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NEK7 is the smallest NIMA-related kinase (NEK) in mammals. The pathological and
physiological roles of NEK7 have been widely reported in many studies. To date, the
major function of NEK7 has been well documented in mitosis and NLRP3 inflammasome
activation, but the detailed mechanisms of its regulation remain unclear. This review
summarizes current advances in NEK7 research involving mitotic regulation, NLRP3
inflammasome activation, related diseases and potential inhibitors, which may provide
new insights into the understanding and therapy of the diseases associated with NEK7,
as well as the subsequent studies in the future.
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INTRODUCTION

Mammalian NIMA-related kinases (NEKs) represent a family of serine/threonine kinases, named
NEK1–NEK11, which are implicated in the control of several aspects of mitosis and are involved in
non-mitotic functions (Forrest et al., 2003; O’Regan et al., 2007; Fry et al., 2012; Cullati et al., 2017).
Members of the NEK family are conserved proteins in structure, sharing approximately 40–45%
identity with NIMA within their C-terminal catalytic kinase domains (Kandli et al., 2000). Of these
NEK family member, NEK7 is the smallest protein, composed of only a catalytic domain with a
30–40 amino acid N-terminal extension, which shares more than 85% sequence identity to NEK6
(Kandli et al., 2000; Kimura and Okano, 2001). Nevertheless, NEK7 and NEK6 show divergent
cellular functions as a result of the differential spatiotemporal tissue distribution and enzymatic
control (Belham et al., 2001; Kimura and Okano, 2001; Feige and Motro, 2002; Minoguchi et al.,
2003; de Souza et al., 2014). Further analysis led to the discovery that NEK7 gene is on chromosome
1 and that its ORF encodes a 302-amino-acid polypeptide with a molecular mass of 34.5 kD (Kimura
and Okano, 2001; Katoh and Katoh, 2004). NEK7 is widely expressed in various tissues, such
as the heart, liver, lung, brain, muscle, testis, leukocyte, and spleen (Kimura and Okano, 2001).
Accumulating evidence suggests that NEK7 is involved in mitosis regulation through an intricate
mechanism (Belham et al., 2003; Forrest et al., 2003; Quarmby and Mahjoub, 2005; Fry et al., 2012).

The NLRP3 inflammasome is an intracellular multiprotein complex that assembles NLRP3,
ASC, and pro-caspase-1, which leads to the activation of caspase-1, the cleavage and
secretion of interleukin 1β (IL-1β) and interleukin 18 (IL-18) in response to diverse stimuli

Abbreviations: NLRP3, NLR Family Pyrin Domain Containing 3; ORF, Open reading frame; Plk1, Polo Like Kinase 1;
CDK1,Cyclin Dependent Kinase 1; RGS2, Regulator Of G Protein Signaling 2; EML4, EMAP Like 4; ATP, adenosine
triphosphate; GSTO1-1, Glutathione S-Transferase Omega 1; CYLD, CYLD Lysine 63 Deubiquitinase; MTOC, microtubule-
organizing center; HDAC6, dynein adapter histone deacetylase 6; LTP, Hippocampal long term potentiation; TRF1, Telomeric
Repeat Binding Factor 1; WHSC1L1, Wolf-Hirschhorn Syndrome Candidate 1-Like 2; EML4, EMAP Like 4; FoxM1,
Forkhead Box M1; TNM, Tumor Node Metastasis; DSS, Dextran Sulfate Sodium; SRS, Strong R-spine.
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(He et al., 2016a; Mathur et al., 2017). With the inappropriate
release of proinflammatory cytokines, the NLRP3 inflammasome
is involved in various inflammatory diseases, such as
atherosclerosis, type 2 diabetes, Alzheimer’s disease, gout,
rheumatoid arthritis, and inflammatory bowel disease (Liu D.
et al., 2020). In recent years, NEK7 has been demonstrated
to be essential for canonical NLRP3 inflammasome activation
by directly binding to the leucine-rich repeat (LRR) domain
of NLRP3 (Shi et al., 2016; Sharif et al., 2019). Furthermore,
increasing evidence suggests the important role of NEK7 in
the development of NLRP3 inflammasome-related diseases (Xu
et al., 2016; Nozaki and Miao, 2019). Therefore, the documented
pathogenesis mechanism of NLRP3 inflammasome activation by
NEK7 strongly indicates promising roles for targeting NEK7 in
treating inflammation-related diseases (Xu et al., 2016).

Clearly, cell division and NLRP3 inflammasome activation
are extremely important to normal cellular process and stress
responses of organisms. NEK7 drew attention two decades ago,
but its function has not been explored completely. Several reviews
have summarized the partial role of NEK7 by focusing on
single aspects of its function, especially NLRP3 inflammasome
activation (Fry et al., 2012; He et al., 2016a; Xu et al., 2016; Liu
G. et al., 2020). An extensive overview and detailed classification
of the unique molecular mechanisms of NEK7, highlighting its
potential as therapeutic targets, may provide novel insight into
preventing and treating a host of related diseases.

NEK7 IN THE REGULATION OF MITOSIS

To date, the role of NEK7 in mitotic progression has
been the best characterized function, including centrosome
enrichment and microtubule nucleation, which are essential for
centriole duplication and centrosomal pericentriolar material
(PCM) protein accumulation during interphase, centrosome
separation in prophase and proper spindle assembly in metaphase
(Yissachar et al., 2006; Kim et al., 2007; O’Regan and Fry,
2009; Salem et al., 2010; Sdelci et al., 2011). Nevertheless,
NEKL-3 in Caenorhabditis elegans, although highly homologous
to mammalian NEK6/NEK7, showed only molting functions,
including the regulation of the apical extracellular matrix,
intracellular trafficking and endocytosis, but not its role in mitosis
(Yochem et al., 2015; Lazetic and Fay, 2017; Lazetic et al., 2018;
Liu D. et al., 2020).

Emerging evidence indicates the possible involvement of
NEK7 in centrosome formation and separation, microtube
nucleation and spindle assembly (Yissachar et al., 2006; Kim
et al., 2007; O’Regan and Fry, 2009; Salem et al., 2010; Sdelci
et al., 2011). Endogenous NEK7 protein was initially shown
to be enriched at the centrosome throughout all phases of the
cell cycle (Kim et al., 2007). Additional studies revealed that
the NEK7 signal was also detected temporally in the midbody,
spindle poles and cytoplasm, in addition to the centrosome
(Yissachar et al., 2006). Established works have demonstrated
in detail that NEK7 is essential for centriole duplication and
centrosomal accumulation of pericentriolar material proteins in
interphase cells (Kim et al., 2011). Importantly, NEK7 deficiency

results in a significant increase in the number of mitotic
cells acquiring a multipolar or monopolar spindle phenotype
and ultimately leads to cell arrest at G1 phase, prometaphase,
metaphase, and cytokinesis of anaphase in the cell cycle (Kim
et al., 2007). In addition, a decrease in centrosomal γ-tubulin
levels and microtubule nucleation activity was observed in NEK7-
suppressed cells (Kim et al., 2007; Cohen et al., 2013). Thus,
microtubule regulation was thought to be the intermediate
mechanism through which NEK7 regulated mitosis progression.

Microtubules are composed of highly dynamic filaments that
connect kinetochores to the mitotic spindle poles critical for
aligning and segregating chromosomes (Cohen et al., 2013). This
precise network has long been suspected to be a major target
of NEKs. NEK7 was initially found to be related to centrosomal
γ-tubulin levels in mitotic cells in an earlier study (Kim et al.,
2007). How γ-tubulin is regulated by NEK7 remains unclear.
Another study provided a preliminary hint that Nercc1/NEK9
catalyzed the direct phosphorylation of prokaryotic recombinant
NEK6 at Ser206 and probably participated in the regulation of
NEK7 in a similar manner (Belham et al., 2003). Conformation
and activity analyses showed that the C-terminal domain of
NEK9 interacts with NEK6/NEK7 through the release of Tyr97
autoinhibition (Richards et al., 2009), a finding confirmed by a
later study (Haq et al., 2015). However, the evidence that this
function has an effect on mitotic progression is limited.

Several studies have found that Plk1 was likely the
indispensable upstream activator of the NEK9/NEK6/NEK7
cascade in controlling early centrosome separation (Bertran
et al., 2011; Sdelci et al., 2011, 2012; Dodson et al., 2013). Notably,
one study found that NEK9 phosphorylation by CDK1 and Plk1
ultimately resulted in the phosphorylation of NEK6/NEK7
and the mitotic kinesin Eg5, which are necessary for normal
centrosome separation during prophase (Bertran et al., 2011). In
another study, DYNLL/LC8 increased the autophosphorylation
of Ser944 of NEK9 by binding to a (K/R)XTQT motif adjacent to
the NEK9 C-terminal coiled-coil motif, which directly interferes
with NEK9 binding to its downstream partner NEK6/7 (Regue
et al., 2011). This observation has been confirmed by a structural
analysis in a later study by the same authors (Gallego et al.,
2013). In addition, one study using Xenopus egg extracts and
mammalian cells showed that NEK9 phosphorylated NEDD1 on
Ser377, driving its recruitment of γ-tubulin to the centrosome
by Plk1-dependent phosphorylation in mitotic cells (Sdelci
et al., 2012). However, this study did not find evidence for a
role of NEK7 in centriole duplication, in contrast to previous
studies (Kim et al., 2011). However, in a recent study, a detailed
investigation still showed the important impact of NEK7
depletion on contributions to centrosomal accumulation of
the APC/C cofactor Cdh1, which negatively regulates centriole
duplication (Gupta et al., 2017). Later, RGS2 was reported to be
a novel interactor of NEK7. NEK7 binds to and phosphorylates
RGS2 and leads to the localization of RGS2 to the mitotic spindle,
which is required for proper mitotic spindle organization and
spindle orientation (de Souza et al., 2015). In addition, NEK6
and NEK7 promote the dissociation of EML4 from microtubules
in mitosis by phosphorylating the EML4 N-terminal domain at
Ser144 and Ser146, which is required for efficient chromosome
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congression in interphase (Adib et al., 2019). As a potential
function of NEK7 in microtube regulation (Cohen et al., 2013),
NEK7 was identified to regulate dendrite growth and branching,
as well as spine formation and morphology, in part through
phosphorylation of the kinesin Eg5/KIF11 (Freixo et al., 2018).
At approximately the same time, another study also found that
NEK7 specifically controlled the shape and synaptic outputs
of cortical parvalbumin interneurons (Hinojosa et al., 2018).
However, these studies did not show the cell division-related role
of NEK7. Summing up the above studies, the exact role of NEK7
in mitosis regulation needs to be further investigated.

NEK7 IN THE REGULATION OF NLRP3
INFLAMMASOME ACTIVATION

Generally, the activation of the NLRP3 inflammasome requires
the synergistic effect of two signals (He et al., 2016a). Signal
1 (priming), such as the microbial component LPS and
other endogenous cytokines, promotes the upregulation of
inflammasome components as well as its newly discovered
member, NEK7, as the protein levels of NLRP3 and NEK7
in resting cells are thought to be insufficient for NLRP3
activation (He et al., 2016a; Shi et al., 2016). Recent reports
also showed that post-transcriptional regulation and post-
translational modifications of NEK7 and NLRP3 were essential
for inflammasome assembly (Song et al., 2017; Hughes et al.,
2019; Gritsenko et al., 2020). Signal 2 (activation), such as
ATP, pore-forming toxins, viral RNA, and particulate matter,
accelerates the activation of the NLRP3 inflammasome, resulting
in the activation of caspase 1 and the maturation and secretion
of IL-1β and IL-18 (He et al., 2016a). In recent years, in addition
to its mitotic function, NEK7 has been better understood for its
direct binding with NLRP3, which is indispensable for NLRP3
inflammasome activation (He et al., 2016b; Shi et al., 2016; Nozaki
and Miao, 2019; Figure 1).

Initially, through a forward genetic analysis, mice with
a mutation in NEK7 were found to display diminished IL-
1β secretion, and further evidence revealed that NEK7 binds
directly to the leucine-rich repeat (LRR) domain of NLRP3
downstream of the induction of mitochondrial reactive oxygen
species (ROS) (Shi et al., 2016). The interaction promotes
the assembly and activation of the NLRP3 inflammasome, for
the first time suggesting that NEK7 is a component of the
NLRP3 inflammasome (Shi et al., 2016). Intriguingly, this study
also showed that NEK7 cannot be available for inflammasome
activation and mitosis simultaneously because of the limiting
amount of it in cells (Shi et al., 2016). Later, compelling
cumulative evidence confirms the direct binding of NEK7 and
NLRP3, and their interaction in inflammasome activation is
regulated under diverse conditions (Gross et al., 2016; Hoss et al.,
2019; Nozaki and Miao, 2019; Sharif et al., 2019). Intriguingly,
a recent study found that NEK7 was dispensable for NLRP3
inflammasome formation in human and murine cells under pro-
inflammatory conditions (Schmacke et al., 2019).

The NLRP3 inflammasome is activated by diverse stimuli,
including multiple microbial products, endogenous molecules,

and particulate matter (Shi et al., 2016; Mathur et al., 2017;
Liu D. et al., 2020). Furthermore, an increasing number of
studies have demonstrated that disordered cellular homeostasis
following these stimuli is the proximal upstream trigger of
NLRP3 inflammasome activation (Shi et al., 2016). Cellular
homeostasis are disrupted by various stimuli, including K+ efflux,
Ca2+ signaling, chloride efflux, mitochondrial dysfunction,
ROS, and lysosomal rupture, which are indispensable for the
downstream interaction of NEK7 and NLRP3 (He et al.,
2016b; Shi et al., 2016; Tang et al., 2017; Green et al.,
2018). The phospholipid platelet-activating factor (PAF) activates
the NLRP3 inflammasome in the presence of NEK7 in a
mechanism that depends on calcium and potassium flux but
not on ROS or cathepsin (Deng et al., 2019). However,
as shown in an earlier study, cytochrome c released from
stressed or damaged mitochondria negatively regulates NLRP3
inflammasome activation by competitively binding to the LRR
domain of NLRP3, thus reducing the interaction between NLRP3
and NEK7 (Akiyama et al., 2016).

In addition, emerging studies have revealed that the
transcriptional and post- transcriptional regulation of NEK7 and
NLRP3 are also critical for the activation of the NLRP3
inflammasome. NF-kB has been previously reported to
upregulate the expression of components of the NLRP3
inflammasome. Recently, a study found that RELA, a subunit of
NF-kB, can also transcriptionally upregulate the expression of
NEK7, thereby leading to the subsequent interaction of NEK7
and NLRP3 (Chen X. et al., 2019). Alternative splicing (AS)
of pre-mRNA determines the generation of various proteins
from individual gene with distinct functions. Evidence has
indicated stochastic AS of the LRR domain in human NLRP3,
but not mouse NLRP3, including the full-length variant and a
variant lacking exon 5; the protein encoded by the latter variant
cannot interact with NEK7 (Hoss et al., 2019). This finding
suggests that LRR in NLRP3 that interacts with NEK7 is encoded
by exon 5 (Hoss et al., 2019). At the time of this discovery,
another study showed that the endogenous deglutathionylating
enzyme GSTO1-1 is involved in the activation of the NLRP3
inflammasome through the mechanistic deglutathionylation
of NEK7 of cysteine 253 (Hughes et al., 2019). However, a
subsequent study found a novel complicated post-translation
modification of NEK7. Specific centrosome-localized spata2
recruits CYLD for the deubiquitination of polo-like kinase
4 (PLK4), which further binds to and phosphorylates NEK7
at Ser204 (Yang et al., 2019). Thereby, this phosphorylation
modification of NEK7 suppressed its binding with NLRP3
and inhibited NLRP3 inflammasome activation (Yang et al.,
2019). In addition, HDAC6-mediated MTOC localization of
NLRP3 may ensure the engagement of centrosomal kinase NEK7
(Magupalli et al., 2020). These studies suggest the important
role of NEK7 in NLRP3 inflammasome activation. However,
the mechanism by which NEK7 switches from a cell cycle
regulator to an inflammasome regulator remains unclear (Yang
et al., 2019). In conclusion, it is imperative to characterize the
precise regulation of NEK7 involved in NLRP3 inflammasome
activation for finding more refined therapeutic targets for
related diseases.
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FIGURE 1 | Mechanisms of NEK7-mediated NLRP3 inflammasome activation. NEK7 directly binds with NLRP3, which triggers canonical NLRP3 inflammasome
activation, including the activation of caspase 1, cleavage of pro-IL-1β, and pro-IL-18, producing mature IL-1β and IL-18, which are secreted to the extracellular
space as inflammatory effectors. Disordered cellular homeostasis, including K+ efflux, Ca2+ signaling, chloride efflux, and mitochondrial dysfunction (mtROS), are
the upstream signals that regulate NEK7-mediated NLRP3 inflammasome activation by either upregulating NEK7 expression or inducing the binding of NEK7 to
NLRP3. Post-translational modification of NEK7 regulated by centrosome proteins (spata, CYLD, and PLK4) and the deglutathionylating enzyme GSTO1-1 that
inhibits or induces the binding of NEK7 to NLRP3, respectively, affect NLRP3 inflammasome activation.

OTHER FUNCTIONS OF NEK7

Other functions of NEK7, except for cell division and the
NLRP3 inflammasome activation, have been uncovered in recent
years. During the exploration of the protein kinases related to
the formation of hippocampal long-term potentiation (LTP),
NEK7 was found to be distributed in hippocampal areas and
downregulated upon the induction of LTP (Li et al., 2014).
In another similar study, NEK7 was found to be a candidate
for the neurotransmitter system and immunomodulation by
genome-wide association analysis (Gley et al., 2019). However,
these studies are observational and the mechanisms remains
obscure. In addition, the importance of NEK7 in maintaining
telomere integrity has been studied (Tan et al., 2017). In
response to damage, NEK7 is recruited to telomeres and
directly phosphorylates TRF1 on Ser114, which prevents the
subsequent proteasomal degradation (Tan et al., 2017). These

studies have implied that NEK7 may be involved in other
cellular processes in addition to the regulation of mitosis and the
NLRP3 inflammasome. Therefore, further studies are needed to
comprehensively understand the role of NEK7.

NEK7-REGULATED MITOSIS AND
NLRP3 INFLAMMASOME IN DISEASES

Diseases Related to Mitosis
Established evidence shows that NEK7 is involved in regulating
various aspects of microtubule stability, spindle formation
and cytokinesis. Atypical expression or post-translation
modification of NEK7 leads to spindle disorganization,
cytokinesis disturbance, micronuclei formation, mitotic arrest,
and even cell death. An early study reported that the absence of
NEK7 leads to lethality in late embryogenesis or at early postnatal
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stages and to severe growth retardation in mice (Filonenko et al.,
2007; Salem et al., 2010). Furthermore, the intimate connection
between microtubule instability and unregulated cell division
and cancer development suggests that NEK7 has a potential
role in oncogenesis. Accordingly, in the last decade, a host of
studies have demonstrated the potential role of NEK7 in the
cancer development of various tissues. This evidence suggests
that NEK7 is a potential therapeutic target for diseases related to
mitotic regulation.

Initially, NEK7 was thought to be the downstream target of
WHSC1L1 involved in human carcinogenesis through expression
profile analysis in vitro using human bladder and lung cancer cell
lines (Kang et al., 2013). Similarly, in a recent study, EML4-ALK
variant 3(V3) was proposed to mediate microtubule stabilization
through NEK7 and NEK9, accelerating cell migration in EML4-
ALK lung cancer (O’Regan et al., 2020). Another study found
NEK7 is probably a downstream target gene of WHSC1 in
multiple squamous cell carcinoma of the head and neck
(SCCHN) cell lines as indicated via microarray expression profile
analysis (Saloura et al., 2015). Chromatin immunoprecipitation
(ChIP) assays showed NEK7 was directly regulated by WHSC1
through H3K36me2 (Saloura et al., 2015). However, solid
evidence is limited. Notably, in gallbladder cancer, a significant
correlation was first observed between the increased protein
expression of NEK7, FoxM1 and Plk1 and tumor differentiation,
development and shorter overall survival time (Wang et al.,
2013). However, how NEK7 is involved in gallbladder cancer
needs to be further determined. Similarly, high NEK7 expression
was also significantly correlated with hepatocellular carcinoma
(HCC), with the degree of malignancy, as reflected in tumor
numbers, tumor diameter, adjacent organ invasion, tumor grade,
and TNM stage (Zhou et al., 2016). The downstream target was
preliminarily focused on cyclin B1, as silencing of NEK7 resulted
in decreased cyclin B1 levels both in vitro and in vivo (Zhou et al.,
2016). Nevertheless, a later study demonstrated that silencing
NEK7 resulted in reduced CDK2, cyclin D1, and cyclin E levels
in vitro, which therefore significantly inhibited retinoblastoma
cell (Y79, SO-RB50 and WERI-RB1) proliferation (Zhang J.
et al., 2017). The role of NEK7 in prompting retinoblastoma
progression was first discovered in a refined meta-analysis of
retinoblastoma copy numbers (Krahe et al., 2016). However,
the detailed mechanism is still unclear. A recent breast cancer-
related study provides solid evidence that UNC45A nuclear
localization promotes the expression of the mitotic kinase
NEK7 and that the mitotic catastrophe resulting from UNC45A
deficiency can be rescued by heterologous NEK7 expression (Eisa
et al., 2019). Furthermore, detailed work including computational
sequence analysis, RNA-seq data, ChIP-qPCR, and EMSAs
have indicated that two novel glucocorticoid response elements
(GREs) exist upstream of the NEK7 transcription start site
(TSS) and that the glucocorticoid receptor (GR) is a positive
regulator downstream of UNC45A that promotes NEK7 gene
transcription (Eisa et al., 2019). However, these findings are
based only on experiments performed in vitro, and in vivo
studies are necessary to ultimately confirm the mechanisms
(Eisa et al., 2019). Additionally, in a previous study, Anks3, an
interactor of nephronophthisis (NPH, an autosomal recessive

cystic kidney disease)-related gene Anks6, may contribute to
the nuclear exclusion of NEK7 and prevent undesired re-entry
of interphase cells into the cell cycle (Ramachandran et al.,
2015). This is the only study of NEK7 in mitosis regulation
related to kidney disease (Ramachandran et al., 2015). However,
the detailed mechanism and spatiotemporal relationship remain
unclear. Comprehensively summarizing the current knowledge
of NEK7 function in various aspects of cell division and
related diseases will highlight potential targets for effective
therapeutic strategies.

Diseases Related to the NLRP3
Inflammasome
In recent years, NEK7-mediated NLRP3 inflammasome
activation has been reported to be involved in various
inflammatory diseases (Xu et al., 2016; Chen X. et al., 2019;
Gomes Torres et al., 2019). A significant correlation was shown
between gene polymorphisms in NEK7, TLR (toll-like receptors),
NLR (nod-like receptors), and lipid and glucose parameters
from healthy children and adolescents and adults (Gomes
Torres et al., 2019). This finding suggests a role of NEK7 in
metabolic and inflammatory disorders. A later study showed
that NEK7 may also be involved in inflammatory bowel disease
mediated by NLRP3 inflammasome activation, the mechanism
of which has been described in the previous section (Chen
X. et al., 2019). Similarly, several studies demonstrated that
the development of neuroinflammation post-traumatic brain
injury, ventilator-induced lung injury, diabetic periodontitis,
DSS-induced ulcerative colitis, and endometritis in cattle
display a significant correlation with NEK7-involved NLRP3
inflammasome activation (Chen Y. et al., 2019; Kelly et al., 2019;
Liu et al., 2019; Liu H. et al., 2020; Zhou et al., 2019, 2020; Cao
et al., 2020). In a previous study, NEK7 was predicted to be a
target for miR-664 involved in the proinflammatory response
to influenza A (H7N9) virus, but direct evidence was lacking
(Chan et al., 2016). In contrast, clinical analysis in patients
with systemic lupus erythaematosus (SLE) revealed a negative
correlation between the levels of NEK7, NLPR3, and ASC and
disease development, whereas a positive correlation was observed
with IL-1β and IL-18 (Ma et al., 2018). This finding suggests
that the NEK7-NLRP3 complex might play a protective role (Ma
et al., 2018). However, the detailed mechanism remains unclear.
As a mediator of NLRP3 inflammasome assembly and activation,
NEK7 may also be associated with other related diseases resulting
from the improper activation of the NLRP3 inflammasome,
which requires further evidence.

INHIBITORS AND THEIR APPLICATION
TO DISEASES

As a critical component of the NLRP3 inflammasome, NEK7
contributes to various pathologies of NLRP3 inflammasome-
related diseases (Xu et al., 2016). Some promising selective
inhibitors and medicines already used to treat other diseases
are found to target various aspects of inflammasome activation
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regulated by NEK7. These inhibitors may disrupt the upstream
events or directly regulate the expression or modification of
NEK7 and NLRP3 thus effecting their interaction (Zhang Y. et al.,
2017; He et al., 2018; Chiu et al., 2019; Wu et al., 2019; Liu D. et al.,
2020; Shi et al., 2020).

Among these inhibitors, MCC950 is the best characterized
for its potent effect in many diseases with NEK7-NLRP3-
mediated inflammasome activation (Wu et al., 2019), including
high glucose-induced human retinal endothelial cell dysfunction
(diabetic retinopathy) (Zhang Y. et al., 2017), lung ischemia-
reperfusion injury (Xu et al., 2018), endometritis in cattle and
peritonitis (Kelly et al., 2019). Although some studies are limited
to in vitro applications, MCC950 is still considered to be a
promising treatment, as it selectively blocks the interaction
between NEK7 and NLRP3 (Wu et al., 2019). In addition, several
inhibitors target genes that have been found to be involved
in the regulation of NEK7-mediated NLRP3 inflammasome
activation, such as C1-27 (GSTO1-1 inhibitor) (Hughes et al.,
2019), IAA94 (CLIC inhibitor) (Tang et al., 2017), and JSH-
23 (p65 inhibitor) (Chen X. et al., 2019). These inhibitors
display a prominent attenuating effect on NEK7-related NLRP3
inflammasome activation, as indicated by in vitro and in vivo
experiments under certain conditions.

Importantly, a growing number of studies have suggested
that some drugs, including natural products (traditional Chinese
medicine) (He et al., 2018; Kim et al., 2019; Shi et al., 2020)
and chemical medicines (Zhang et al., 2018; Chiu et al., 2019;
Torp et al., 2019; Zhou et al., 2019), have emerging roles in
inhibiting NEK7-related NLRP3 inflammasome activation with
distinct regulatory mechanisms. The three natural products
oridonin (He et al., 2018; Liu H. et al., 2020), artemisinin (Kim
et al., 2019), and ginsenoside Rg3 (Shi et al., 2020) have been
reported to have similar functions in abrogating NEK7-NLRP3
interaction, as corroborated by different mouse models (He
et al., 2018; Kim et al., 2019; Shi et al., 2020). Seven chemical
medicines, including glucosamine (Chiu et al., 2019), metformin
(Zhou et al., 2019, 2020), glibenclamide (Liu H. et al., 2020),
ALK inhibitors (ceritinib and lorlatinib) (Zhang et al., 2018),
autophagy inhibitors (chloroquine and bafilomycin A1) (Torp
et al., 2019), and 1,25(OH)2D3 (Cao et al., 2020), have also shown
significant inhibitory effects on various aspects of the NEK7-
NLRP3 interaction. To better understand the therapeutic effect
of molecular inhibitors and medicines, more tightly controlled
samples from different species urgently need to be included
in future studies.

CONCLUSION AND PERSPECTIVES

In summary, the biological functions of NEK7, including
its pathological and physiological effects, have been explored
extensively with various approaches from different organisms
in the past 20 years. As explained above, NEK7 is mainly
involved in various aspects of mitosis regulation and the
activation of the NLRP3 inflammasome. The atypical expression
and modification of NEK7 has been found to cause cellular
oncogenicity and excessive inflammatory responses, thereby
leading to the tumorigenesis of multiple organs and aggravating
systemic inflammation. This review also summarizes the current
inhibitors and medicines targeting NEK7-mediated diseases.
However, the regulation mechanism and the effects of the
treatment are neither consistent nor assured. Although some
reported inhibitors have shown inhibition of NEK7-mediated
inflammasome activation, no published works have shown
screening of highly selective and potent inhibitors of NEK7.
The latest research showed that use of conventional methods
led to failed designs of NEK7 inhibitors owing to its unique
conformation and high similarity to its paralog NEK6 (Byrne
et al., 2020). Then, this group developed a novel strategy
using SRS mutations of NEK7, which is a promising starting
point for developing potent inhibitors targeting NEK7 (Byrne
et al., 2020). However, the kinase activity inhibition of NEK7
might have no effect on NLRP3 inflammasome activation (Shi
et al., 2016). Therefore, further studies unraveling detailed
mechanism and spatiotemporal relationships and searches for
more specific inhibitors will provide additional beneficial insights
useful for developing more-effective and specific approaches to
understanding and treating related diseases.
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