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Breast cancer is the most frequent type of malignancy in women worldwide, and drug
resistance to the available systemic therapies remains a major challenge. At the molecular
level, breast cancer is heterogeneous, where the cancer-initiating stem-like cells (bCSCs)
comprise a small yet distinct population of cells within the tumor microenvironment (TME)
that can differentiate into cells of multiple lineages, displaying varying degrees of cellular
differentiation, enhanced metastatic potential, invasiveness, and resistance to radio- and
chemotherapy. Based on the expression of estrogen and progesterone hormone
receptors, expression of human epidermal growth factor receptor 2 (HER2), and/or
BRCA mutations, the breast cancer molecular subtypes are identified as TNBC, HER2
enriched, luminal A, and luminal B. Management of breast cancer primarily involves
resection of the tumor, followed by radiotherapy, and systemic therapies including
endocrine therapies for hormone-responsive breast cancers; HER2-targeted therapy for
HER2-enriched breast cancers; chemotherapy and poly (ADP-ribose) polymerase
inhibitors for TNBC, and the recent development of immunotherapy. However, the
complex crosstalk between the malignant cells and stromal cells in the breast TME,
rewiring of the many different signaling networks, and bCSC-mediated processes, all
contribute to overall drug resistance in breast cancer. However, strategically targeting
bCSCs to reverse chemoresistance and increase drug sensitivity is an underexplored
stream in breast cancer research. The recent identification of dysregulated miRNAs/
ncRNAs/mRNAs signatures in bCSCs and their crosstalk with many cellular signaling
pathways has uncovered promising molecular leads to be used as potential therapeutic
targets in drug-resistant situations. Moreover, therapies that can induce alternate forms of
regulated cell death including ferroptosis, pyroptosis, and immunotherapy; drugs
targeting bCSC metabolism; and nanoparticle therapy are the upcoming approaches to
target the bCSCs overcome drug resistance. Thus, individualizing treatment strategies will
eliminate the minimal residual disease, resulting in better pathological and complete
response in drug-resistant scenarios. This review summarizes basic understanding of
breast cancer subtypes, concept of bCSCs, molecular basis of drug resistance,
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dysregulated miRNAs/ncRNAs patterns in bCSCs, and future perspective of developing
anticancer therapeutics to address breast cancer drug resistance.
Keywords: breast cancer, drug resistance, BCSCs, miRNAs, therapeutic strategy, cancer stem-like cells
INTRODUCTION

Breast cancer (BC) is the most frequent type of malignancy in
women worldwide. BC has now eclipsed lung cancer as the leading
cause of global cancer incidence in 2020, with an estimated 2.3
million new cases, representing 11.7% of all cancer cases (1). Drug
resistance in BC patients appears to be the major challenge in
breast cancer research. Despite significant advances in BC
treatment, many patients with malignant BC experience
aggressive disease progression due to de novo and acquired drug
resistance. De novo resistance occurs even before drug exposure,
while acquired resistance emerges from initially drug-sensitive
tumors. The mechanisms associated with de novo drug resistance
significantly contribute to failure to eradicate the residual disease,
thus facilitating the development of acquired drug resistance (2).

The failure of the current treatment therapies as well as the
high mortality in metastatic BC patients is highly attributed to
the existence of therapy-resistant breast cancer stem-like cells
(bCSCs). The emerging concept of CSC origin supports the
hierarchical organization of CSC-like cells, sitting at the top of
the hierarchy, having the unique ability to give rise to diverse
lineages of cancer cells that forms the tumor. Although the CSC-
like cells occupy only a very minor fraction of the total tumor
mass (around 2%), they are mainly responsible for establishing
the intratumor heterogeneity (3). The concept of “tumor
heterogeneity” refers to the genetic variation existing between
tumor cells within and across the BC patients. According to the
CSC concept, the CSC-like cells possess three main
characteristics: (1) potent tumor initiation potential to
regenerate the tumor, (2) self-renewal feature in vivo that
would inevitably allow them to form a phenotypically
indistinguishable heterogeneous tumor, when transplanted in
secondary or tertiary recipients, and (3) finally, they must reflect
the differentiation ability so that they can re-establish a
phenocopy of the original tumor. Hajj et al. first identified and
isolated the bCSCs (CD44+CD24−/lowLineage−) from the
phenotypically diverse population of BC cells. This fraction of
breast tumor cells can form a new tumor with additional CD44
+CD24−/lowLineage− bCSCs along with phenotypically
different nontumorigenic cells (4). If the therapy in question
fails to specifically target and kill the bCSCs, they would persist as
the residual disease, which can regenerate tumors in the future.
Frequently, the bCSCs overexpress the drug efflux transporters
and spend most of the time in the nondividing cell-cycle phase
(G0) to escape from the conventional therapeutics (5). Hence,
targeting the bCSCs in any subtype, such as luminal A, luminal
B, human epidermal growth factor receptor 2 (HER2)-enriched,
and triple-negative (TNBC), is the key strategy to conquer
therapeutic resistance in BC. The complex communication
between bCSCs and the stromal cells; resistance to
2

chemotherapeutic drugs (paclitaxel, anthracycline, platinum),
endocrine therapies (tamoxifen, fulvestrant), and HER2-
targeted drugs (trastuzumab, lapatinib); rewiring of hedgehog
(Hh), Notch, Wnt/b-catenin, and phosphoinositide 3-kinase
(PI3K)/Akt/mTOR signaling networks; and enhancing DNA
repair mechanism, contribute to the overall drug resistance in
bCSCs (6).

MicroRNAs (miRNAs) also add another dimension to the
complexity of BC disease progression and therapeutic resistance,
through maintenance of the bCSC population. MiRNAs are a
group of small noncoding RNAs (ncRNAs) that influence the
expression of their target genes at the posttranscriptional level by
binding to the 3′-untranslated regions (3′-UTR) of mature
mRNA transcripts. Two different types of miRNAs—tumor
suppressor miRNAs (miR34, Let-7, miR30, miR200 family,
miR600) and Onco-miRs (miR-22, miR155, miR181, miR221/
222 cluster)—have been identified in bCSCs, having either
tumor-suppressive or oncogenic functions, respectively.
Interestingly, miRNAs have been implicated in the regulation
of many different signaling networks, contributing to the
development and maintenance of bCSCs (3, 7). Moreover,
locoregional tumor burden along with the metastatic patterns
in BC patients also influence the efficacy of the treatment
strategies. In the case of early-stage BC, the tumor is restricted
in the breast or local axillary lymph node, and the success rate for
relapse-free survival is around 70%–80% (8). However, in the
case of advanced BC, where metastatic dissemination from the
primary tumor site leads to the re-establishment of secondary
tumors involving other organs like lung, brain, liver, and bones,
complete cure is not possible. In that scenario, much emphasis is
given to prolonging the patient survival to exert a low degree of
treatment-associated cytotoxicity to improve the quality of life.

Due to the lack of specific molecular targets in TNBC and
increased resistance to the anti-HER2 therapies in HER2+ breast
tumors, cytotoxic chemotherapy is the common alternative for
treating these two most resistant subtypes of BC. However, there
is an increasing search for therapeutic strategies that would
sensitize the drug-resistant bCSCs to programmed cell death.
Immunotherapy, based on the immune checkpoint inhibitor
molecules (ICIs), specific for programmed cell death protein 1
(PD-1), programmed death ligand 1 (PD-L1), and CTLA-4,
which are either administered as a single agent or in
combination with either a humanized monoclonal antibody,
such as trastuzumab, in HER2+ BC settings, or any other
chemotherapeutic drug in the TNBC scenario, have been the
recent candidates in clinical trials (8). Other immunotherapy
approaches like the chimeric antigen receptor T-cell (CAR-T)
therapy, dendritic cell (DC) vaccine, and oncolytic viral
therapies, specific for bCSC immune targeting, are also gaining
significant momentum in recent years (9). Nanoparticle-based
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bCSC-targeting platform is also appearing as an upcoming
approach to deliver small molecules, antibodies, and miRNAs
to affect the signaling networks implicated in bCSC self-renewal
and differentiation; interfering with drug-efflux transporters; and
targeting bCSC metabolism (10). In this review, we focused on
the mechanisms of resistance to chemo-, endocrine, and targeted
therapies, the contribution of bCSCs in exerting drug resistance,
and the factors influencing bCSC-mediated drug resistance and,
finally, we emphasized the alternative forms of upcoming
treatment platforms to overcome CSC-related drug resistance
in BC patients.
BREAST ARCHITECTURE, BC SUBTYPES,
AND ADVANCEMENT OF TECHNOLOGIES
TO IDENTIFY BC

The breast architecture mainly involves glandular tissue
including the breast lobes and ducts, supportive fibrous
connective tissue, and fatty tissues that largely fill in the gaps
between the glandular and fibrous tissues. An adult woman’s
breast consists of 15–20 lobes, each lobe further containing 20–
40 lobules. The lobules resemble a grape-like structure, where
each of the lobules is attached to a small milk duct, and finally
these small ducts join, eventually forming a larger collecting duct.
There are around 10 ductal systems present in each breast that
finally open at the nipple. A cross-section of a milk duct shows a
basement membrane layer, the basal or myoepithelial layer, and
the luminal or epithelial layer, from outside to inside
(Figures 1A–C). In 20%–25% of cases, the tumor is restricted
at the site of its origin (in situ or preinvasive); whereas, in 75%–
80% of cases, the tumors are malignant (invasive) whereby the
malignant cells invade the basement membrane and penetrate
the stroma.

Histological and Molecular Subtypes
BCs are generally divided according to histological grade and
stage, which define the aggressiveness and metastatic potential of
the tumor. Histologically, the breast tumors are distinguished
into preinvasive and invasive subtypes involving the ductal and
lobular compartments. Ductal and lobular subtype is classified as
ductal carcinoma in situ (DCIS), invasive ductal carcinoma
(IDC), lobular carcinoma in situ (LCIS), and invasive lobular
carcinoma (ILC), respectively (Figures 1D–H) (11). At the
molecular level, breast tumors are categorized into 4 main
subtypes, based on the presence/absence of markers that
include estrogen receptors (ER), progesterone receptors (PR),
and HER2, as well as their proliferative index according to Ki67
expression (12). These molecular subtypes include TNBC (ER−,
PR−, HER2−), HER2-enriched (ER−, PR−, HER2+), luminal A
(ER+ and/or PR+, but HER2−, Ki67 <14%), and luminal B (ER+
and/or PR+, HER2+ or HER2−, Ki67 >14%) (refer to Figure 1I).
ER+ breast tumors are targeted using selective estrogen receptor
modulators (SERMs), aromatase inhibitors, cyclin-dependent
kinases 4 and 6 (CDK4/6) inhibitors, and ER degraders also
called selective estrogen receptor downregulators (SERDs) (13).
Frontiers in Oncology | www.frontiersin.org 3
HER2-enriched breast tumors are candidates for HER2-targeted
monoclonal antibodies. However, TNBC accounts for the most
therapy-resistant subtype of heterogeneous basal-like tumors
(15%–20% of all breast tumors), which frequently reflects a
high mutational burden including tumor suppressor p53 (TP53
gene, 74.5%–82.8%), breast cancer type-1 and/or type-2
susceptibility gene (BRCA1, 1.96%–21.55%; BRCA2, 1.63%–
18.10%), and phosphatidylinositol 3-kinase catalytic alpha
polypeptide (PI3KCa, 8.6%–23.2%) (9, 14–16). However,
another compelling piece of evidence from Maristany et al.
suggests the concept of phenotypic switching between BC
molecular subtypes, as evident from the gene expression
studies before, during, and after neoadjuvant therapy with
lapatinib and trastuzumab in HER2+/HER2-enriched tumors
of the PAMELA trial and BC cell lines (17). Dual blockade of
HER2 pathway in HER2-enriched settings leads to a subtype
switching to a low-proliferative luminal A phenotype both in the
patients’ tumor samples and in vitro models. Strikingly, this
subtype switching from HER2-enriched to luminal A phenotype
increased the sensitivity toward CDK4/6 inhibitors; although,
this switching is reversible upon stopping the anti-HER2
treatment. Moreover, integrated analysis of copy number and
gene expression studies of 2,000 breast tumors by Curtis et al.
reveals the existence of novel molecular stratification among the
BC population, resulting from the impact of somatic copy
number aberrations (CNAs) on the transcriptome (18). A
similar study of somatic CNAs revealed an advanced
stratification of BC cases into integrative clusters and
prototypical patterns of single-nucleotide variants, shaping the
clinical courses and response to BC therapies (19). Therefore, in
addition to the conventional BC molecular subtypes discussed
above, the genomic and transcriptomic architecture of BC
samples further add another dimension, yielding novel BC
subgroups with distinct clinical outcomes. Moreover, the
emerging evidence on the inter- and intratumoral
heterogeneity within a breast tumor not only acknowledges the
probability that multiple different BC subtypes can coexist within
a single tumor but also demonstrates that plasticity between
divergent subtypes is possible rather than being static (20).
Interconversion between the different subtypes within a breast
tumor contributes to disease progression, metastasis, and
therapeutic resistance. Therefore, therapeutic decision making
must be designed based on the genomic and transcriptomic
inputs along with the changing molecular phenotypes even in an
individual patient’s tumor.

Solid Tissue Biopsy and Liquid Biopsy
Solid tissue biopsy is the standard method of choice in clinical
oncology that provides information on tumor histology,
molecular profiling and subtyping, and biomarkers targeted for
treatment planning (21). However, it does not reveal the
complete genomic landscape of the tumor, as the tissue is
collected from a specific biopsy area. The heterogeneous nature
of the tumor is validated when tumor cells collected from
multiple regions from a single patient are subjected to exome
sequencing, ploidy profiling, and chromosome aberration
analysis. Gerlinger et al., for example, noted that approximately
March 2022 | Volume 12 | Article 856974
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63%–69% of the mutations observed in tumor tissue obtained
from a single biopsy derived from the same patient are not
homogeneous throughout the tumor. This observation strongly
indicates the importance of “multiregion biopsy” for the
diagnosis of cancer (22).

To bypass this limitation, in 2020, the Food and Drug
Administration (FDA) approved the use of “liquid biopsy”
where DNA from circulating breast tumor cells (ctDNA) shed
from the primary tumor site is isolated from the patient’s blood
and then subjected to microfluidic-based single-cell
transcriptional profiling (23, 24). CtDNAs released into the
systemic circulation can be theoretically defined as an
admixture of tumor DNA samples from different metastatic
sites, thus fully reflecting the tumor heterogeneity. A very
recent work from Kingston et al. represents the application of
plasma ctDNA sequencing to define the genomic profile of
metastatic BC in 800 patients in the plasmaMATCH trial (25).
Frontiers in Oncology | www.frontiersin.org 4
With this novel approach, diverse resistance mutations including
enrichment of HER2 mutations in HER2+ tumors, ESR1 and
MAPK pathway mutations in ER+ HER2− tumors, and multiple
PI3KCA mutations in ER+ tumors, have been successfully
demonstrated. Particularly, this study utilizes the ctDNA
analysis platform in a large clinical trial to denote the
subclonal diversification of pretreated advanced BC,
categorizing unique mutational processes in ER+ BC and
identifying novel therapeutic directions. This noninvasive
methodology enables the detection of early stages of BC,
monitoring of treatment efficacy and therapeutic resistance,
and identification of minimum residual disease (MRD) and
risk of relapse (24, 26). Circulating tumor RNAs are also
released into the bloodstream of BC patients, which provides
another analytic platform through the liquid biopsy method (27).
Next-generation sequencing (NGS) is also increasingly applied
for high-throughput BC mutational profiling (28, 29).
A B
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FIGURE 1 | Normal breast architecture and breast cancer subtypes. (A) Representative image of breast architecture showing lobular and ductal system.
(B) Magnified view of milk duct showing detailed lobular and ductal structure as an inset image. (C) Cross-sectional view of normal mammary duct showing
basement membrane, basal myoepithelial cell layer, and luminal or epithelial cell layer from outside to inside. (D) Representative images of ductal carcinoma in situ
(DCIS) and (E) invasive ductal carcinoma (IDC). (F) Representative images of lobular carcinoma in situ (LCIS) and (G) invasive lobular carcinoma (ILC). (H) Histological
subtypes (preinvasive and invasive) and (I) molecular subtypes (triple-negative, HER2+, luminal A, and luminal B) of breast cancer.
March 2022 | Volume 12 | Article 856974
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BCSCs AND DRUG RESISTANCE

BCSCs can escape the conventional therapies through adaptation
to several strategies, where the breast cancer stem-like cells can
remain dormant or “quiescent”, turn off the apoptotic pathways,
and increase DNA repair mechanisms, along with expelling
chemotherapy (chemo) drugs out of the cell, manipulating
TME, and managing the intracellular load of reactive oxygen
and nitrogen species (ROS and RNS) (30). Although the dormant
bCSCs maintain themselves in the G0 state, they still retain the
ability to enter the cell division cycle in response to mitotic
stimulation (31). As chemotherapy and radiation therapy
exclusively target the proliferating fraction of tumor cells, the
bCSCs can evade systemic therapies, and in turn, develop drug
resistance. Thus, drug resistance confers the bCSCs with a selective
advantage over the non-CSCs that supports the “survival of the
fittest” hypothesis applicable for CSC-like cells within TME.
Moreover, epithelial–mesenchymal transition (EMT) plasticity
that enables bCSCs to dynamically switch between intermediate
cellular states of varying epithelial/mesenchymal traits, also
contributes to bCSC-mediated therapeutic resistance (32–34). A
study by Liu et al. demonstrates that bCSCs exhibit plasticity that
allows them to transition between a proliferative epithelial-like
state (E-bCSCs), characterized by a high aldehyde dehydrogenase
activity, and a quiescent, mesenchymal-like, invasive state (M-
bCSCs), characterized by CD44+CD24− expression (35). This
switching from E- to the M-state closely mimics the EMT
program, which is associated with CSC properties and drug
resistance. This observation strongly proposes that distinct
bCSCs coexist within the same tumor, and thus novel
combinatorial approaches targeting both CSC phenotypic states
are essential to eliminate different types of bCSCs within the same
tumor to reverse drug resistance phenomena. In trastuzumab-
resistant HER2+ BC, combinatorial targeting of both HER2 (with
trastuzumab) and IL-6 receptor (with tocilizumab) synergistically
interferes with the tumor progression and metastasis by
eradicating both E- and M-bCSCs (36); whereas, in the TNBC
scenario, no such approach is available so far.

How the bCSCs Originate Within a Tumor
(Clonal Versus Stem Cell Model)
There has been a great deal of debate on how CSCs originate.
Clonal evolution theory and the cancer stem cell theory are the
two most popular theories that shed light on the origin of this
CSCs. Apart from this, CSCs are thought to be one of the
determining factors establishing intratumoral heterogeneity,
and both clonal evolution theory and stem cell model account
for the same (37). The clonal evolution model holds an example
of a nonhierarchical model where individual tumor cells are
thought to undergo stochastic genetic/epigenetic changes as a
function of time and serves as the platform for adaptation and
selection of the fittest clones (38). Thus, each cell gets the chance
to become tumorigenic or drug resistant if it accumulates enough
episodes of genetic/epigenetic modifications. These changes
contribute to intratumoral heterogeneity as a result of natural
selection and evolution of bCSCs with better survival fitness,
where those clones will expand and survive, out-compete the
Frontiers in Oncology | www.frontiersin.org 5
other nontumorigenic clones with less fitness, eventually making
them extinct. This landmark theory was proposed by Peter
Nowell in 1976 (39). Furthermore, these clones may change
spatially and temporally and develop into a complex subclonal
architecture, contributing to tumor heterogeneity. However, the
dynamic CSC model represents a hierarchical model, which
holds that only the CSC-like cells can develop a tumor, based
on their infinite self-renewal and tumorigenic properties (refer to
Figure 2A). According to this model, a CSC-like cell can either
symmetrically divide giving rise to two new CSCs or can
asymmetrically divide into a differentiated daughter cancer cell
and a CSC (refer to Figure 2B). Hence, CSCs contribute to
intratumoral heterogeneity through a differentiation program
generating a range of distinct cell types within a tumor. However,
this differentiation hierarchy is not only a one-way route but can
also be reversible or plastic where the terminally differentiated
pool of cancer cells can reverse their phenotype and acquire
CSC-like properties through a dedifferentiation program, termed
as “phenotype reversal”. Recent studies also indicate that
different subpopulations of CSCs with varying biochemical,
biophysical, and metabolic signatures may exist within a
tumor, contributing to tumor heterogeneity, varied
dissemination, and drug resistance potential (40). Treatment
with the available chemotherapeutic drugs can kill the
nonstem-like tumor cells while sparing the drug-resistant
bCSCs, allowing them to survive, which eventually repopulate
and develop into a tumor, leading to distant metastasis (refer
Figure 2C). Therefore, treating a hierarchical tumor with some
therapeutic agents that can specifically target and eradicate
bCSCs can be the only option to get rid of CSCs and tumor
recurrence. However, even if the CSC fraction is eliminated out
of the TME, the remaining tumor cells may undergo phenotype
reversal to replenish the CSC-like population and lead to tumor
regrowth (10). Moreover, a failed radiotherapy can stimulate the
transition of dormant CSCs into the “awakened state”, whereby
they can enter the cell cycle and start proliferating (41).

Characterization of bCSCs
Since bCSCs are phenotypically different from the rest of the cells
present within TME, bCSCs can be identified and sorted based on
some classical bCSC-specific markers like CD44, CD133, aldehyde
dehydrogenase 1 (ALDH1) activity, epithelial cell adhesion
molecule (EpCAM), CXCR4, ABCG2, CD34, CD49f, CD90,
CD61, and breast cancer resistance protein (BRCP). However,
due to the low specificity of these markers, a combination of CSC-
like markers is frequently used. However, the combination of a
high CD44/CD24 ratio and ALDH1+ is considered to be the most
accurate and consistent way of defining bCSCs (42).

CD44
CD44 is a cell-surface hyaluronan acid (HA) receptor that contains
an HA-binding site in its extracellular domain. Notably, HA is the
major component of ECM. Hence, the CD44-HA interaction not
only contributes to the cell adhesion to ECM components but also
to tyrosine phosphorylation of cytoskeletal proteins, activation of
RhoA/RhoC, Rac1, and Cdc42, fueling invasion and metastasis
(43). Activation of these signaling pathways is essential for actin
March 2022 | Volume 12 | Article 856974
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cytoskeletal remodeling, actin filament assembly, tumor cell
migration, and invasion. CD44 is overexpressed in bCSCs and
interestingly involves the Src kinase family proteins to initiate BC
progression via Twist signaling (44). Moreover, CD44 contributes
to chemoresistance since it upregulates the expression of multidrug
resistance receptors by activating Nanog (45).

CD133
CD133 is another bCSC-specific marker found to be enriched in
basal-like, HER2+, luminal, and TNBC subtypes. CD133-high
bCSCs have been documented in tumor cell proliferation,
vasculogenic mimicry, invasion, metastasis, and drug resistance
(6). Croker et al. identified CD44+CD133+ALDHhigh bCSC-like
Frontiers in Oncology | www.frontiersin.org 6
cells as crucial mediators of BC metastasis (46). BRCA1-
associated murine breast tumors consist of CD44+/CD24− and
CD133+ cells with bCSC-like features, showing a greater
intrinsic colony-forming potential that can regenerate breast
tumors in NOD/SCID mice (47). Interestingly, CD133-high
bCSCs augments endocrine resistance in metastatic BC via the
IL-6/Notch signaling (48). Xenograft initiating CD44
+CD49fhighCD133/2 high cells display self-renewal in vivo
and greater tumorigenicity in ER− breast cancer (49).

ALDH1
Aldehyde dehydrogenase 1 is a member of NAD(P)+-dependent
cytosolic isoenzymes, which is critically responsible for the
A B

C

FIGURE 2 | The origin of breast CSCs within a tumor. (A) Dynamic cancer stem cell (CSC) model of cancer cell plasticity showing switching between CSC-like state
and differentiated cancer cell states (non-CSCs) through differentiation and dedifferentiation pathways. (B) Establishment of intratumor heterogeneity in breast cancer,
resulting from symmetric and asymmetric cell divisions of breast CSCs. (C) Representative images of classical chemotherapy, CSC-targeted therapy, phenotype
reversal, and combination therapy for target killing of breast cancer stem-like cells from TME.
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oxidation of retinol to retinoic acid, required for early
differentiation of stem cells. ALDH1 is a general marker of both
human normal mammary stem cells and malignant mammary
stem-like cells, and high ALDH1 activity is an independent
predictor of poor clinical outcome and survival of BC patients
(50). Interestingly, only a fraction of CD44+CD24−/low bCSC BC
cells are ALDH1+ and display the highest tumorigenic potential,
when compared with ALDH1− population (50). Moreover,
ALDHhighCD44+CD24− and ALDHhighCD44+CD133+
bCSCs, isolated from MDA-MB-231 and MDA-MB-468 cell
lines, respectively, demonstrated enhanced growth, adhesion,
migration, colony formation, and invasion profile, compared
with ALDHlowCD44−/low cells (46). Therefore, inhibition of
ALDH activity can effectively reverse doxorubicin/paclitaxel
resistance of ALDHhighCD44+ human bCSCs (51). ALDH+
bCSCs with an increased expression of interleukin-1 receptor
(IL1R1) are enriched following antiestrogen therapy and held
responsible for the treatment failure (52). Hence, targeting the
ALDH+IL1R1+ bCSCs is crucial to reverse the drug resistance
exerted by antiestrogens.

EpCAM
EpCAM is a glycosylated type 1 glycoprotein, expressed by
human epithelial cells, and functions as an oncogenic signal
transducer (53). Al-Hajj et al. showed that EpCAM+CD44
+CD24−/lowLineage− fraction had a >10-fold higher frequency
of tumor-initiating cells compared withto EpCAM−CD44
+CD24−/lowLineage− fraction (4). Interestingly, EpCAM
overexpressing BC cells can withstand greater radiation stress
compared with EpCAMlow cells (54). Hence, EpCAMhigh BC
cells retain the ability to form a higher number of
mammospheres. Activation of the AKT pathway is also
observed in EpCAM overexpressing ZR-75-1 breast cancer cell
line, compared with parental cell line. Moreover, EpCAM
overexpression also reflects a higher percentage of cells with an
E/M hybrid state, encouraging EMT, invasion, and metastasis.
EpCAM+ circulating tumor cells isolated from primary human
luminal BC patients’ blood contain metastasis-initiating cells,
leading to bone, lung, and liver metastasis in mice (55). Since
survivin has a crucial role in bCSC chemoresistance, EpCAM
aptamer-mediated survivin silencing can sensitize bCSCs to
doxorubicin and reverse chemoresistance (56).

CXCR4
The chemokine receptor C-X-C chemokine receptor type 4
(CXCR4) is considered to be a prognostic marker of bCSCs.
The metastatic cascade is initiated via a series of sequential steps
that include local invasion and intravasation (transendothelial
migration) of cancer cells from the primary tumor site into the
circulation, followed by extravasation at distant sites and
subsequent organ colonization (homing) (57). Cancer cells at
the growing front of the tumor undergo EMT, which degrades
the underlying basement membrane and ECM before
intravasation. The CXCR4 receptor and its ligand, CXCL12
(SDF-1) play an important role in the dissemination of BC
cells from the primary site, transendothelial migration, and
eventually trafficking and homing of bCSCs. Chemokines are
Frontiers in Oncology | www.frontiersin.org 7
8–12-kDa chemoattractant cytokines that contribute to
differentiation, cell activation, and trafficking. Notably, the
chemoattractant CXCL12 provides directional guidance to
CXCR4+ bCSCs toward the secondary metastatic site and
initiates metastasis (58–60). Hence, targeting the CXCR4-
CXCL12 signaling axis could serve as an alternative approach
to restrict bCSC-driven drug resistance. Additionally, CXCR4+
bCSCs show a higher vimentin/E-cadherin ratio, indicating
EMT. Interestingly, CXCR4 inhibition can enhance the
infiltration of cytotoxic T-cell lymphocytes (CTLs) and
improve the responses to immune checkpoint blockers in
metastatic BC (61). A quantitative phosphoproteomic study by
Yang et al. validated the importance of CXCR4-SDF1 signaling
in bCSCs and also identified several important signaling
pathways in bCSCs, downstream of CXCR4-SDF1 (62).

Evidence on Therapy-Induced bCSC
Enrichment and Drug Resistance
Several studies indicate evidence on bCSC enrichment
postanticancer therapy, although the underlying molecular
mechanisms leading to bCSC enrichment are largely unknown.
Since radiation treatment preferentially kills actively proliferating
non-CSCs, there is a natural enrichment of bCSCs posttherapy.
Furthermore, radiation can induce reversible transformation
between CSC and non-CSC phenotype such that more CSC-like
cells, with an increased level of stemness and tumorigenic
potential, are generated from both normal stem cells as well as
neoplastic nonstem-like cells, which ultimately leads to an increase
in the absolute number of bCSCs within TME (41, 63, 64). It is
hypothesized that in advanced cancer cases, the majority of the
CSCs remain “dormant”, thus remaining unaffected by
radiotherapy. Moreover, it is the unique potential of CSCs that
can modify divisional dynamics, favoring symmetrical division,
generating two identical CD44+CD24−/low daughter cells with
higher radioresistance, postradiotherapy (65, 66). The number of
tumor-initiating bCSCs also increases along with Notch
upregulation, following a brief period of fractionated irradiation
(66). Moreover, a study on non-CSCs isolated from the BC
patients indicates that ionizing radiation (IR) reprograms the
phenotype of differentiated BC cells and converts them into
induced bCSC (i-bCSC). These i-bCSCs reflect a greater
tumorigenic and mammosphere formation potential, along with
a higher expression of stemness-related genes, OCT-4, Sox2,
Nanog, and KIf4 (67). Furthermore, in response to IR, non-
CSCs undergo radiation-induced EMT and show an increased
migratory potential leading to metastasis and disease relapse, thus
closely mimicking the CSC-like phenotype (68). Altogether, this
evidence strongly suggests that acquisition of CSC phenotype by
differentiated BC cells is an example of a direct effect of anticancer
therapy, rather than a random event. Another study on glioma and
breast cancer suggests that around one-third of the CSCs remain
in dormancy and do not enter the cell cycle until challenged with
IR (69). This refers to a mechanism whereby more “awakened
CSCs” are generated from “dormant CSCs”. Moreover,
radiotherapy favors oncogenic metabolism in CSCs upon their
conversion from a slow-cycling “dormant” to “awakened” state,
which increases their therapeutic resistance (68). Chemotherapy
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treatment also enhances the percentage of CD44+CD24−/low BC
cells, indicative of innate chemoresistance exerted by bCSCs (70).
Hence, despite eradicating the CSCs from the tumor, anticancer
therapies including chemo- and radiation therapy rather help the
dormant bCSCs to survive by increasing their intrinsic resistance
and finally leading to tumor recurrence. Recently, an intricate link
between the dormant disseminated tumor cells (DTCs) and
therapeutic resistance has been documented, in the course of
metastasis (71). DTCs also spread via the metastatic cascade and
enter the blood or lymphatic circulation (57). During circulation,
the DTCs undergo a reversible mitotic arrest program, followed by
a long period of dormancy, termed as “quiescence”, when they
remain viable but do not increase in number (72). It is
hypothesized that a percentage of breast DTCs are indeed
bCSCs with long half-lives (73), capable of evading immune
surveillance through expression of PD-L1 and show innately
higher resistance toward standard radiation, chemo-, and even
immunotherapy (74). Upon reaching the distant organs, DTCs
infiltrate into the local tissue stroma, although they cannot form
micrometastases until dormancy is over. This period is termed as
“metastatic cancer dormancy” which reflects the period between
the initial therapy and disease relapse. Once the dormant DTCs
get adjusted to the new microenvironment, they “awaken” from
their dormant state, gain the ability to re-enter the cell cycle, and
proliferate, ensuing the metastatic outgrowth (72). Interestingly,
~62% of all deaths from BC happen after 5-year survival mark,
emphasizing the contribution of dormant DTCs in disease
recurrence (75). Several molecular targets, including integrin
a5b1, b1, a2, avb3, FAK, PKC, STAT3, and Cox1/2 have been
identified to DTCs’ reawakening program, for which specific
therapeutic agents are designed (72). Therefore, if the bCSCs
could be targeted before they awaken from dormancy,
metastatic dissemination and drug resistance can be
potentially restricted.
Factors Contributing to bCSC Drug
Resistance Against Conventional
Therapeutic Drugs
Vasculogenic Mimicry
Vasculogenic mimicry (VM) is a recently defined pattern of
tumor microvascularization that refers to the ability of cancer
cells to organize themselves into vascular-like structures to
procure nutrients and oxygen independently of normal blood
vessels (76, 77). Unlike the concept of angiogenesis or
vasculogenesis where the endothelial cells participate in blood
vessel formation, VM particularly depends on the participation
of highly aggressive tumor cells, having the endothelial
phenotype, to form vessel-like structures (Figure 3A). VM has
been reported in different types of solid aggressive tumors
including BC (78–80). CD133+ breast CSCs reflect VM, with a
higher expression of vascular endothelial-cadherin (VE-
cadherin), along with an upregulated expression of matrix
metalloproteinase, MMP-2, and MMP-9 in TNBC (81).
Notably, both MMP-2 and MMP-9 are critical players in
cellular plasticity and VM formation. According to Sun et al.,
it is the bCSCs that line the VM channels in breast tumor tissues
Frontiers in Oncology | www.frontiersin.org 8
from TNBC patients (82). Additionally, bCSCs produce more
VM-related molecules like CD133 and ALDH1, to synergize VM
formation (82, 83). However, cells participating in VM formation
lack the classical endothelial marker CD31, and thus,
administration of angiogenesis inhibitors does not affect VM
formation. In this context, a phytocompound, thymoquinone
(TQ), has been reported to exhibit an inhibitory effect on VM
and promotes mesenchymal–epithelial transition (MET) in
bCSCs derived from MDA-MB-231, in a dose-dependent
manner. Moreover, CD44+CD24− bCSCs when incubated with
TQ can interfere with rhodamine-123 efflux and decrease
stemness . This observation indirect ly denotes that
thymoquinone relieves the drug-resistance properties of bCSCs
(84). Mechanistically, TQ suppresses the PI3K and Wnt3a
signaling, leading to the reduction of the p-Akt/Akt ratio, and
has the potential to reduce the number of bCSCs.

Decreased Ferroptosis in bCSCs
Ferroptosis is an iron-dependent mechanism of regulated cell
death, which is characterized by the intracellular accumulation
of lipid-based ROS, ultimately resulting in the loss of membrane
integrity (Figure 3B) (85). Notably, lipid-ROS is detoxified in a
GPX4-catalyzed enzymatic reaction, which uses glutathione as a
reducing agent. Hence, ferroptosis can be triggered either by
inhibiting GPX4 enzymatic activity or depleting glutathione.
Type I ferroptosis-inducing compounds, including sulfasalazine
and erastin block the amino acid transporter required for cysteine
import to synthesize glutathione. Type II drugs, such as RSL3,
interfere with GPX4 peroxidase activity. Mechanistically, the
execution of ferroptosis requires a high concentration of
intracellular iron. Ferritin, the intracellular iron-storing protein,
can release iron to initiate ferroptosis. The released iron can yield
lipid-ROS in an autoamplifying manner. Ferroptosis can be
inhibited by the presence of iron chelators and activated by
transferrin and its receptor (86). Hence, sensitizing tumor cells
to ferroptosis appears as a possible therapeutic approach for BC
treatment. Notably, drug-tolerant BC cells show a dependency on
the GPX4 activity, thus inhibition of GPX4 can potentially
overcome BC drug resistance (87). Taylor et al. reported an
array of ferroptosis-inducing small molecules that can selectively
kill bCSCs with the mesenchymal phenotype in vitro (88). TNBC
cells are highly susceptible to cysteine starvation, leading to
ferroptosis and necroptosis, via the GCN2-eIF2a-ATF4-CHAC1
pathway (89). Since cysteine serves as the substrate for glutathione
synthesis to prevent ferroptosis, depleting the pool of cysteine can
sensitize BC cells to ferroptosis (89). Another synthetic derivative
from salinomycin, ironomycin (AM5), can trigger cell death in
bCSCs, both in vitro and in vivo, by sequestering iron in
lysosomes, which further indicates that iron homeostasis plays a
crucial role in bCSC survival (90). A novel nanoparticle, ferritin-
bound erastin, and rapamycin (NFER) has shown robust
ferroptosis-inducing properties by interfering GPX4 in 4T1
orthotopic BC mouse model (91).

Increased Autophagy in bCSCs and Drug Resistance
Autophagy is an evolutionarily conserved self-degradation
process that recycles intracellular nutrients, growth factors, and
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energy to sustain survival and cellular activities during stress like
hypoxia, nutrient deprivation, and ischemia (92). Autophagy
provides bCSCs with metabolic flexibility that becomes a
prerequisite for their survival in oxygen- or nutrient-poor
TME (93). Autophagy contributes to bCSC dormancy,
stemness, maintenance, and drug resistance (94–96).
Chaperone-mediated autophagy (CMA) and macroautophagy
are two different modes of the autophagy process, documented in
mammalian cells. Autophagy can elevate bCSC number, and
thus develop drug resistance to conventional chemotherapies
(97). Furthermore, autophagy-related genes (ATGs) such as
ATG4A, ATG5, ATG12, LC3-B, and Beclin1 are expressed in
dormant bCSCs, promoting bCSC survival and sustaining bCSCs
over the progression of BC (96). Expression of Beclin1 is noted to
be higher in mammospheres derived from BC cell lines, MCF-7
and BT474, compared with the adherent cultures (98). Moreover,
the expression of lysosome-associated membrane protein type
2A (LAMP2A), involved in the CMA pathway, is augmented in
Frontiers in Oncology | www.frontiersin.org 9
the course of BC metastasis (99). Autophagy of cancer-associated
fibroblasts (CAFs) also contributes to TNBC proliferation and
progression. Notably, autophagy-relevant Beclin1 and LC3-II/I
protein conversion levels are higher in CAFs, compared with the
normal fibroblasts in TNBC (100). Since autophagy serves as one
of the factors in malignant growth, inhibition of autophagy can
suppress tumor growth. Pharmacological targeting of the
autophagic flux with salinomycin can reduce bCSC-driven
drug resistance, interfere with their stemness, and also
compromise the bCSC tumorigenic potential (101).

Enhanced Drug-Efflux in bCSCs
CSCs often express a higher level of ATP-binding cassette (ABC)
transporters that facilitate them to survive chemotherapy, aiding
in the survival of drug-resistant CSCs (102). ABC transporters
can efficiently expel chemo drugs like anthracycline or taxanes out
of the cells and can eventually lead to the acquisition of drug
resistance phenotype in bCSCs (Figure 3C). This group of
A B

D
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C

FIGURE 3 | Factors responsible for bCSC-mediated drug resistance against traditional anticancer therapeutics. (A) Concept of vasculogenic mimicry observed in
breast CSCs leading to drug resistance. (B) Representative image of ferroptosis pathway involving generation of lipid-ROS in an iron-dependent manner, leading to
oxidative cell death of tumor cells. (C) Increased drug efflux due to enhanced expression of ABC transporters in bCSCs, resulting in lower intracellular
chemotherapeutic drug concentration. (D) Low ROS burden and enhanced DNA damage repair in bCSCs. (E) Restoration of T-cell activity by targeting immune-
checkpoint molecules like PD-1, PD-L1, and CTLA-4 to reverse CSC-mediated immune escape in breast cancer. (F) Epithelial-mesenchymal transition (EMT)
plasticity indicating the gradual transition of cancer cells from epithelial state to mesenchymal state and the transcription factors associated with the process.
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proteins is located on the cell membrane and thus can allow
transmembrane transportation of different toxic molecules.
Notably, CSCs exhibit a higher expression of ABC transporters,
such as ABCB1 (MDR1), ABCG2 (BCRP1), ABCC11 (MRP8),
and ABCB, which are positively correlated with CSC-mediated
drug resistance (103, 104). The activity of drug efflux proteins can
be monitored through the transport of fluorescent dyes like
rhodamine and Hoechst 33342 (105). Based on this property,
the CSCs can be isolated from non-CSCs by fluorescent-activated
cell sorter (FACS). This fraction of cells termed as “side
population” (SP), is identified as CSCs since these cells fall
along the side of the cellular distribution on the FACS profile.
Downregulating ABCG2 with wedelolactone-encapsulated PLGA
nanoparticles increases the chemosensitivity of bCSCs (106). The
Sox2-ABCG2-TWIST1 axis contributes to chemoresistance and
stemness in TNBC, indicating the importance of ABCG2 as a
potential bCSC-specific target in TNBC patients (107). Moreover,
simultaneous blocking of ABCG2 and antiapoptotic gene BCL2
with SiRNA in bCSCs leads to better chemotherapeutic response
to doxorubicin (108). Dofequidar, an ABC transporter inhibitor,
increases the chemosensitivity of bCSCs in advanced or recurrent
BC patients, when administered in combination with chemo
drugs like doxorubicin, fluorouracil, and cyclophosphamide
(109). ABC transporters not only participate in establishing the
drug resistance via increased efflux of chemo drugs but also
contribute to EMT (110). ABCB1 is another group of ABC
transporter implicated in the chemoresistant nature of CSCs
and induction of EMT (111, 112). Therefore, the combined
application of chemotherapeutic drugs and ABC inhibitors
should be employed to kill the bCSCs (111).

Enhanced DNA Repair in bCSCs
Although cancer cells show a reduced DNA damage repair
(DDR) mechanism and reflect many mutations and genomic
instability, CSC-like cells exhibit a highly dynamic DDR system
that protects the DNA effectively (113). Both chemotherapy
drugs and radiotherapy can induce DNA damage.
Mechanistically, radiotherapy contributes to DNA damage
through the production of water-derived free radicals and ROS
that avidly interacts with DNA, protein, and lipids. The
generation of ROS, in turn, switches on the DDR pathway.
However, in contrast to non-CSCs, CSCs have a low ROS
burden and augmented DNA repair system (refer to
Figure 3D). An increased level of ROS scavengers in CSCs
maintains low levels of ROS that protect the CSCs from ROS-
mediated DNA damage and apoptosis. The ROS scavenger, N-
acetylcysteine, can restore both CSC and EMT phenotypes (114).
A novel compound, salinomycin, can effectively target the CSC
niche and kill CD44highCD24−/low bCSCs as it upregulates the
ROS levels (115). The radioresistance property of CSC-like cells
is linked with cell-cycle kinetics, which is reflected by a
significant increase in the doubling time and Chk1/Chk2 basal
activation level (116). The elongated cell-cycle window,
therefore, offers more time to repair the genetic defects in
CSCs. When the DNA defects are corrected, CSCs again enter
into the cell cycle from the quiescent state and escape apoptosis.
Therefore, targeting DDR could reverse therapeutic resistance.
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Frizzled 5 (FZD5), a member of the FZD family, contributes to
DDR, G1/S transit ion, proliferation, stemness, and
chemoresistance in TNBC (117). FZD5 knockdown suppresses
the expression of CD133, ALDH, EpCAM, and Oct-4, thus
potentially overcoming chemoresistance and recurrence in
TNBC. Likewise, CCR5 directs the DDR mechanism and bCSC
expansion (118). CCR5 antagonists, vicriviroc and maraviroc,
can substantially increase cell death caused by DNA-damaging
chemo drugs. MYC and MCL1 also cooperatively function in
bCSC maintenance in TNBC patients via increasing ROS
production and HIF-1a expression (119).

Immune Escape in bCSCs and Drug Resistance
CSCs are a crucial driver in immune evasion, metastasis, and
drug resistance. Substantial evidence suggests a reciprocal
interaction between CSCs and immune cells, and that CSCs
adopt different strategies to circumvent immune attacks
mediated by different immune cell types within TME. This, in
turn, contributes to CSC expansion and mediate protumorigenic
immune function, leading to CSC-specific avoidance of immune
detection and destruction of immune cells. Tumor-associated
macrophages (TAMs), tumor-associated neutrophils (TANs),
myeloid-derived suppressor cells (MDSCs), DCs, tumor-
infiltrating lymphocytes (TILs), B cells, natural killer (NK)
cells, and T regulatory (Treg) cells, and proinflammatory
cytokines secreted by these cells, are therefore crucial for
maintaining an immune-resistant phenotype. Treatment of
bCSCs with conditioned medium from TAMs results in an
upregulated expression of Oct3/4, Sox2, Nanog, and ALDH1
activity (120). MDSCs also lead to the enrichment of bCSCs via
IL-6/STAT3 and NO/Notch signaling, leading to the suppression
of T-cell activation (121). The T-cell inhibitory molecule, PD-L1
is overexpressed on the bCSC cell surface, compared with their
differentiated counterparts, and is dependent on PI3K/AKT and
Notch signaling pathway (122). Interestingly, PD-L1 expression
is upregulated in response to EMT induction and facilitates the
immune escape of bCSCs (123, 124). Moreover, bCSCs are not
only resistant to chemotherapy but also immunotherapy (125).
Therefore, restoring the T-cell activity by manipulating immune
checkpoint molecules, targeting either PD-1/PD-L1 (nivolumab/
pembrolizumab) or CTLA-4 (ipilimumab) can be an effective
strategy (Figure 3E). Also, immunosuppressive cytokines
secreted by breast CSCs (IL-4, IL-6, IL-8, IL-10, and IL-13)
result in therapeutic resistance, increased EMT, metastasis, and
recruitment of immunosuppressive immune cell types like Treg
and MDSCs (126). A high circulating level of IL-6 contributes to
disease recurrence, tamoxifen resistance in luminal BC, and
trastuzumab resistance in HER-2 enriched BC. Targeting IL-6
receptor with monoclonal antibody tocilizumab, hence,
suppresses metastatic potential of bCSCs and enhances the
cytotoxicity of cisplatin against TNBC (127).

bCSC-Driven EMT, Metastasis, and Drug Resistance
Like normal tissue stem cells, EMT and the reverse process MET
are critical to CSC features. Substantial evidence exists that
correlates EMT plasticity to the emergence of dedifferentiated
cells with CSC phenotype, ultimately driving metastasis and drug
March 2022 | Volume 12 | Article 856974

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Saha and Lukong BCSCs in Drug Resistance
resistance (128, 129). EMT inducers such as TGF-b and receptor
tyrosine kinase (RTK) ligands modulate gene expression patterns
through complex signaling networks (112). This results in the
upregulation of transcriptional repressors like Snail, Slug, Zeb1/2,
Twist, and E47. This group of proteins, then, interacts with the
promoter sequence of adherens junction protein, E-cadherin,
recruits histone deacetylases (HDACs), and induces its
chromatin condensation, leading to transcriptional repression of
E-cadherin. EMT involves the dissolution of cell–cell adherens
junction barriers, loss of apico-basolateral polarity of epithelial
cells, along with increased expression of mesenchymal markers
such as fibronectin and vimentin (Figure 3F) (128). This, in turn,
aids in gaining motile characteristics of cancer cells post-EMT.
Mani et al. indicated that when the EMT program is induced in
immortalized human mammary epithelial cells through ectopic
expression of Twist, Snail, or TGF-b treatment, the cells exhibited
mesenchymal appearances, developed many stem-like properties,
and had the potential to form mammary tumors in mice (128).
Importantly, the metastatic cancer cells with mesenchymal-like
features generated post-EMT, exhibited CD44high/CD24low
signature, and formed mammospheres whereas CD44low/
CD24high cells could not. Al-Hajj et al. reported that
disseminated BC cells found in pleural effusions are enriched
in CD44highCD24−/low bCSCs (4). Interestingly, the EMT-
associated emergence of bCSCs is induced by CD8+T cells
that stimulate dedifferentiation of BC cells into bCSCs (130).
An increased expression of stroma cell-related genes, attributed
to the EMT program, could be linked to drug resistance in
BC (131). Hence, blocking the EMT program can eventually
interfere with CSC maintenance and innate or acquired drug
resistance (70). Therapeutic intervention of micro-RNAs can
provide an additional strategy to disrupt the EMT-CSC deadly
axis. Application of HDAC inhibitors and “differentiation-
inducing” agents are also believed to fetch clinical benefits to
BC patients.
MECHANISM OF BCSC-MEDIATED DRUG
RESISTANCE TO CANCER THERAPY

Resistance to Chemotherapy
Chemotherapy involves chemo drugs given to the BC patients
either intravenously or orally, along with other treatments like
surgery, radiation, or hormonal therapy. Through the
bloodstream, the chemo drugs reach the cancer cells and kill
them. Adjuvant and neoadjuvant chemotherapies are two
different modes of chemotherapies. In adjuvant chemotherapy
(following surgery), the chemo drug is given to kill the cancer
cells that have been left behind or could not be seen in imaging
tests; whereas, in neoadjuvant chemotherapy, the chemo drug is
given to shrink the breast tumor to reduce the requirement of
extensive surgery. However, several lines of evidence indicate
bCSC enrichment following exposure to chemo drugs, resulting
in multidrug resistance (MDR). Here, we focus on the variety of
chemo drugs (refer to Table 1), their mode of action, and
potential mechanisms of chemoresistance exerted by bCSCs.
Frontiers in Oncology | www.frontiersin.org 11
Paclitaxel Resistance
Paclitaxel, a first-line therapeutic agent for the treatment of
metastatic BC, is a microtubule-stabilizing agent. It interferes
with microtubule dynamic instability at nanomolar
concentrations, thus leading to G2/M mitotic arrest and
apoptosis in BC cells (Figure 4A). Paclitaxel resistance seems
to be one of the primary obstacles that lead to chemotherapeutic
failure in BC. HER2/b-catenin pathway mediates paclitaxel
resistance in BC cells, and hence suppression of the HER2/b-
catenin signaling can overcome paclitaxel resistance (132).
Penfluridol (PFL) treatments that suppress both HER2/b-
catenin pathways significantly inhibit the survival of paclitaxel-
resistant BC cells. Notably, paclitaxel resistance increases both
CD44+CD24− bCSC content and sphere-forming ability in the
paclitaxel-resistant SUM159 metastatic TNBC cell line (133).
According to this report, dasatinib, an Src family kinase
inhibitor, induces epithelial differentiation of mesenchymal
TNBC cells and sensitizes TNBC cells to paclitaxel therapy
through targeting bCSCs. An increased association of ALDH1
expression has been noted in paclitaxel-resistant BC patients
(134). TNBC cell lines, such as MDA-MB-231, SUM-149, and
SUM-159 show an enhanced activity of hypoxia-inducible
factors (HIFs) and their target gene products, with chronic
exposure to paclitaxel therapy. Furthermore, chemotherapy-
induced HIF activation results in bCSC enrichment through
IL-6 and IL-8 signaling and enhanced expression of MDR-1
(135). Hence, combinatorial therapies including HIF inhibitors
along with paclitaxel chemotherapy are being tested in clinical
trials to explore its efficacy in BC patients.

Platinum Resistance
Platinum-based chemotherapeutic drugs, such as cisplatin,
oxaliplatin, carboplatin, nedaplatin, and lobaplatin are
frequently the choice of drugs for treating advanced BC cases,
including TNBC (136, 137). Mechanistically, platinum-based
drugs interact with guanine and adenine nucleotides, forming
platinum-DNA nonfunctional adducts, disrupting DNA double-
helical structure, and eventually inhibiting cell division
(Figure 4B) (138). However, drug resistance associated with
platinum therapy and the numerous side effects that it causes
have been a long-standing concern for BC patients. According to
Sledge et al., only 47% of the BC patients with metastatic BC are
partially sensitive to platinum therapy (139). Several lines of
evidence indicate a crucial contribution of bCSCs in developing
and maintenance of platinum resistance. In this context, a novel
drug disulfiram (DSF) can reverse cisplatin resistance in different
BC cell lines through inhibiting ALDH enzymatic activity and
interfering with the expression of Oct4, Sox2, and Nanog in
bCSCs. IL-6 secreted by breast tumor-derived mesenchymal
stem-like cells (MSCs), augments cisplatin resistance via
STAT3 signaling (140). Although neutralizing IL-6 can
partially interfere with the IL6-STAT3 axis and reverse the
cisplatin resistance, the specific role of bCSCs remains unclear.
Notably, there is the active involvement of PI3K/AKT/NF-ĸB
signaling in enrichment as well as maintenance of breast CSCs.
Cisplatin is known to stimulate transcriptional upregulation of
PI3KCA, thereby triggering PI3K/AKT signaling in platinum-
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TABLE 1 | Different chemotherapeutic modalities in clinical practice and novel therapeutic drugs being developed against BC subtypes and their mechanism of action.

Breast cancer
subtype

Drug Biological target (mechanism of action)

Hormone positive In clinical practice
Tamoxifen Competitively inhibits interaction between ER and estrogen
Fulvestrant SERD, competitively inhibits estrogen to occupy ER, ER degradation
Aromatase inhibitors (AIs) (exemestane,
anastrozole, letrozole)

Blocks conversion of androgens to estrogens

Leuprolide Reduces production of estrogen and progesterone by the ovary by blocking effects of GnRH
on the pituitary gland

Goserelin Luteinizing hormone-releasing hormone (LHRH) agonist, stops LH production, blocks release of
estrogen

Palbociclib (FDA approval: February 2015) CDK4/6 inhibitors for advanced stage BC along with letrozole
Ribociclib (FDA approval: March 2017) CDK4/6 inhibitors for advanced stage BC along with letrozole
Abemaciclib or verzenio (FDA approval: October
2021)

CDK4/6 inhibitors for treatment of early-stage BC

Everolimus (FDA approval: July 2012) mTOR inhibitor, sensitizes hormone-receptor-positive BC to exemestane
In pipeline
Buparlisib (BKM120) Pan-class I PI3K inhibitor, combination therapy with fulvestrant, phase III trial (NCT01610284)
Alpelisib PI3K inhibitor, inhibiting p110 alpha; combination therapy with fulvestrant, phase III trial

(NCT02437318)
Taselisib Alpha-specific PI3K inhibitor; combination therapy with fulvestrant, phase III trial

(NCT02340221)
Entinostat HDAC inhibitor, phase II trial with exemestane (NCT02115282)
Vorinostat HDAC inhibitor, in combination with tamoxifen, terminated (NCT01194427)
Irosustat Steroid sulfatase inhibitor with AI, phase II trial completed (NCT01785992)

HER2 enriched In clinical practice
Trastuzumab Anti-HER2 mAb interacting with extracellular domain IV of HER2
Pertuzumab Anti-HER2 mAb targeting HER2 extracellular domain II, inhibiting HER2 heterodimerization with

EGFR, HER3, and HER4
Lapatinib Tyrosine kinase inhibitor (TKI) targeting both EGFR and HER2, interacts at ATP-binding site of

kinases
Ado-trastuzumab emtansine Anti-HER2 mAb conjugated with microtubule inhibitor emtansine
Margetuximab (FDA approval: December 2020) HER2-targeted antibody for metastatic HER2+ BC
Tucatinib (FDA approval: April 2020) HER2 inhibitor, used in combination with trastuzumab and capecitabine (Xeloda) in metastatic

HER2+ BC
In pipeline
Patritumab Anti-HER3 mAb in combination with trastuzumab and paclitaxel in phase I/II trial completed

(NCT01276041)
Buparlisib with lapatinib and pilaralisib with
trastuzumab

Pan class-I PI3K inhibitors, phase I/II trial (NCT01589861), phase I/II trial (NCT01042925)

Lonafarnib Inhibits Ras activity, combination therapy with trastuzumab and paclitaxel, phase I completed
(NCT00068757)

NeuVax + trastuzumab Immunotherapy for treatment of early-stage HER2+ BC; phase IIb trial (NCT02297698)
Ridaforolimus with trastuzumab mTOR inhibitors, phase II trial completed (NCT00736970)
Sirolimus with trastuzumab mTOR inhibitors, phase II trial completed (NCT00411788)
MK-2206 Allosteric pan-Akt inhibitor; combination therapy with trastuzumab and lapatinib, terminated

(NCT00963547)
Triple-negative In clinical practice

Anthracyclines Topoisomerase II inhibitors, stabilize DNA breaks and ensuing tumor cell death
Taxanes Microtubule-stabilizing agent, stabilize GDP-bound tubulin in microtubule, G2/M arrest, cell

death
Olaparib PARP inhibitor, blocks repair of single-strand DNA breaks by base excision repair (BER) system
Talazoparib PARP inhibitor
Bevacizumab Antiangiogenic mAb against VEGF bevacizumab + docetaxel anti-VEGF mAb
Atezolizumab (FDA approval: March 2019) Anti PD-L1 antibody as first-line therapy to locally advanced or metastatic PD-L1-positive

TNBC patients
Pembrolizumab (FDA approval: October 2021) Anti PD-1 antibody for high-risk early-stage TNBC
Trodelvy (sacituzumab) (FDA approval: 2020) Trop-2 directed antibody and topoisomerase inhibitor drug conjugate for metastatic TNBC

patients
In pipeline
Cetuximab + cisplatin or carboplatin Anti-EGFR mAb for metastatic TNBC, phase II completed (NCT00463788)
Glembatumumab vedotin mAb-cytotoxic drug conjugate targeting glycoprotein NMB in TNBC, phase II completed

(NCT01997333)
Dasatinib + cetuximab + cisplatin Src inhibitors, tested in TNBC cell lines
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resistant cells. However, a recent report emphasizes that
mechanistically cisplatin leads to CSC enrichment in platinum-
resistant cells through the NF-ĸB-TNF-a-PI3KCA loop (141).

Anthracycline Resistance
Anthracyclines, antibiotics extracted from Streptomyces bacteria,
administered as broad-spectrum chemotherapeutic drugs in BC
patients, are topoisomerase II inhibitors (Figure 4C) (142).
Since, topoisomerases modify DNA topology by breaking or
rejoining DNA double strands, inhibiting its catalytic activity
stabilizes DNA breaks, eventually causing cell death. This class of
drugs includes doxorubicin, daunorubicin, and epirubicin.
Resistance to anthracyclines has been linked with multiple
factors, such as the acquisition of MDR due to overexpression
of drug efflux pumps and permeability glycoprotein-1, alteration
of topoisomerase II activity, CSC enrichment, altered DNA
repair, and metabolic reprogramming (143). A 4-day exposure
to doxorubicin and paclitaxel, followed by a 2-day recovery, leads
to significant enrichment of CD44highCD24−/low bCSCs (144).
In this context, cardamonin, a small molecule, significantly
prevents bCSC enrichment, when administered along with
chemotherapeutic drugs, via downregulation of IL-6, IL-8, NF-
ĸB, and STAT3 signaling (144). Knockdown of Annexin A3 also
influences the drug sensitivity of bCSCs to doxorubicin via an
upregulation of drug uptake, inhibits metastasis, and exhibits a
change in heterogeneity and plasticity in bCSCs (145).

Resistance to Endocrine Therapy
Endocrine therapy is an effective mode of treatment for the ER+
BC cases that blocks ER signaling, depriving the growing tumor
of estrogen (146, 147). ER signaling plays a crucial role in BC
proliferation, invasion, and angiogenesis. Mechanisms, through
which the endocrine therapy works (refer to Table 1), can be
categorized into (1) SERMs, (2) aromatase inhibitors (AIs), (3)
CDK4/6 inhibitors, and (4) SERDs (Figure 4D) (148, 149).
SERMs function by sitting in the ER of breast tissues, blocking
the estrogen from interacting with the ER, and hence the cells
can no longer grow and multiply (150). AIs work by blocking the
function of the aromatase enzyme that converts androgen into
estrogen (151). CDK4/6 inhibitors are generally used in
combination with endocrine therapy to treat hormone-
receptor-positive but HER-2 negative metastatic BC (152, 153).
CDK4/6 is required by BC cells for cell-cycle division. BCSCs
develop resistance to endocrine therapy in ER+ BC and are
mainly responsible for the failure of endocrine therapy (154).
Therefore, specific targeting of drug-resistant bCSCs could serve
as a potential therapeutic strategy in overcoming hormonal
therapy resistance.

Tamoxifen Resistance
ER-a-positive BC cases constitute around 70%–75% of overall
BC incidence. Although, tamoxifen (TAM) has been the
fundamental mode of endocrine therapy for the treatment of
ER+ BC patients for the last three decades, acquired TAM
resistance is frequently held accountable for the disease relapse
(155). TAM competitively inhibits the interaction of estrogen
Frontiers in Oncology | www.frontiersin.org 13
ligand with ERs (Figure 4E). Most importantly, an increased
proportion of bCSCs in advanced BC patients have a potential
contribution to TAM resistance and breast tumorigenesis (156).
Poorly differentiated breast tumors contain a higher percentage
of CSC-like cells than well-differentiated breast tumors (157).
TAM-resistant BC cells retain stem-like properties (158).
Notably, TAM-resistant MCF-7 cells showed increased
proliferation rate, enhanced mammosphere formation ability,
increased mRNA expression of OCT-4, SOX-2, and CD133, and
increased EMT signature, compared with wild-type MCF-7 cells
(158). In a parallel study, Wang et al. indicated that TAM-
resistant MCF-7 cells contain a higher proportion of CD44
+CD24−/low bCSCs, exhibit lesser sensitivity to Adriamycin
compared with wild-type MCF-7 cells, and express SOX-2 as a
biomarker for TAM resistance (159). Serine phosphorylation,
particularly at Serine 118, has been documented for activating
the N-terminal transcriptional function of ER-a. SOX-2 can
reprogram the non-genomic estrogen signaling and augment
bCSC proportion through phosphorylation of ER-a at serine
118, making it hypersensitive to circulating estrogen (160).
Phosphorylation, ubiquitination, and other posttranslational
modifications play an important role in activating ER and its
coregulators and can influence the sensitivity to different
endocrine therapies (161). Therefore, inhibition of SOX-2
could restore the sensitivity of BC cells to TAM (162).
Furthermore, ER splicing variants, including estrogen-related
receptors (ERRs), and the recently identified estrogen receptor
a-variant (ER-a36) are involved in TAM resistance and estrogen
hypersensitivity (163). However, the contribution of ER-b in
bCSC-mediated TAM resistance is still under investigation.
Upregulation of different growth factors including HER2,
epidermal growth factor receptor (EGFR), and insulin-like
growth factor 1 receptor (IGF1R) has been documented in BC
endocrine resistance, although direct evidence has been found in
support of PI3K-mediated TAM resistance (164). Hence,
targeting PI3K and IGF1R is considered a major therapeutic
target to reverse TAM resistance in bCSCs. Different signaling
pathways, such as Wnt and Notch, induce TAM resistance,
promoting bCSC activity in TAM-resistant MCF-7 cells, while
inhibition of these pathways could overcome TAM resistance
(165, 166). A positive correlation has been noted between
activation of Hedgehog (Hh) signaling and reduction in
disease-free or recurrence-free survival in BC patients, which
can even result in TAM resistance (167). The intervention of
Hedgehog (Hh) signaling, thus, can potentially interfere with
bCSC proliferation, migration, and invasion and reverse TAM
resistance. Therefore, inhibition of Notch, Hedgehog (Hh), and
Wnt/b-catenin signaling pathways should serve as another
strategy to overcome TAM resistance in bCSCs.

Fulvestrant Resistance
Fulvestrant is a selective estrogen receptor degrader (SERD)
administered in both first and subsequent lines of treatment in
ER-a+ metastatic BC patients (149, 168). Fulvestrant
competitively inhibits estrogen to occupy the ER, eventually
promotes degradation of the receptor, and thus interferes with
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estrogen signaling in breast tumor tissues (169). Unfortunately,
there has not been extensive research done on fulvestrant
resistance in bCSCs as well as the molecular mechanisms
responsible for the resistance. Dysregulation of both G protein-
coupled estrogen receptor-1 (GPER) and CDK6 are associated
with fulvestrant resistance in BC (170). Notably, GPER-induced
signaling is essential for the survival of bCSCs (171). Very recently,
Kaminska et al. reported that cyclin E2 overexpression has been
recognized as a biomarker for persistent fulvestrant-resistant
metastatic BC and reduced disease-free survival (172). However,
AI-resistant BC cells, having a higher proportion of bCSC-like
cells and increased stemness, are inhibited by fulvestrant (173).
Several signaling pathways, such as MEK/ERK, NF-ĸB, EGFR,
PI3K/AKT, and b-catenin have been implicated so far to
fulvestrant resistance in BC. MiRNA-221/222 confers estrogen-
independent growth and fulvestrant resistance in BC through
multiple signaling networks. Strikingly, miR-221/222 contributes
to acquired fulvestrant resistance through activation of the b-
catenin pathway, and miR-221/222 has recently been documented
in CD44+CD24−/low bCSCs (174).
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Aromatase Inhibitor Resistance
AIs constitute the first-line therapeutic approach for the
treatment of ER+ BC in postmenopausal women (175, 176).
AIs deplete the circulating level of estrogen in the human body
by interfering with estrogen biosynthesis through blocking
aromatase activity (177). Hence, in the presence of AIs,
estrogen production is inhibited, which slows down tumor
progression in ER+ BC settings. When treating early-stage ER+
BC, AIs are frequently the choice of hormonal therapy over TAM
due to the fewer side effects it causes. However, acquired AI
resistance may develop in over 20% of early-stage BC patients
and found to be inevitable in metastatic BC patients (178).
Acquired AI resistance involves a switch from dependence on
ER signaling to growth-factor-mediated signaling, such as HER2
signaling (179). Both cancer-cell intrinsic (enhanced activity of
FGFR, ERBB2, and IGF1R and the downstream signaling of
PI3K-AKT-mTOR and MAPK pathways) and extrinsic
mechanisms (interaction of TME with other cell types)
cumulatively coordinate the development and maintenance of
AI resistance (180). AIs are classified into 2 subtypes—steroidal
A B D

E F G

C

FIGURE 4 | Mechanism of action of different anticancer drugs for the treatment of breast cancer. (A) Tubulin dimers stabilized with microtubule-stabilizing drug
paclitaxel (PDB code: 6WVR). (B) Interaction of chemo drug cisplatin with double-stranded DNA (PDB code: 1AIO), forming major adducts of cisplatin with guanine
nucleotides. (C) Doxorubicin intercalation with DNA base pairs (PDB code: 2DES). (D) Cartoon representation of mechanism of action of endocrine therapeutic
drugs, such as selective estrogen receptor modulators (SERMs), selective estrogen receptor degrader (SERDs), and aromatase inhibitors (AIs). (E) Human ER-a-
ligand-binding domain in complex with tamoxifen (PDB code: 3ERT). (F) Extracellular domain IV of HER2 in association with recombinant humanized IgG1
monoclonal antibody, trastuzumab (PDB code: 6OGE). (G) EGFR kinase domain in complex with lapatinib, a selective receptor tyrosine kinase inhibitor, targeting
both EGFR and HER2 (PDB code: 1XKK). Lapatinib interacts in the ATP-binding pocket of EGFR (L718, V726, A743, M793, and L844); highlighted in lemon green.
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(type I) and nonsteroidal (type II). The three different AIs
anastrozole (nonsteroidal), letrozole (nonsteroidal), and
exemestane (steroidal) are being used in adjuvant therapy as
the first line of treatment modality for both early and metastatic
BC in postmenopausal women. BCSCs in ER-a+ settings reflect
an activated PI3K signaling, which confers endocrine resistance
including AI resistance (181). Notably, different PI3K inhibitors
such as alpelisib, buparlisib, and taselisib (https://clinicaltrials.
gov/ct2/show; ClinicalTrials.gov Identifier: NCT02437318,
NCT01610284, and NCT02340221) are being administered as
novel therapeutic drugs in phase III clinical trials for the
treatment of breast cancer AI resistance (Table 1). The
expression of HIF-1a has also been recognized as a biomarker
and therapeutic target that promotes AI resistance (179).

Resistance to Targeted Therapy
HER2 is an oncogenic RTK, which is frequently genetically
amplified or overexpressed in around 15%–20% of invasive BC
cases (182). However, although the emergence of anti-HER2
drugs, trastuzumab and lapatinib, significantly improved the
clinical outcome in HER2-enriched BC, the associated drug
resistance problem poses challenges to effective treatment.
Resistance to anti-HER2 drugs occurs due to the presence of
bCSCs in the tumor milieu that can remain “hidden” from the
activity of these drugs (111). Therefore, we need to understand
the mechanisms responsible for the associated drug resistance
followed by the application of anti-HER2 drugs to encounter the
involvement of bCSCs in therapeutic resistance (refer
to Table 1).

Trastuzumab Resistance
Amplification of ERBB2 (HER2) is associated with clinically
aggressive breast tumors, shorter disease/recurrence-free
survival, and poor overall survival (183). Trastuzumab is a
recombinant humanized IgG1 monoclonal antibody that
interacts with extracellular domain IV of ERBB2, inhibiting
dimerization between ERBB2 and other EGFR family members
(Figure 4F) (184). Although HER2+ BC responds quite well to
trastuzumab (Herceptin™) therapy plus chemotherapy in the
early stages of the disease, acquired resistance, however, to
trastuzumab after 1–2 years of treatment is a frequent event
following metastasis (185). Factors like HER2 degradation,
overexpression of other RTKs, mutation of PI3KCA (PI3K
catalytic subunit p110a), and loss of Phosphatase and Tensin
Homolog Deleted on Chromosome 10 (PTEN) tumor-
suppressive function have been linked with trastuzumab
resistance (186). Continued application of trastuzumab in
HER2+ cells with loss of PTEN encourages EMT and
transforms HER2+ BC to TNBC (187). Strikingly, these
transformed cells frequently exhibit mesenchymal features
along with mesenchymal-specific gene expression profile,
although the parental HER2+ cells show epithelial morphology
with epithelial-specific gene signature. Since bCSCs exhibit
chemoresistance to small-molecule targeted therapy, exploring
the mechanism of trastuzumab resistance must have clinical
implications. BCSCs confer drug resistance by activation of
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different prosurvival pathways, such as PI3K/AKT, NFĸB, and
JAK/STAT pathways (188). Thus, CD44+CD24−/low bCSC
phenotype serves as a prognostic factor for clinical outcome
and predictive factor for poor trastuzumab response in patients
with HER2+ BC. Importantly, PI3K/AKT/mTOR activation has
been implicated in both de novo and acquired trastuzumab
resistance (189). Since PTEN loss and mutation of PI3KCA
lead to aberrant downstream activation of PI3K/AKT/mTOR
pathway, which in turn sustains bCSC population, both the
factors correlate with trastuzumab resistance (190). Therefore,
combining PI3K/AKT/mTOR inhibitors along with HER2
targeting drugs to overcome trastuzumab resistance provides an
active area of research. Pan-class I PI3K inhibitors, such as
buparlisib and pilaralisib when administered with trastuzumab
(189), lapatinib (191), or trastuzumab and paclitaxel (192), are
proven to be safer and successful in HER2+ advanced stage BC
patients. IL-6-mediated bCSC expansion is another independent
mechanism resulting in trastuzumab resistance (36). Moreover,
STAT3 activation also stimulates breast cancer stem-like
properties resulting in HER2 overexpression and trastuzumab
resistance (193). Hence, targeting JAK/STAT3 pathway or
administering IL-6 receptor-targeted antibody should overcome
the trastuzumab resistance by reducing the bCSC burden.
Additionally, CD47 blockade with trastuzumab also eliminates
HER2+ BC cells, overcoming trastuzumab tolerance (194).

Lapatinib Resistance
Lapatinib is a reversible and selective receptor tyrosine kinase
inhibitor, targeting both epidermal growth factor receptor
(EGFR) and HER2 (195). In contrast to trastuzumab, lapatinib
blocks kinases’ active ATP-binding site, thus interfering with
receptor phosphorylation (Figure 4G). However, despite the
initial response in HER2-overexpressing BC, acquired
resistance to lapatinib turns out to be a frequent event in the
course of treatment. Liu et al. have isolated and characterized
several lapatinib-resistant HER2/ER+ BC clones from lapatinib-
sensitive BT474 cells through chronic exposure to lapatinib. This
group has identified that activation of AXL is associated with
lapatinib resistance in these resistant BT474 clones (196).
Evidence indicates a close association of breast CSCs in
exerting lapatinib resistance. In this context, a recent study
suggests that miR-205-5p is highly expressed in bCSCs. miR-
205-5p represses ERBB/HER receptors in bCSCs, leading to
resistance to targeted therapy (197). Silencing miR-205-5p in
bCSCs, followed by lapatinib treatment, significantly reduces BC
proliferation, resensitizing BC cells toward EGFR/anti-HER2
treatments. Furthermore, knockdown of miR-205-5p by locked
oligonucleotides significantly reduces EMT and metastatic
potential exerted by bCSCs (198). TGF-b-SMAD3 signaling
also contributes to trastuzumab and lapatinib resistance,
maintaining CSC phenotype in HER2+ settings (199). CD24
supports the expression of HER2 along with activation of PI3K/
AKT signaling, resulting in lapatinib resistance (200). Hence,
small-molecule inhibitors of SMAD3, or targeting CD24, can
attenuate lapatinib resistance and increase the sensitivity of
HER2+ BC cells to lapatinib.
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BCSC-RELATED miRNA SIGNATURE
MODULATING STEMNESS AND DRUG
RESISTANCE

The regulation of bCSCs by miRNAs (~less than 25 nucleotides) is
emerging as an innovative tool to deal with bCSC-driven drug
resistance. Tumor suppressor miRNAs and OncomiRs have been
implicated to play an essentially important role in the regulation of
bCSC self-renewal, differentiation, tumor initiation, EMT,
metastasis, and therapeutic resistance (3, 7, 201). In this section,
we will briefly discuss these 2 types of bCSC-related microRNA
signature, either suppressing or favoring drug resistance, through
their regulation of multiple signaling networks.

Tumor Suppressor miRs in bCSCs
Several miRNAs, miR-30, miR-34, miR-200 family, miR-223, let-
7, and miR-600 have been documented for tumor suppressive
function (201). miR-223 is downregulated in CD44+CD24−/low
bCSC in TNBC compared with non-CSCs (202). Thus,
overexpression of miR-223 sensitizes the TNBC cells to tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL)-
induced apoptosis (202). miRNA expression profiling indicates
that miR-200 family (miR-200a, miR-200b, miR-200c, miR-141,
miR-429) is significantly downregulated in bCSCs (203).
Overexpression of miR-200c inhibits clonogenicity and tumor-
initiation potential of bCSCs, mainly through suppressing Notch
signaling and its component JAG1 (201, 204). Similarly, miR-205
and miR-200 families are significantly downregulated in post-
EMT metastatic BC, and thus overexpression of the miR200
family prevents TGF-b-induced EMT by negatively regulating
both ZEB1 and ZEB2 (205). Let-7 miRNA, downregulated in
bCSCs, is mainly engaged in restricting cell-cycle progression,
self-renewal, and pluripotency of bCSCs by regulating factors
like H-RAS, E2F2, and HMGA2 (206). Let-7 miRNA can block
self-renewal of bCSCs in ER+ BC background by targeting the
Wnt/b-catenin pathway (207). Similarly, miR-30 negatively
regulates the stemness of bCSCs and is significantly
downregulated in bCSCs. Hence, overexpression of miR-30
diminishes anoikis resistance and self-renewal potential of
bCSCs by directly targeting integrin b3 and ubiquitin-
conjugating enzyme 9 (208). Overexpression of miR-600
inhibi ts bCSC se l f -renewal and decreases in vivo
tumorigenicity by inhibiting the Wnt/b-catenin pathway, as it
targets the enzyme, SCD1, essential for producing active WNT
proteins (209). Therefore, in absence of miR-600, the activated
Wnt signaling promotes self-renewal, whereas overexpression of
miR-600 induces bCSC differentiation into BC cells. Likewise,
miR-34a restricts bCSC stemness and chemoresistance to
doxorubicin via directly inhibiting the Notch signaling
pathway. Notably, miR-34a is downregulated in bCSCs, and
hence, overexpression of miR-34a inhibits the Notch signaling
pathway, sensitizes bCSCs to paclitaxel, and inhibits BC
proliferation, migration, and invasion (210). Similarly, miR-34c
has reduced expression in breast CSCs, and overexpressing it
significantly interferes with EMT, migration, and self-renewal
properties through targeting Notch4 (211).
Frontiers in Oncology | www.frontiersin.org 16
Oncogenic miRNAs (OncomiR) in bCSCs
Unlike tumor suppressor miRs, oncomiRs such as miR-21, miR-
22, miR-155, miR-181, miR-9, and miR-221/222 cluster, show
aberrant expression, and stimulate breast tumor growth, by
suppressing apoptotic pathways, allowing proliferation,
migration, invasion, and cell-cycle progression (3). Hence,
strategies that target oncomiR can effectively block bCSC
surv iva l and funct ion . miR-155 s t imula te s bCSC
chemoresistance to doxorubicin by targeting CD44, CD90, and
ABCG2, and inhibiting miR-155 resensitizes MDA-MB-231 BC
cells to doxorubicin (212). Similarly, miR-181 also offers to be a
promising therapeutic target to restrict bCSC function as it
stimulates bCSC self-renewal potential and colony-formation
properties (213). The miR-181/BRCA1 axis has been suggested
to promote bCSC phenotypes in primary BC settings.
Interestingly, a positive correlation is found between TGF-b
expression level and miR-181/BRCA1 pathway activation in
primary breast tumor samples (214). TGF-b pathway promotes
bCSC population by inducing miR-181 at the posttranscriptional
level and downregulating ATM kinase (215). An upregulated
expression of miR-21 is positively correlated with poor
prognosis, metastasis, and advanced stages of BC (216). miR-21
stimulates proliferation of BC cells and inhibition of apoptosis via
suppressing tumor suppressors like PTEN, tropomyosin a1
(TPM1), and programmed cell death protein 4 (PDCD4) (7,
217, 218). Importantly, in BC cells, miR-21 regulates EMT
through inhibition of PTEN function via p-AKT and p-ERK
pathways, and re-expression of miR-21 leads to the acquisition
of EMT phenotype in bCSCs with the activation of mesenchymal
markers (vimentin, N-cadherin, a-SMA) (219, 220). Another
important piece of evidence recognizes miR-22 as a crucial
epigenetic modifier, regulating stemness, EMT, and metastasis in
BC by silencing TET family-dependent chromatin remodeling
(221). Importantly, two other oncomiRs, miR-9 and miR-221,
are associated with poor clinical outcomes in BC patients. An
enhanced expression of both miR-9 and miR-221 leads to an
increase in the SP colonies with CSC-like features, and radically
increasing bCSC stemness, migration, and invasion via
upregulating Oct-4, Nanog, and CD133. However, knockdown
of both miR-9 and miR-221 reduced the number of SP colonies
and accordingly reduced bCSC self-renewal potency, migration,
and invasion (222). Therefore, drugs targeting this class of drug-
resistant oncomiRs can resensitize the BC cells to chemotherapies.
Recently, MSC-released exosomes, containing specific miRNA
sequences, are being utilized for the targeted killing of
chemoresistant bCSCs (201, 223).
MECHANISMS AND APPROACHES
TO OVERCOME MULTIMODAL
DRUG RESISTANCE

In this section, we review the recent development of bCSC-
targeting therapeutic platforms, based on small-molecule
inhibitors, nanotherapeutics, molecules affecting different BC
March 2022 | Volume 12 | Article 856974

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Saha and Lukong BCSCs in Drug Resistance
signaling networks, and bCSC-specific immunotherapy for
targeting breast cancer-associated multidrug resistance.

ALDH1 Inhibitors, HIF1a Inhibitors, and
EGFR/HER2 Inhibitors
The previously established bCSC marker, ALDH, is a prerequisite
for the maintenance of the drug-tolerant breast cancer stem-like
population as it protects them from ROS-associated toxic effects
(224). Since the ALDHhighCD44+ subpopulation reflects higher
metastatic ability both in vitro and in vivo relative to
ALDHlowCD44− and shows resistance to standard cancer
therapies, inhibition of ALDH activity through all-trans retinoic
acid (ATRA) or diethylaminobenzyldehyde (DEAB) sensitizes this
population to treatment (51). ATRA reduces the activity of both
ALDH1A1 and ALDH3A1 and stimulates CSC differentiation.
Hence, combination therapy of ATRA with a standard
chemotherapy regimen could fetch promising results for
eliminating bCSCs. The HIF family members, HIF1a and HIF2a
are crucial regulators of cancer stemness (135). Mechanistically,
HIF1a activates the survival genes in hypoxic conditions, whereas
HIF2a interacts with the promoter of Oct4 and Nanog. Hence,
HIFs are critical for the chemoresistance exerted by bCSCs (135).
This study proposes that the treatment of human BC cells with
chemotherapeutic agents such as paclitaxel and gemcitabine leads
to survival and enrichment of bCSCs, which in turn depends on the
HIFs. Studies involving mice breast tumor models further
elaborated that chemotherapy along with HIF inhibitors, such as
digoxin (interferes with HIF1a translation) or acriflavine (inhibits
dimerization of HIF1a or HIF2a with HIF1b), might improve the
survival of BC patients (225–227). Several HIF1 inhibitors
including 2-methoxyestradiol, BAY 87-2243, and PX-478 2HCI
are, therefore, undergoing clinical trials (228). Moreover, inhibition
of the EGFR/HER2 signaling axis by lapatinib blocked the
expression of ABC transporter proteins, ABCB1 and ABCG2,
which sensitizes MCF-7 tumor spheres to doxorubicin (229).

Targeting Signaling Pathways in bCSCs
There is an intricate relationship between bCSC maintenance
and Notch, PI3K/AKT/mTOR, Wnt/b-catenin, and Hedgehog
signaling pathways. The interplay between these signaling
pathways also influences the disease outcomes in BC
progression. Therefore, targeting these pathways serve as an
essential strategy to restrict bCSC expansion and overcome
drug resistance phenomena.

Notch Signaling
Deregulated Notch signaling in bCSCs represents poor clinical
outcomes in drug-resistant BC. Evolutionarily conserved Notch
signaling is linked with cell differentiation and cell fate decisions.
Notch signaling pathways include 4 receptors (Notch1–4) and 5
ligands such as delta-like ligand (DLL)1, DLL3, DLL4, JAG1, and
JAG2 (230, 231). Interaction with the Notch ligand leads to the
release of its intracellular domain (NICD), which then
translocates to the nucleus and impacts gene expression in
association with different transcription factors. Studies have
established links between bCSCs, aberrant Notch signaling, and
radio-/endocrine-/chemoresistance. A significantly higher
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expression of activated Notch1 is noted in the culture media of
bCSCs, postradiation (66). A substantial induction of the JAG1
ligand is also evident on the surface of nonadherent bCSCs after
fractionated radiation (232). Both JAG1 and Notch pathway
contributes to chemoresistance in BC metastasizing to bone
(233). Moreover, suppression of Notch1 signaling enhances
antitumor efficacy of chemotherapy agents via reduction of
bCSCs in TNBC (234). Notably, Notch ligand DLL1+
quiescent bCSCs drive chemoresistance via NFĸB pathway in
BC (235), and disease progression in ER+ BC is dependent on
DLL1-mediated Notch1 signaling in bCSCs (236). Notch1
ligands, JAG1, and JAG2 are also overexpressed in endocrine-
resistant luminal BC, resulting in an increased bCSC activity
(237). Therefore, the blockade of Notch signaling is of clinical
importance to eradicate resistant bCSCs and offer long-term
disease-free survival.

PI3K/AKT/mTOR Signaling
PI3K is a family of lipid kinases that phosphorylate
phosphatidylinositol (PI) at the intracellular membrane and
plasma membranes. An increased PI3K/AKT/mTOR signaling
in bCSCs has been documented over the years, contributing to
survival, proliferation, metastasis, and drug resistance in BC cells
(238, 239). Mutations, specifically in its catalytic domain, p110a,
are the most frequent genetic events, affecting around one-third
of BC patients. Alterations in the PI3K/AKT/mTOR pathway in
bCSCs result in the TAM resistance in ER+ BC (240, 241). The
interaction between PI3K and Wnt/b-catenin pathway is
responsible for stemness and self-renewal abilities of bCSCs
(242). Therefore, small-molecule inhibitors targeting the key
players, PI3K, AKT, and mTOR can reverse the drug resistance
and self-renewal abilities of breast cancer stem-like cells. Pan-
PI3K inhibitors, such as buparlisib and pictilisib (inhibiting
p110a/b/g/d); PI3K isoform-specific inhibitors such as alpelisib
and taselisib (inhibiting p110a and p110a/g/d, respectively);
AKT inhibitors such as ipatasertib, capivasertib (AZD5363),
and vevorisertib (MK-2206); PI3K/AKT dual inhibitor
gedatolisib (PF-05212384); and mTOR inhibitors such as
everolimus, vistusertib, and sapanisertib are currently available
for the treatment of BC (243). B591, a novel PI3K inhibitor, has
shown promising results in targeting breast CSCs in the mouse
xenograft model, affecting both its self-renewal potential and
EMT (244). However, despite substantial preclinical evidence,
the innate and acquired resistance has limited the application of
this group of inhibitors in BC.

Wnt/b-Catenin Signaling
Wnt/b-catenin signaling contributes to self-renewal, migration,
and invasion of bCSCs, leading to systematic dissemination in
BC. A significantly higher level of Wnt/b-catenin signaling is
noted in bCSCs compared with the bulk of the tumor (245).
Hence, Wnt/b-catenin signaling serves as a novel target for
restricting BC progression. A highly potent small-molecule
inhibitor CWP232228 can preferentially inhibit bCSC
proliferation via antagonizing the binding of b-catenin to T-
cell factor (TCF) in the nucleus (246). Another natural product,
gomisin M2, downregulates Wnt/b-catenin signaling and
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inhibits bCSC proliferation, mammosphere formation, and self-
renewal (247). Studies indicate multiple interaction points or
crosstalk between Notch and Wnt/b-catenin signaling pathways,
and thus it is essential to focus on Notch-Wnt synergies in BC
progression (248). In a normal mammary setting, in response to
Notch ligand DLL1, macrophages express Wnt ligands (Wnt3,
Wnt10A, and Wnt16), important for mammary stem cell
numbers and activity (249). Thus, the proteins exerting
regulatory effects on both these pathways should serve as a
novel therapeutic target and targeted in BC. GSK3b is one
such protein that regulates b-catenin stability as well as
phosphorylates Notch ICD (250).

Hedgehog Signaling
The Hh signaling is another novel target in BC since it is frequently
upregulated in bCSCs and contributes to CSC self-renewal and
stemness maintenance. The cancer-associated fibroblasts (CAFs)
within TME support the maintenance of CSC function in breast
tumors via their regulation of both Wnt/b-catenin and Hh
signaling. Briefly, CAFs promote BC progression through
proliferation, invasion, matrix remodeling (via matrix production
and crosslinking, matrix stiffness, force-mediated matrix
remodeling), macrophage, and endothelial cell crosstalk (via
secretion of VEGF, exosomes, HGF production), chemoresistance,
and immunosuppression (251–253). Notably, BC shows divergent
CAF phenotypes, including FAP-positive (fibroblast-activating
protein a1) CAFs driving immunosuppression and resistance to
PD-L1 therapy (254). According to Friedman et al., two distinct
subpopulations of CAFs (S100A4+ and PDPN+) exist in human
breast tumors, where their ratio decides the clinical outcomes across
subtypes and is highly correlated with BRCA mutations in TNBC
(255). The interaction between the breast cancer cell and fibroblasts
also induces the CAF phenotype through activation of Notch
signaling (256). Hence, understanding the full repertoire of CAFs
and the dynamic changes as breast tumors evolve can improve the
precision of treatment and reverse drug resistance. BCSCs secrete
the Hedgehog ligand, SHH, which controls CAFs through
activation of Hh signaling (257). The CAFs, in turn, secrete some
factors that result in the expansion and self-renewal of bCSCs.
Therapeutic targeting of CAFs using the inhibitor molecule of
Smoothened, the main effector molecule of the Hh pathway,
sensitizes TNBC xenograft models to docetaxel (258). Tetraspanin
8 (TSPAN8), a membrane glycoprotein, enhances BC stemness by
activating SHH signaling (259). Activation of Hh signaling results in
salinomycin resistance in tumor spheres, generated from the MCF-
7 cell line (260). However, the inhibition of the Hh pathway by
cyclopamine can sensitize the MCF-7 cells to paclitaxel. Therefore,
exploring the detailed mechanisms of Hh-driven bCSC signaling
can help in the designing of novel drug candidates to reverse BC
drug resistance.

Targeting bCSC Metabolism
Maintenance of a reduced level of ROS through metabolic
reprogramming is one of the strategies adopted by bCSCs to
avoid oxidative stress, which is attributed to the higher
expression of ROS scavengers including glutathione peroxidase,
superoxide dismutase, and catalase. There is a close association
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between ROS levels and bCSC-driven radioresistance.
Pharmacological inhibition of ROS scavengers in bCSCs
distinctly reduces their clonogenicity potential, resulting in
radiosensitization (261). Moreover, ROS generating drugs can
target drug-resistant bCSCs through induction of premature
senescence (262). To mitigate a higher energy demand of fast-
growing tumor cells, bCSCs further reshape their metabolic
machinery. BCSCs are metabolically plastic, which allows them
to dynamically switch their metabolic state to favor glycolysis or
oxidative phosphorylation (OXPHOS). Unlike the non-CSCs
that majorly depend on glycolysis, bCSCs can favor either
glycolysis or OXPHOS, depending on the niche. The glycolytic
switch in CSCs, in general, contributes to stemness. Metabolic
switching from OXPHOS to glycolytic phenotype, known as the
Warburg effect, is another survival adaptation exhibited by
bCSCs, to sustain growth in nutrient-deprived or hypoxic
environments (263–265). Since BCL-2 protein is a crucial
regulator of mitochondrial respiration, inhibition of BCL-2
prevents OXPHOS (266). This, in turn, reduces the bCSC
burden that depends on OXPHOS. Several OXPHOS-targeting
compounds, such as atovaquone, arsenic trioxide, and
phenformin are undergoing clinical trials for different solid
tumors (267, 268). Interestingly, CSCs with metastatic
potential follows a distinct metabolic signature. According to
Luo et al., metabolic or oxidative stress plays a crucial role
concerning bCSCs’ plasticity between quiescent mesenchymal-
like (M) state and proliferative epithelial-like (E) state. Oxidative
stress produced due to H2O2, 2DG, and hypoxia regulates the
transition from ROSlow M-bCSCs into ROSHigh E-bCSCs (269).
Importantly, hexokinase 2, which catalyzes the initial step of
glucose metabolism, is a major target of metformin for altering
bCSC metabolism. Therefore, exploiting the metabolic switching
of bCSCs could essentially provide a novel platform targeting the
multidrug-resistant bCSC population.

Nanotherapeutics Against bCSCs
Nanoparticle-based drug carriers (nanocarriers) are often used to
specifically deliver chemotherapeutic drugs, siRNAs, miRNAs,
and antibodies, designed based on identifying antibodies/
aptamers against bCSC-specific markers (Figure 5A) (270, 271).
Due to the site-specific delivery and improved stability and
bioavailability, nanocarriers are appearing as novel platforms for
targeting (1) bCSC-specific antigens such as CD44 and ALDH1,
(2) drug-efflux ABC transporters (ABCB1 and ABCG2), (3) self-
renewing signaling pathways, (4) autophagy process, (5)
metabolism, and (6) TME. Sahli et al. developed a triple-drug
delivery platform, composed of paclitaxel, verteporfin, and
combretastatin (CA4) inside polymer-lipid hybrid nanoparticles
to target bCSCs and associated tumor vasculature (272). Gao et al.
have further improvised these smart platforms to simultaneously
target bCSCs and bulk breast tumor cells by encapsulating the
combination of bCSC-specific inhibitor with a chemotherapeutic
agent, along with a phytochemical agent or RNA-based therapy
(273). HA-modifiedmesoporous silica nanoparticles loaded with 8
hydroxyquinoline consisting of docetaxel have been designed to
eliminate bCSCs (274). This HA modification enables an
enhanced uptake of nanoparticles by bCSCs. Another novel
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chitosan-decorated doxorubicin-encapsulated nanocarrier has
been developed to target CD44 surface receptors of bCSCs
(275). Recently, a nanocarrier system using PEG-PLA
copolymers has been designed for the delivery of autophagy
inhibitor molecule, chloroquine, in complex with doxorubicin
and docetaxel to eliminate both bCSCs and non-bCSCs (276).
Since bCSCs require a specialized niche to survive, nanoparticle-
based platforms targeting ECM modifying enzyme lysyl
oxidase result in TME disruption (277). A novel HA-based
platform encapsulating CD44-targeted docetaxel conjugate is
another example of nanocarrier, killing both bCSCs and non-
bCSCs (278).

bCSC-Targeting Strategy Focusing on
Immunotherapy
Since CSCs exhibit distinct immune characteristics and express
specific immune markers, targeting those molecules as a part of
immunotherapy is employed to target CSCs. Different strategies
like DC vaccine, adaptive T-cell transfer, oncolytic virus, ICIs, and
combination therapies are recent approaches to target bCSCs.

DC-Based Vaccine
DCs loaded with CSC lysate or mRNA, administered as vaccines,
are capable of eliciting cancer-specific immune responses (279).
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Notably, DCs are the professional antigen-presenting cells
(APCs) that process the antigenic material and present peptide
antigens to T cells and activate them. Interestingly, DCs in BC
patients exhibit decreased antigen uptake, reduced antigen
processing, reduced expression of costimulators, weak
migration profile, along decreased IL-12 production (280, 281).
Patients with advanced breast and ovarian cancers can be
successfully vaccinated by DC loaded with HER2/Neu- or
MUC1-derived antigenic peptides (282). Phase-I clinical trial
with metastatic BC showed that fusion of breast tumor cells with
DCs resulted in immunological and clinical antitumor responses
(283). DC pulsed with breast tumor lysate has proved to be a
standard method for a source of BC antigen, capable of eliciting
anticancer immune responses (284). BCSC-RNA-pulsed DC
vaccine also effectively kills breast tumor cells through
activation of CD4+ Th lymphocytes and CD8+ cytotoxic T
cells. This study highlights the efficacy of bCSC-RNA for
priming DC cells in evoking immune response against drug-
resistant CSC populations. However, DC-based vaccines present
a few drawbacks; they are both cost-effective and time-
consuming for patient-specific treatment. Factors like antigenic
peptide or CSC-RNA loading on DC, route of administration,
and doses are yet to be standardized to resolve these
technical limitations.
A B

DC

FIGURE 5 | Novel upcoming strategies to reverse bCSC drug resistance. (A) Cartoon structure of a nanoparticle-based drug carrier encapsulated with multiple
chemotherapeutic drugs targeting bCSC antigens. (B) a- or b-emitting radionuclide conjugated with monoclonal antibody targeting breast CSC-specific antigens.
(C) Design of oncolytic viral particles targeting tumor cells. (D) Cartoon representation of chimeric antigen receptor (CAR-T therapy) against CSC surface antigens.
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Adoptive T-Cell Therapy
Adoptive T-cell therapy is a personalized mode of
immunotherapy to target CSCs. Here, tumor immune
lymphocytes (TILs) with intrinsic antitumor activity are
isolated from cancer-bearing patients. Following isolation, TILs
are cultured in the presence of IL-2 so that they can recognize
tumor-associated antigens on cancer cells, and eventually release
cytotoxic cytokines, perforin, and granzymes (285). The recent
approach focuses on designing CAR-T cells against the CSC
surface antigens in different cancer models to achieve complete
regression of tumor (286). CARs generally constitute the
extracellular binding domain, a single-chain variable fragment
(scFv) specific for a tumor antigen, an extracellular spacer
domain, a transmembrane domain, followed by an intracellular
signaling domain (Figure 5D). EGFR-specific CAR-T cells have
shown promising results in high EGFR-expressing TNBC cell
lines and patient-derived xenograft mouse models (287).
Another recent report highlights promising results for HER2-
specific second-generation CAR-T therapy for the treatment of
breast-to-brain metastasis (288). Other bCSC markers targeted
by CAR-T therapy include c-Met, CD133, CD166, CD47,
EpCAM, and LGR5 (55, 289, 290). Despite the remarkable
clinical success of CAR-T therapy in hematologic cancers, its
application is limited in solid tumors. Due to the lack of
chemokine expression required for the infiltration of CAR-T
cells into the tumor tissues and dense fibrotic matrix in solid
tumors, the ability of CAR to get recruited at the tumor site and
infiltrate is considerably affected (291). Frequently, CAR-T cells
fail to penetrate the tumor tissues through the vascular
endothel ium (292) . Therefore , instead of systemic
administration, regional administration of CAR-T cells in solid
cancers will be more effective. Altogether, the major limitation of
this approach includes burdensome and expensive preparation
to isolate the patient-derived T cells and the major side effects
resulting from cytokine release syndrome.

Oncolytic Viral Therapy
Oncolytic viruses (OVs), a novel class of DNA/RNA-attenuated
viruses that selectively infect, replicate inside the tumor cells, and
eventually kill them either through modulating the TME or via
antitumor response (Figure 5C) (293). These naturally occurring
or genetically engineered viruses have the potential to convert an
“immunologically cold” TME into an “immunologically hot” one
by increasing the net influx of TILs, consisting of CD4+ and CD8
+ T cells, B cells, and NK cells (293, 294). Activated CD8+
cytotoxic T cells and NK cells are associated with a good
prognosis, whereas the presence of Foxp3+ Treg cells within
the breast TME is associated with a poor prognosis, due to their
role in immunosuppression. Immunologically “cold” tumors
exhibit a low mutational burden, poor MHC presentation of
tumor antigen, poor migration of TILs, and also have reduced
expression of PD-L1 on the surface of tumor cells, thus making
the response to ICIs inadequate (295). Interestingly, OVs induce
a strong antiviral tumor immune response through the
production of cytokines like type-1 interferon that in turn
promotes PD-L1 expression on tumor cells and also cytokines,
such as CCL3 and CCL4, attracting PD-1+ or CTLA-4+ immune
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cells within TME (296). Eriksson et al. indicated that OVs, Ad5/
3-Delta24 and Ad5.pk7-Delta 24, can selectively kill CD44+
CD24−/low bCSC population. Oncolytic herpes simplex virus,
oHSV G47D, effectively kills bCSCs both in vitro and in vivo,
derived from SK-BR-3 and primary human BC cells (297). A
randomized phase II study by Bernstein et al. reported that the
combination of oncolytic reovirus (pelareorep) with paclitaxel
significantly increased survival of metastatic BC patients (298).
Combining pelareoprep with paclitaxel, along with anti-PD-L1
antibody, avelumab (NCT04215146) is presently undergoing
phase II clinical study in BC patients (299).

Immune Checkpoint Inhibitors
Immune checkpoint ligands such as PD-L1 and PD-L2 are highly
expressed on CSCs. The immune cells, on the other hand, express
the receptor for these ligands, PD-1. Now, the interaction between
PD-1 and PD-L1/PD-L2 interferes with T-cell proliferation and
activity, leading to tumor immune suppression, thus serving as a
strategy to immune escaping of CSCs (300). Therefore, immune
checkpoint blockade of PD-L1/PD-L2 is emerging as a novel
therapeutic approach, whereby these CSC-specific ligands are
engaged by ICIs, thus making it possible to target CSCs for
programmed cell death. Notably, multiple clinical trials on ICIs,
targeting CTLA-4, PD-1, and PD-L1 are in progress that are either
administered as a single agent or in combination with trastuzumab
or with chemotherapeutic drugs, in HER2-enriched and TNBC
settings, respectively. In March 2019, FDA has approved the
clinical application of anti-PD-L1 antibody, atezolizumab, in
combination with nab-paclitaxel, to be administered as the first-
line therapy to metastatic or locally advanced PD-L1+ TNBC
patients (301). A recent phase Ib clinical study by Nanda et al.
explored the antitumor efficacy and safety profile of PD-1 inhibitor
molecule pembrolizumab in advanced TNBC patients (302).
Furthermore, certain drugs that stimulate PD-L1 degradation
can be administered as a combination therapy with
ICIs to significantly enhance the efficacy of cancer
immunotherapy (303).
CONCLUSION AND PERSPECTIVES

Despite ongoing efforts using novel chemotherapeutics, ICIs,
small-molecule inhibitors, or combinations of these innovative
therapeutic platforms, bCSC-driven drug resistance remains a
public health concern globally. Exploring better bCSC-targeting
substitutes is thus the way forward. Radionuclides conjugated
with monoclonal antibodies (mAb), administered in radio-
immunotherapy (RIT), involve highly potent a- or b-particles
to deliver cytotoxic radiation to cancer cells or TME (Figure 5B)
(304). 212Pb-TCMC-trastuzumab using lead-212 (a-particle
emitter), is undergoing phase I clinical trial to study its
antitumor effects in HER2+ intraperitoneal cancer patients
(305, 306). Another isotope, 111In-NLS-trastuzumab, is being
administered to kill trastuzumab-resistant BC cell lines via the
emission of Auger electrons (307). Recently, radionuclide
therapy using 223Ra (a-particle emitter) has been successful in
delaying the growth of DTCs in early-stage BC (308). Radioactive
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iodine therapy with single-domain antibodies targeting HER2
(131I-GMIB-anti-HER2-VHH1) documents the first-in-human
study, demonstrating the safety profile and efficacy of
radionuclide in the treatment of HER2+ BC (309).
Importantly, RIT is advantageous in the management of MRD,
residual tumor margins following surgery, and CTCs in
hematologic malignancy, compared with external beam
radiation therapy. Likewise, nanobiotechnology should be fully
explored to precisely target bCSC-specific novel antigens, to
eliminate the same. The efficacy of synthetic nanoparticles,
such as silver (AgNPs) (310), gold (AuNPs) (311), and
selenium (SeNPs) (312), has been studied extensively in
different types of solid cancers. Notably, AgNPs (313) and
AuNPs (314) both have shown encouraging results in BC,
although the potency of the same in target killing of breast
Frontiers in Oncology | www.frontiersin.org 21
CSCs is not known. Hence, the potential of this family of
radionuclides and nanoparticles should be considered in the
targeted killing of bCSCs. In conclusion, cotargeting of multiple
signaling networks contributing to bCSC survival and
proliferation, by virtue of multimodal targeted therapeutics,
will lay the foundation to overcome BC drug resistance.
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