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Abstract

Background: 2-Oxoglutarate and Fe(ll)-dependent dioxygenases (20DDs) belong to the 2-oxoglutarate-dependent
dioxygenase (20GD) superfamily and are involved in various vital metabolic pathways of plants at different
developmental stages. These proteins have been extensively investigated in multiple model organisms. However,
these enzymes have not been systematically analyzed in tomato. In addition, type | flavone synthase (FNSI) belongs
to the 20DD family and contributes to the biosynthesis of flavones, but this protein has not been characterized in
tomato.

Results: A total of 131 20DDs from tomato were identified and divided into seven clades by phylogenetic
classification. The SI20DDs in the same clade showed similar intron/exon distributions and conserved motifs. The
SI20DDs were unevenly distributed across the 12 chromosomes, with different expression patterns among major
tissues and at different developmental stages of the tomato growth cycle. We characterized several S20DDs and
their expression patterns involved in various metabolic pathways, such as gibberellin biosynthesis and catabolism,
ethylene biosynthesis, steroidal glycoalkaloid biosynthesis, and flavonoid metabolism. We found that the S.20DD
expression patterns were consistent with their functions during the tomato growth cycle. These results indicated
the significance of SI20DDs in tomato growth and metabolism. Based on this genome-wide analysis of S/20DDs, we
screened six potential FNS/ genes using a phylogenetic tree and coexpression analysis. However, none of them
exhibited FNSI activity.

Conclusions: Our study provided a comprehensive understanding of the tomato 20DD family and demonstrated
the significant roles of these family members in plant metabolism. We also suggest that no FNS/ genes in tomato
contribute to the biosynthesis of flavones.
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Background

2-Oxoglutarate-dependent dioxygenases (20GDs) are
soluble, nonheme iron-containing enzymes and consti-
tute the second-largest enzyme family in plants; these
enzymes have a highly conserved but not ubiquitous
HX(D/E) XnH triad motif in their 20G-Fell_Oxy
(PF03171) domain [1]. The amino acid sequences of
plant 20GD members are highly divergent and can be
divided into different types. Analysis of the genomes of
six model plant species showed that more than 500 pu-
tative 20GDs could be classified into three major clas-
ses: DOXAs, DOXBs and DOXCs [2]. DOXA class
enzymes, including plant homologs of Escherichia coli
(E.coli) AlkB, are involved in the oxidative demethylation
of alkylated nucleic acids and histones [3]. Prolyl 4-
hydroxylase homologs belonging to the DOXB class are
involved in proline 4-hydroxylation in cell wall synthesis
[4]. Unlike DOXA and B enzymes, which are limited to
basic cell functions, DOXC enzymes largely participate
in plant primary and secondary metabolism. The func-
tionally characterized DOXC enzymes are involved in
several conserved pathways, including hormone metab-
olism and specific pathways leading to the production of
steroidal  glycoalkaloids and flavonoids [1]. 2-
Oxoglutarate  and  Fe(Ill)-dependent  dioxygenases
(20DDs) constitute the specific DOXC subfamily and
are involved in specialized plant metabolism [5]. In
addition to having the classic 20G-Fell_Oxy (PF03171)
domain, they also have the conserved DIOX_
N(PF14226) domain [2].

Plants can synthesize massive amount of metabolites
due to the diverse biosynthesis-related genes that encode
different enzymes [6]. 20DDs participate in various im-
portant metabolic pathways and directly affect the
growth, development, and stress responses of plants.
Several 20DDs have been reported to be involved in
melatonin metabolism and subsequently affect plant re-
sponses to cold, heat, salt, drought, and heavy metal
stress and to pathogen invasion [7, 8]. With respect to
important plant hormones, such as auxin, ethylene, gib-
berellin, and salicylic acid, 20DDs participate in path-
ways involving their biosynthesis and metabolism [1].
20DDs are also involved in the biosynthesis of second-
ary metabolites that have substantial biological and me-
dicinal value. One 20DD was identified to promote the
biosynthesis of glucoraphasatin in radish [9]. Moreover,
a genome-wide study of Salvia miltiorrhiza found that
20DD plays a crucial role in the biosynthesis of tanshi-
nones [10], and 20DDs in tobacco (Nicotiana tabacum)
have been functionally characterized as being involved in
the biosynthesis of colorful flavonoids [11].

With more than 10,000 known structures, flavonoids
are important secondary metabolites [12]. The diverse
biological functions of flavonoids in plants as well as
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their various roles in interactions with other organisms
offer many potential applications, from plant breeding to
ecology, agriculture, and health benefits for humans [13,
14]. The biosynthesis pathway of flavonoids in the Sola-
naceae has been extensively studied [15, 16]. However,
the crucial flavone synthase (FNS) enzymes have not
been identified. To date, there are two types of enzymes
known to catalyze flavone synthesis in higher plants
[17]: ENSIs, a group of soluble 20DDs, are mainly
present in the Apiaceae [18], and FNSIIs, a group of
NADPH- and molecular oxygen-dependent membrane-
bound CYP monooxygenases, are widely distributed
across the plant kingdom [19, 20]. OsFNSI was identified
using parsley FNSI as bait and is the first FNSI found
outside of the Apiaceae family [21]. A putative ZmFNSI
(Zea mays) enzyme has subsequently been found [22].
In addition, the Arabidopsis homolog of ZmFNSI also
exhibits ENS activity [22]. ENSI is present not only in
higher plants but also in liverworts. An FNSI has also
been isolated and characterized from Plagiochasma
appendiculatum [23]. In summary, FNSI is no longer
confined to the Apiaceae family.

Tomato (Solanum lycopersicum), whose fruits are
among the most popular fruits worldwide, has become
an important source of micronutrients for the human
diet and is widely cultivated around the world. Tomato
fruits are consumed fresh or as processed products, such
as canned tomatoes, paste, puree, ketchup, and juice. In
addition to the commercial value of tomato, this species
has been studied as a model plant due to its short life
cycle and self-compatibility. Tomato plants produce
many important primary and secondary metabolites,
which can serve as intermediates or substrates for pro-
ducing valuable new compounds. These advantages
make tomato an excellent choice for metabolic engineer-
ing to produce important metabolites [24, 25].

A comprehensive analysis of the 20DD family in
tomato has not been performed. In our current study,
the SI20DDs that belong to the DOXC class were
systematically analyzed for their phylogenetic evolu-
tion, gene structure, conserved motifs, chromosome
location, gene duplications and metabolic pathway
involvement. In addition, we verified the potential
function of SIFNSI in flavonoid metabolism. Our re-
sults offer new insight into the function of 20DDs in
tomato and establish a knowledge base for further
genetic improvement of tomato.

Results and discussion

Genome-wide identification and phylogenetic analysis of
20DDs in tomato

To investigate 20DDs involved in plant metabolism, we
focused our research on the DOXC subfamily of 20DDs.
A total of 131 putative tomato 20DDs were found using
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BLAST and verified using HMMER searches. They all
contained two conserved domains, 20G-Fell_Oxy and
DIOX_N. The number of amino acid residues of the
predicted SI20DDs ranged from 248 to 418, with corre-
sponding molecular weights from 284 to 47.7kDa
(Table S1). A phylogenetic tree was constructed to de-
termine the relationships among these SI20DDs. The
SI20DDs could be divided into seven clades (1-7)
(Fig. 1). Clade 7 was the largest clade, with 32 members
of SI20DDs, followed by clade 3, with 27 members.
There were 25, 22, 11, and 10 members in clade 1, clade
2, clade 5, and clade 6, respectively. Clade 4 was the
smallest, with only four SI20DD members. All reported
tomato gibberellin oxidases (GAOXs) belonged to clade
1 [26-28]. In addition, 1-aminocyclopropane-1-carbox-
ylic acid oxidases (ACOs) that involved in ethylene bio-
synthesis were enriched in clade 3 [29]. Taken together,
these results showed that our method for retrieving
SI20DDs is reliable and that our phylogenetic analysis
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was accurate enough for used in the estimation of the
function of several unknown genes. For instance, twenty
of the 25 members in clade 1 are GAOXs (Fig. 1), indi-
cating that the remaining five members may also present
GAOX activity.

Gene structure and protein motif analysis of S/20DDs

To gain further insight into the structural diversity of to-
mato 20DDs, we used the online software GSDS 2.0 to
analyze the exon-intron structure of 20DDs based on
the genome sequence and the corresponding coding
DNA sequences of the 20DDs in tomato (Fig. 2c). The
SI20DDs had 1 ~ 12 exons and could be divided into five
categories based on exon number (Fig. 2d). Only
Solyc00g031030 (0.7%) contained one exon. Twenty-two
(16%), fifty-five (43%), and forty-two (32%) SI20DDs
contained two, three and four exons, respectively. Eleven
(8.3%) members had more than five exons. Notably, the
genes from the same clade displayed similar exon
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Fig. 1 Phylogenetic analysis of tomato 20DDs. SI20DD protein sequences were aligned using MEGA7.0 and evolutionary relationships were
determined using Neighbor-Joining tree analysis with 1000 bootstrap replicates. SI20DDs fell in seven separate subfamilies named as clade 1-7




Wei et al. BMC Genomics (2021) 22:126

Page 4 of 14

Motif
Motif_1
Motif_2

B Motif 3
Motif_4

[ Motif 5

B Motit 6

W motif 7

B Motif 8

B Motif 9

B motif_10

B Motif 11
Motif_12
Motif_13

[ Motif_14

[ Motif_15

A E‘Iﬁ-‘ﬁ;‘l‘ﬁ

D

43.0% one exon
two exons
three exons
four exons

more exons

Solyc039025490.

- Solyc019108880.

¥

relationships of SI20DD proteins. b Conserved motifs of SI20DDs. Each
khaki), motif 3 (slate blue), motif 4 (gold), motif 5 (yellow green), motif

The exon number distributions of S/20DDs
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numbers (Fig. 2). We identified 15 conserved motifs
(1-15) using the online software MEME (Fig. 2b).
Motifs 1-8 and 10-11 were widely distributed.
Moreover, motifs 9, 12, 13, 14 and 15 were specific-
ally distributed in different clades. The SI20DDs

within the same clade were found to have similar
motif compositions. Overall, the conserved motif
composition and gene structure of the 20DD mem-
bers, together with the phylogenetic tree results,
strongly supported the classification reliability.
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Chromosomal distribution and synteny analysis of
SI20DDs

The 128 SI20DD members (excluding Solyc00g031030,
Solyc10g026520, and Solyc03g095920, which are identi-
fied using the MicroTom Metabolic Network (MMN)
dataset based on ITAG 3.0 but absent in the updated
ITAG 4.0 gene models) are widely distributed across
the 12 tomato chromosomes. Chromosome 2 has the
largest number of SI20DDs (25/128). Chromosome 5
and chromosome 11 contain only three SI20DDs.
Most SI20DDs are located at the proximate or distal
end of chromosomes (Fig. 3a). During the progress of
plant evolution, gene duplication events contribute
significantly to the generation and expansion of gene
families. Gene duplication events were also identified
for SI20DDs. We detected duplicated genes in the
SI20DD family using the MCScanX package. Fifty-
four (42%) SI20DDs were confirmed to be tandemly
duplicated genes (Fig. S1). We calculated the ka/ks
ratios for all tandem genes that were almost less than
one, indicating that purifying selection was the main
force for 20DD family gene evolution in tomato
(Table S2). According to previously defined criteria
[30], a chromosomal region within 200 kb containing
two or more genes is defined as the tandem duplica-
tion event. Based on the physical location, gene clus-
ters were found on chromosomes 2, 9 and 11
(Fig. 3a), which indicated that tandem gene duplica-
tion events happened. However, no further specific
functions of these genes were determined. In addition,
elven pairs of SI20DDs were found to be segmental
duplicates with the MCScanX method (Fig. 3b). Over-
all, these results indicated that some SI20DDs were

Page 5 of 14

possibly generated by tandem duplication and seg-
mental duplication events.

Expression pattern of S/20DDs

To dissect the potential roles of SI20DDs involved in
specific plant secondary metabolism, the expression
patterns of SI20DD genes were investigated using the
recently published MMN dataset [25]. Seven genes
(Solyc02g038808,  Solyc02g068315,  Solyc02g071500,
Solyc09¢g009105, Solyc09¢010020, Solyc10g032565 and
Solyc10g044447) were not found in the MMN, and two
genes (Solyc05g052740 and Solyc12g013780) were not
expressed. The expression patterns of the remaining 122
SI20DDs could be divided into four clusters (Fig. 4).
The most obvious cluster contained 26 SI20DDs specif-
ically expressed in mature fruit (Brl5), including
Solyc09g008560 and  Solyc06g060070 which encode
ACOs involved in ethylene biosynthesis. A total of 46
SI20DDs were mainly expressed in the flowering stage
(F45) and the roots. Among them, SIANS (anthocyanidin
synthase) (Solyc10g076660) exhibited abundant expres-
sion at F45 and was responsible for the synthesis of an-
thocyanins contributing to the color formation of
flowers [31]. Twenty-two SI20DDs showed high expres-
sion levels during fruit development after the breaker
(Br) stage, which is the key stage of fruit ripening. E8
(Solyc09g089580), a fruit-specific gene, was a member
exhibiting this expression pattern. The last 28 SI20DDs
did not show a particularly consistent expression trend.
Interestingly, the expression patterns of some SI20DDs
within the same clade were similar; for example, nearly
half of the clade 3 genes (13/27) were expressed signifi-
cantly in the roots. Similar phenomena occurred for

Fig. 3 Schematic representations for the distribution and duplication of SI20DD genes in the tomato genome. a The distribution of $/20DDs in
chromosomes. The scale at the left side of figure is shown in Mb. The location of S/20DDs is indicated on both sides of each chromosome.
Different colors of SI20DDs indicate their subfamilies shown in the Fig.1. b The interchromosomal relationships of SI20DDs. Gray lines indicate all
synteny blocks in the tomato genome and the black lines indicate duplicated SI20DD gene pairs
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each expression pattern, suggesting a correlation be-
tween gene homology and function.

Potential roles of SI20DDs in metabolism
20DDs have been reported to facilitate numerous oxida-
tion reactions such as hydroxylation, halogenation,

desaturation, epimerization, cyclization and ring forma-
tion, ring cleavage, rearrangement, and demethylation
[5, 32]. The impressive versatility of 20DDs highlights
their importance in normal organismal function and has
led to high-value specialized metabolites. To describe
their potential roles in biosynthesis pathways, the key
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SI20DDs involved in metabolic pathways were analyzed
in detail.

Gibberellin biosynthesis and catabolism

The plant hormones gibberellins (GA) regulate many
plant development stages, including seed germination,
cell and shoot elongation, leaf expansion, the transition
to flowering, flower growth, and fruit development [33].
In this study, combined with data from published re-
ports [2, 26, 28, 34], we summarized and mapped the
gibberellin synthesis and metabolic pathways (Fig. 5c).
The well-defined GA biosynthesis and catabolism path-
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GA30Xs, GA20Xs) that belong to the 20DD family
and contribute to structural modification. GA biosyn-
thesis can occur through two parallel pathways: non-13-
hydroxylation and 13-hydroxylation. Carbon-19 (C™ %)
and carbon-20 (C-20) GAs are two types of substates for
GAOXs (Fig. 5b). GA200Xs catalyze the successive oxi-
dation and decarboxylation of C-20 GAs (GA12, GA53)
at the C-20 position to form C-19 GAs (GA9, GA20).
GA30Xs catalyze the hydroxylation of GA9 and GA20
at the C-3 position to form bioactive GA4 and GAI, re-
spectively. GA20Xs play a role in GA catabolism re-
sponsible for GA deactivation via C-2 hydroxylation of

ways include three types of GAOXs (GA200Xs, the GA backbone. In the present study, a total of 19
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Fig. 5. Analysis of S.20DDs involved in gibberellin biosynthesis and catabolism pathway. a Expression profiles of 19 GAox genes during the
tomato life cycle. b Two types of substrate structures for GAoxs. ¢ The schematic representation of gibberellin biosynthesis and catabolism
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putative GAOX coding genes, including 5 GA200Xs, 3
GA30Xs, and 11 GA20Xs, were found in the tomato
genome (Fig. 5¢).

The expression of SIGAOXs had obvious tissue specifi-
city corresponding to significant expression in the roots,
stems, flowers, and fruits (Fig. 5a). GA200XI1-3 and
GA30X1-2 expression levels have been previously re-
ported [35] and are essentially consistent with our re-
sults. In particular, GA200X2 was highly expressed in
flower buds (F30), and GA30X1 was highly expressed at
F45 (when 50% of flowers reached anthesis) indicating
that the expression of all of them is highly regulated
during flower development [35]. Eleven GA20Xs were
found in tomato, and their expression patterns differed
among the different developmental stages and tissues.
Overexpression of GA20X1 resulted in the reduction in
endogenous GAs and led to a decrease in tomato ger-
mination rate and fruit weight [26]. The expression pat-
terns of GA20X5 and GA20X11 are similar to that of
GA20X1, and they may jointly regulate the development
of tomato fruits and seeds. As GAs have a broad impact
on plant growth, according to the expression profile, the
different GA20X homologs in tomato may function in
different tissues and periods of plants.

Ethylene biosynthesis

Ethylene output by organs increases dramatically at
specific stages of the plant growth cycle, such as
fertilization, ripening, senescence, abscission, and re-
sponse to stresses [36]. To determine the effect of
20DDs on ethylene biosynthesis, we mapped the ethyl-
ene synthesis pathway (Fig. 6b). Ethylene is derived from
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the amino acid methionine (MET), catalyzed by AdoMet
synthetase and 1-aminocyclopropane-1-carboxylic acid
(ACC) synthase, to provide ACC precursors. ACC is
then converted into ethylene by ACO, a member of the
20DD family.

The expression model of the seven ACOs during to-
mato fruit development has been reported previously
[29]. We further established the expression profile of
ACOs throughout the growth cycle using MMN data
(Fig. 6a). ACOI was mainly expressed in the fruits, sug-
gesting the well-known regulatory effect of ethylene on
fruit ripening [29]. ACO3 and ACO4 regulate petal sen-
escence and are significantly expressed in flowers (F45),
as reported previously [37]. The expression patterns of
seven ACOs were different, indicating that their roles in
the plant may be diverse.

Steroidal glycoalkaloid (SGA) biosynthesis

Steroidal glycoalkaloids and their derivatives, mainly a-
tomatine and dehydrotomatine, are cytotoxic antinutri-
tional compounds and accumulate in immature tomato
fruits [38]. Cholesterol is the proposed common precur-
sor for the biosynthesis of SGAs. A series of GLYCOAL-
KALOID METABOLISM (GAME) genes are responsible
for the hydroxylation, oxidation, and transamination of
SGAs (Fig. 7b). Two of them, GAMEII and GAME3I,
are 20DDs. GAMEI1 participates in the initial synthesis
process of SGAs and was highly expressed in the roots,
leaves, flowers, and immature green fruits (Fig. 7a). In
contrast, GAME31 was mainly expressed at the tomato
fruit ripening stage and catalyzes the first important step
in the chemical shift after maturation within nonbitter
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Fig. 6 Characterization of S20DDs involved in ethylene biosynthesis pathway. a Expression profiles of 7 ACO genes throughout the tomato life
cycle. b Schematic representation of ethylene biosynthesis pathway. MET: methionine, AdoMet: S-adenoysl-methionine, ACC:
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SGA by a hydroxylation reaction [39, 40]. Interestingly,
we found that the different expression patterns between
GAMEI11 and GAMES3I resulted in the appropriate func-
tion at the right time. To gain further insight into the
spatiotemporal specificities of compounds in different
tissues, the coexpression of metabolites and genes was
analyzed (Fig. 7a). The upstream SGA metabolites accu-
mulated mainly in the leaves (L45) and green fruits,
which is in line with the expression pattern of the

upstream biosynthesis-related gene GAMEII. The con-
tent of downstream SGAs decreases gradually after the
Br period along with the expression of the downstream
biosynthesis-related gene GAME31. These results are
consistent with those of a previous study [40].

Flavonoid biosynthesis and metabolism
As shown in Fig. 8b, flavonoids are derived from the shi-
kimate pathway, and the committed steps are catalyzed
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by chalcone synthase (CHS) and chalcone isomerase
(CHI) to yield naringenin, which is subsequently modi-
fied by different enzymes, including cytochrome P450s
(CYPs) and 20DDs. ENSI, F3H, flavonol synthase (FLS),
and anthocyanidin synthase (ANS) are flavonoid dioxy-
genases and belong to the 20DD family. Based on the
MMN data, we conducted a coexpression analysis of
genes and compounds of the flavonoid pathway. Flavon-
oid 3’-hydroxylase (F3’H), CHI-like (CHIL), CHS-1,
CHS-2, F3H, and FLS exhibited similar expression pat-
terns during the tomato growth cycle. The accumulation
of their corresponding products, such as eriodictyol and
quercetin, followed (Fig. 8a). These results suggested
that performing a coexpression analysis might be a reli-
able approach to study gene function.

Although the flavonoid pathway of plants has been
studied [15, 16], the key enzyme FNS responsible for the
production of flavones, which compose the largest sub-
group of flavonoids, has not been reported in the Sola-
naceae thus far. Studies have showed conflicting results
regarding the presence of flavones in Solanaceae species,
including tomato [41-44]. To further determine whether
type I flavone synthase (FNSI) exists in tomato, a total of
six candidate genes (Solyc02g068310, Solyc05g018130,
Solyc03g080190, Solyc06g073080) including both F3H
(Solyc02g083860) and FLS (Solyc11g013110), were se-
lected based on phylogenetic tree analysis and coexpres-
sion analysis (Fig. 9). Two candidates (Solyc03g080190
and Solyc06g073080) along with other FNSIs (ZmFNSI,
OsFNSI, AtDMR6) were distributed in the same group
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SIFNSIs and flavonoids across the tomato life cycle. Data was obtained from MMN dataset (Li et al,2020)

(blue). The other four candidates, Solyc02g068310,
Solyc05¢g018130, F3H, and FLS exhibited coexpression
patterns together with those of the accumulation of up-
stream compounds (Fig. 9b). The expression of these six
potential genes may lead to FNS activity in tomato.

We cloned and expressed these candidates to test their
ENS ability by converting flavanone (eriodictyol, Eri) into
the corresponding flavone (luteolin, Lut) (Fig. 10a).
AgFNSI (Apium graveolens) was used as a positive con-
trol [18] and showed FNS activity. F3H converted Eri

into the flavanonol product dihydroquercetin (Diq), and
FLS converted Diq into quercetin (Que), as expected.
However, these candidates did not show ENS activities
(Fig. 10a and b). Regarding the other candidate genes,
none of them exhibited FNS activity. All six potential
genes failed to present ENS activity.

Conclusions
In this study, a total of 131 20DDs were identified in the
tomato genome, and their phylogenetic relationships,
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Fig. 10 No FNSI activity was confirmed using candidate SI20DDs. a Schematic diagram of the reactions of eriodictyol under the action of
different enzymes. Eri: eriodictyol, Dig: dihydroquercetin, Lut: luteolin, Que: quercetin. FNS: Flavone synthase, F3H: flavanone-3-hydroxylase, FLS:
flavonol synthase. b UPLC analysis of in vitro enzyme reaction products of SIFNSIs. SIFLS-Dig/Eri: SIFLS uses Diq and Eri as substrates, respectively.
The remaining enzymes use Eri as a substrate to verify the FNS activity
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structures, chromosomal locations, duplications, and ex-
pression patterns were investigated. We found that the
SI20DDs within the same clades share a similar motif
composition and structure, inferring that they may have
the same conserved function. The expression profile
suggested that SI20DDs were widely distributed in dif-
ferent tissues and stages, revealing their importance for
normal organismal function during the tomato growth
cycle. Our results highlighted their irreplaceable roles in
the biosynthesis of gibberellins, ethylene, steroidal
glycoalkaloids, and flavonoids. Importantly, we charac-
terized six potential SI20DDs encoding FNSI and con-
cluded that there was no functional ENSI in tomato.
Our findings promote the understanding of the evolu-
tion and function of 20DDs in tomato, and therefore
provide a reference for further research, especially for
the genetic improvement of the tomato flavonoid
pathway.

Methods

Plant material and growth conditions

The seeds of Solanum lycopersicum cv MicroTom were
purchased from PanAmerican Seed (Illinois, USA). The
resulting plants were grown in a greenhouse under a 16
h light/8 h dark photoperiod, 24 °C and under 60% hu-
midity [45].

Retrieval of putative 20DDs from tomato

We performed a repeated BLASTP search (e values of <
0.001) using the 20G-Fell_Oxy (PF03171) and DIOX_
N(PF14226) domains of tomato flavanone-3-hydroxylase
(SIF3H, Solyc02g083860) against the tomato transcrip-
tome (ITAG 4.0) downloaded from the tomato genome
database (ftp://ftp.solgenomics.net/tomato_genome/
annotation/ITAG4.0_release/) [46] and combined the
annotation data of the recently established MicroTom
Metabolic Network (MMN, https://www.sciencedirect.
com/science/article/pii/S1674205220301830)  [25] to
identify 20DD genes in the Solanum lycopersicum gen-
ome. All the candidate sequences were further verified
by a Hidden Markov Model (HMM) search using PFAM
(http://pfam.xfam.org/) [47] and SMART (http://smart.
embl-heidelberg.de/) [48].

Phylogenetic analysis

A total of 131 identified tomato 20DDs were used for
multiple protein sequence alignments via ClustalW in
MEGA 7.0 (https://www.megasoftware.net/) [49]. The
alignment results were subsequently used to construct a
phylogenetic tree using the neighbor-joining method
with 1000 bootstrap replicates and complete deletion.
The other parameters were set to the defaults. The
phylogenetic tree was displayed with the online tool
EvolView (https://evolgenius.info//evol-view-v2) [49].
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Gene structure and conserved motif analysis

Gene structures were analyzed based on the full-length
genome sequence using the online tool Gene Structure
Display Server (GSDS) 2.0 (http://gsds.gao-lab.org/index.
php) [50]. To identify conserved motifs, the MEME on-
line website (https://meme.n-bcr.net/meme) [51] was
used with the following parameters: maximum number
of motifs, 15; optimum width of each motif, between 12
and 30 residues; and optional parameters, default values.
The characteristics of the 20DD structures with motif
compositions were visualized by EvolView.

Chromosomal location and synteny analysis

All 20DDs were mapped to the 12 tomato chromosomes
based on physical location information from the data-
base of the tomato genome using MG2C 2.1 (http://mg2
c.iask.in/mg2c_v2.1/) [52]. Analysis of gene duplications
was conducted with MCScanX software (http://chibba.
pgml.uga.edu/mcscan2/) [53] using the amino acid se-
quences and chromosomal positioning data of 20DDs,
after which the results were visualized using TBtools
(https://github.com/CJ-Chen/TBtools) [54]. The nonsy-
nonymous (Ka) and synonymous substitution (Ks) rates
of duplicated 20DD genes were calculated using KaKs_
Calculator 2.0 (http://www.bork.embl.d-e/pal2nal/). The
ratio was then calculated to evaluate the selection
pressure.

Expression patterns of SI20DDs

The MicroTom Metabolic Network (MMN), a high-
temporal-resolution transcriptome and metabolome
dataset that contains data from 20 different tissues and
stages during the MicroTom growth cycle, was used to
study the expression patterns of 20DDs (https://www.
sciencedirect.com/science/article/pii/S167420522030183
0) [25]. A heatmap of 20DD expression was created and
displayed using the R language program. Transcript
abundance was calculated as fragments per kilobase of
exon model per million mapped reads, and the resulting
values were z-score transformed to normalize the gene
expression levels.

Coexpression analysis

Coexpression analysis was conducted for 20 different
time points/tissue samples by R software with the heat-
map package. The normalized expression values of genes
and metabolites were calculated by the z-score method
which is a built-in standardized function of R software.

Clone and expression of potential SIFNSIs

The full-length CDSs of potential SIFNSIs were amplified
using polymerase chain reaction (PCR) from c¢DNA in
conjunction with primers designed based on the se-
quences obtained from the tomato genome database
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(https://solgenomics.net/). The CDSs were cloned into a
pDONR207, sequenced, and subsequently recombined
into pDEST17 vector through Gateway cloning [45]. The
potential SIFNSIs were expressed in E.coli strain BL21
grown at 37 °C in Luria-Bertani (LB) media containing
0.05mgml™" carbenicillin until the optical density at
600 nm reached 0.7-0.9. Recombinant proteins were
expressed by induction with 0.5mM isopropyl B-D-1-
thiogalactopyranoside (IPTG) for 18h at 16°C. Cells
from 40 ml of culture were harvested by centrifugation
and resuspended in 3 ml of PBS buffer (pH 7.0) at 4 °C.
Afterward, cell lysis was performed using an ultrasonic
homogenizer and the lysates were recovered by centrifu-
gation (10,000 g) for 20 min [55].

In vitro enzyme assays

The potential crude SIENSI enzymes were incubated to-
gether with 160 uM a-oxoglutarate, 50 pM ferrous sul-
fate, and 200 uM eriodictyol in a final volume of 100 pl
of PBS buffer (pH 7.0) for 1 h at 30 °C. The reaction was
stopped by the addition of 400 pl of methanol. The mix-
ture was then centrifuged at 20,000 g at 4 °C for 10 min
after which the supernatant was collected for
measurements.

Ultra-performance liquid chromatography (UPLC) analysis
The product analysis was performed on a Dionex Ultim-
ate 3000 Series UPLC (Thermo Scientific, MA, USA)
and a 100 x 2.1 mm 1.9 pm Hypersil Gold C18 column
(Thermo Scientific, MA, USA) with 100% acetonitrile
used as mobile phase A and 0.1% formic acid in ultra-
pure water used as mobile phase B, running at 0.5 ml/
min and 40 °C. The mobile gradient was as follows: 0-2
min, 83% B; 2—-5 min, 83-80% B; 5-7 min, 80-75% B; 7—
11 min, 75% B; 11-11.1 min, 75-83% B; and 11.1-13
min, 83% B. Detection was performed at 280 nm for
eriodictyol and 350 nm for luteolin.
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