential expressed gene.
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modules were obtained and labeled with different colors 
(Figure 2B). The genes involved in each module are listed 
in Table S3. Thereafter, the correlation between modules 
and disease traits was evaluated by calculating the correla-
tion coefficient between the gene significance of each 
module and the diseased trait. The results (Figure 2C) 
suggested that module turquoise and module yellow had 
the highest correlation with disease traits, and these two 
modules were also identified as trait-related modules. By 
considering the intersection of genes in trait-related mod-
ules and DEGs obtained above, a total of 83 common 
genes were identified as key module-related DEGs 
(Figure 2D, Table S4). Among them, 16 DEGs in module 
yellow were down-regulated, and 67 DEGs in module 
turquoise were up-regulated.

Functions and Pathways Enrichment 
Analyses
Based on the key module-related DEGs, enrichment analyses 
were performed to investigate their functions and pathways 
they may be involved in. As a result, 626 GO-BP, 13 GO-MF, 
22 KEGG pathways, and 12 Reactome pathways were 
enriched. The top five results of each term ranking by 
p-value are shown in Figure 3A and B. It can be observed 
that these key module-related DEGs were mainly enriched in 
GO-BP of the response of cytokine and cellular response to 
cytokine stimulus; GO-MF of cytokine and chemokine activ-
ities; KEGG pathways of IL-17 and TNF signaling path-
ways; and Reactome pathways of IL-4, IL-13, and IL-10 
signaling pathways. The genes involved in these key func-
tions and pathways are listed in Table S5.

Identification of Gene Signatures
LASSO regression analysis was further performed to 
select the optimized gene set, and the parameters of the 
LASSO model are shown in Figure 4A. As a result, 
MTHFD2, KANK3, GFPT2, PHLDA1, HS3ST2, FGG, 
and RPS4Y1 were included in the optimized gene set 
when the lambda value was close to lambda.1se, and 
were thus identified as gene signatures. The expression 
of these gene signatures was then validated in the com-
bined dataset (Figure 4B), and the results suggested that 
they were all significantly differentially expressed 
between COPD and healthy samples. ROC curves were 
also created to evaluate the efficacy of the seven-gene- 
signature in predicting COPD, as shown in Figure 4C 
and D. The results suggested that the area under the 

curve (AUC) created for the combined dataset was 
0.795, whereas the AUCs of GSE37768, GSE106986, 
GSE103174, and GSE76925 were all over 0.700, thereby 
indicating a good predictive ability of gene signatures in 
COPD.

Correlation Analysis of Gene Signatures 
and Immune Cell Infiltration Abundance
As described in the Methods section, the infiltration abun-
dances of 22 types of immune cells were calculated for each 
sample. The differences in infiltration abundance between the 
COPD and control samples were analyzed, as shown in 
Figure 5A. The results suggested that fractions of plasma 
cells, CD8 T cells, resting NK cells, activated dendritic cells, 
and activated mast cells were significantly different between 
the two groups (p < 0.05). Thereafter, the correlation coeffi-
cients between gene signatures and immune cells were calcu-
lated, and relationships with p < 0.05 were considered 
statistically significant. As shown in Figure 5B and Table 1, 
FGG, GFPT2, HS3ST2, KANK3, MTHFD2, PHLDA1, and 
RPS4Y1 were significantly correlated with six, eight, eight, six, 
eleven, ten, and four types of immune cells. In these 53 gene- 
cell relationships, plasma cells were significantly related to 
MTHFD2, GFPT2, PHLDA1, HS3ST2, and RPS4Y1; CD8 
T cells were significantly related to six gene signatures except 
PHLDA1; resting NK cells were significantly related to six 
gene signatures except RPS4Y1; activated dendritic cells were 
significantly related to FGG and PHLDA1; and activated mast 
cells were significantly related to five gene signatures except 
KANK3 and RPS4Y1.

Construction of a miRNA-mRNA-TF 
Network
In the miRWalk database, a total of nine upstream 
miRNAs were predicted to target with three gene signa-
tures, including GFPT2, MTHFD2, and PHLDA1, and 
nine miRNA-mRNA relation pairs were obtained. 
Furthermore, two TFs were predicted to target PHLDA1 
and FGG, and three mRNA-TF relation pairs were 
obtained. By integrating miRNA-mRNA and mRNA-TF 
relations, a miRNA-mRNA-TF network comprising 16 
nodes and 12 regulatory axes was established, as shown 
in Figure 6. Notably, all mRNAs in this network were up- 
regulated DEGs in the turquoise module. Among them, 
PHLDA1 was identified as the hub gene that interacts with 
the miRNA (miR4316) and the TFs (FLI1 and EWSR1).
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Discussion
In this study, we first screened out 127 DEGs between 
COPD and control samples from the combined dataset of 
GSE37768, GSE106986, and GSE103174. By considering 

the intersection of 127 DEGs and genes in trait-related 
modules, 83 key module-related DEGs were identified, 
which were mainly enriched in interleukin-related path-
ways. Then, an optimized gene set, including MTHFD2, 

Figure 3 Functions and pathways enrichment analyses. (A) Top5 GO functions enriched in BP and MF. (B) Top5 KEGG pathways and Reactome pathways were enriched. 
The results of each term were sorted using p-values. 
Abbreviations: GO, gene ontology; MF, molecular function; CC, cellular component; BP, biological process; KEGG, Kyoto Encyclopedia of Genes and Genomes; REAC, 
Reactome; IL, interleukin; TNF, tumor necrosis factor.
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KANK3, GFPT2, PHLDA1, HS3ST2, FGG, and RPS4Y1, 
was obtained using the LASSO regression analysis, and it 
showed great potential in predicting COPD risks in the 
combined dataset with an AUC of 0.795.

The effect of the seven-gene-signature on COPD has 
been limited. Among them, MTHFD2 is associated with 
the expression of cell cycle-related genes in non-small cell 
lung cancer (NSCLC) and has clinical significance in the 
diagnosis, pathological stage, and prognosis of the 
disease.35,36 During tumor development, MTHFD2 inter-
acts with a series of nucleoproteins involved in RNA 
metabolism and translation.37 In predicting upstream 

miRNAs in this study, we found that MTHFD2 may have 
potential regulatory axes with miR-9-5p, miR-6880-5p, 
miR-1910-5p, and miR-3165, of which the expression 
relationship between MTHFD2 and miR-9 has been con-
firmed in breast cancer.38 Therefore, we hypothesized that 
the miRNA-MTHFD2 regulatory axis might affect cell 
carcinogenesis in COPD patients by regulating the expres-
sion of cell cycle-related genes. PHLDA1 plays an impor-
tant role in cell proliferation and apoptosis and is involved 
in lung contusion and subsequent inflammatory 
responses.39 In this study, it was found that PHLDA1 
was significantly highly expressed in patients with 

Figure 4 Identification of gene signatures using LASSO regression analysis. (A) The optimized gene set with seven DEGs was selected as the gene signature when the 
lambda value was close to lambda.1se. (B) Validation of gene signatures in the combined dataset. ****p < 0.0001. (C) ROC curve created for the combined dataset. (D) The 
ROC curves of GSE37768, GSE106986, GSE103174, and GSE76925. 
Abbreviations: ROC, receiver operator characteristic; SVM, support vector machine; AUC, area under the curve.
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COPD, and the expression of PHLDA1 was also shown to 
be significantly correlated with the prognosis of NSCLC,40 

indicating a significant contribution of PHLDA1 in the 
process of NSCLC from COPD. Although we have pro-
posed that candidate genes may be involved in the pro-
gression of COPD to NSCLC, whether these genes affect 
the severity of COPD remains unclear. This study also 
predicted the potential transcriptional regulation of 
PHLDA1 with FLI1 and EWSR1, whereas Boro et al 
supported our prediction and stated that the expression of 
PHLDA1 might be inhibited by EWS/FLI1.41

By comparing the differences in infiltration abundance of 
immune cells between COPD and controls, we found that the 
fractions of plasma cells, CD8 T cells, resting NK cells, 
activated dendritic cells, and activated mast cells were sig-
nificantly different between two groups. Studies have con-
firmed the interactions between mast cells, airway structure 
cells, and other inflammatory cells in COPD development.42 

In addition, perivascular mast cell density is positively cor-
related with airway angiogenesis in COPD, which contri-
butes to airway remodeling.43 Furthermore, mast cells were 
found to accumulate abnormally in COPD and may increase 

Figure 5 Correlation analysis of gene signatures and immune cells. (A) The violin plot shows differences in immune cell fractions between COPD and control samples. 
Yellow and blue bars represent the cases and controls, respectively. *0.01<p < 0.05; **0.001<p < 0.01; ***p < 0.001. (B) Correlation analysis of seven-gene signatures and 21 
types of immune cells. Statistical significance was set at p < 0.05.
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the expression of IL-17.44 Interestingly, the key module- 
related genes obtained in this study were also enriched in 
IL-17 related signaling pathways. The infiltration of dendritic 
cells was significantly increased in patients with COPD in the 
current study. Van et al agreed with this finding and stated 
that in patients with COPD, especially in severe disease, 
dendritic cells were activated and increased in number.45 

Van et al also proposed that the number of Langerhans-type 
dendritic cells increases with COPD severity.46 It has been 
reported that immature dendritic cells in the respiratory tract 
promote Th2 differentiation.47 Moreover, the epithelial cells 
of asthmatic patients can attract Th2 cells into the airway by 
releasing chemokines through dendritic cells.48 By studying 
the relationship between gene signatures and dendritic cells, 
we found that PHLDA1 and FGG were positively correlated 
with dendritic cells, and PHLDA1 and FGG were highly 
expressed in COPD patients. These results suggest that 
PHLDA1 and FGG are up-regulated in COPD mediated by 
TFs and may be involved in the immune regulation 

mechanism associated with dendritic cells, thereby influen-
cing the progression of COPD.

It is undeniable that the integration of mRNA and 
non-coding RNA research techniques provides a more 
comprehensive biological perspective for exploring the 
pathogenesis of diseases. However, the relationship 
between gene signatures and miRNAs was only investi-
gated at a predictive level in this study. The lack of 
exploration of the expression correlation and regulation 
mechanism between them is one of the limitations of 
this study. Additionally, the COPD severity stratification 
is unavailable in this study because of the lack of 
clinical features. Therefore, in the follow-up study, we 
will collect clinical solid tumor samples and further 
include information on disease severity to explore the 
role of genetic markers in COPD progression. Further 
functional experiments will be conducted to confirm the 
regulatory relationship between miRNA-mRNA and TF- 
mRNA regulatory axes.

Table 1 Correlations Between Gene Signatures and Immune Cells

mRNA Cell p value Corvalue mRNA Cell p value Corvalue

MTHFD2 B cells naive 0.038221549 −0.216460785 PHLDA1 NK cells activated 0.044817725 −0.209712723
MTHFD2 Plasma cells 0.009992671 0.267323475 PHLDA1 Monocytes 0.000754106 −0.345115438

MTHFD2 CD8 T cells 0.000941017 −0.339194798 PHLDA1 M0 Macrophages 0.037218299 0.217570938

MTHFD2 Naive CD4 T cells 0.006624417 −0.281183967 PHLDA1 Macrophages M1 0.005473208 −0.287396293
MTHFD2 Resting CD4 memory T cells 0.028518527 −0.228426768 PHLDA1 Activated Dendritic cells 0.034230963 0.221031971

MTHFD2 Resting NK cells 0.000560183 −0.352886978 PHLDA1 Resting Mast cells 4.38E-05 −0.412522682

MTHFD2 Monocytes 0.018706668 −0.244748154 PHLDA1 Activated Mast cells 8.93E-06 0.444735204
MTHFD2 M0 Macrophages 0.000685588 0.347627373 PHLDA1 Eosinophils 5.25E-05 0.408673492

MTHFD2 Resting Mast cells 5.98E-06 −0.452386635 HS3ST2 Plasma cells 0.002037279 0.317579771
MTHFD2 Activated Mast cells 0.000474456 0.357144707 HS3ST2 CD8 T cells 0.003800332 −0.298905194

MTHFD2 Eosinophils 0.000343708 0.365243811 HS3ST2 Naive CD4 T cells 0.005409791 −0.28777121

KANK3 CD8 T cells 0.000158799 0.383821809 HS3ST2 Resting NK cells 0.000447508 −0.358629682
KANK3 Naive CD4 T cells 0.014838555 0.253307477 HS3ST2 Monocytes 0.000978526 −0.338137567

KANK3 T cells follicular helper 0.012267997 −0.260140422 HS3ST2 M0 Macrophages 0.000142468 0.38634609

KANK3 Resting NK cells 4.37E-05 0.412591179 HS3ST2 Activated Mast cells 0.003092543 0.305210891
KANK3 M0 Macrophages 0.005401572 −0.287820088 HS3ST2 Eosinophils 0.015255688 0.252297256

KANK3 M2 Macrophages 0.011212825 −0.263312516 FGG CD8 T cells 0.000532053 −0.354213995

GFPT2 Plasma cells 0.010632912 0.265168573 FGG Resting NK cells 0.047402242 −0.207292668
GFPT2 CD8 T cells 0.004697775 −0.292272558 FGG M0 Macrophages 0.013793222 0.255951605

GFPT2 Resting NK cells 0.001579882 −0.324868899 FGG Activated Dendritic cells 8.64E-06 0.44537548

GFPT2 Monocytes 0.004339791 −0.29477023 FGG Resting Mast cells 0.005283033 −0.28853245
GFPT2 Resting Mast cells 0.00020413 −0.377900936 FGG Activated Mast cells 0.000234667 0.374564735

GFPT2 Activated Mast cells 4.99E-06 0.455739163 RPS4Y1 Plasma cells 0.004600289 0.292935454

GFPT2 Eosinophils 0.042492799 0.211990686 RPS4Y1 CD8 T cells 0.046803247 −0.20784364
GFPT2 Neutrophils 0.012392823 0.259781061 RPS4Y1 Naive CD4 T cells 0.038170325 −0.216516873

PHLDA1 Plasma cells 3.85E-05 0.415301636 RPS4Y1 M0 Macrophages 0.045106053 0.209437098

PHLDA1 Resting NK cells 5.60E-05 −0.407246483

Notes: Corvalues were p values adjusted by Benjamini & Hochberg method.
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Conclusion
To conclude, this study proposed seven-gene signatures of 
COPD, including MTHFD2, KANK3, GFPT2, PHLDA1, 
HS3ST2, FGG, and RPS4Y1, based on difference analysis 
and trait module analysis. These genes can be used as poten-
tial diagnostic markers to predict the onset risk of COPD. 
The seven-gene signature was enriched in interleukin-related 
signaling pathways and was also associated with immune 
cells. Additionally, the miRNAs and TFs of gene signatures 
were analyzed to help understand upstream regulatory 
mechanisms. This study provides valuable biomarkers for 
patients with COPD to customize personalized treatments.
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