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Summary

Aneuploidy and structural variations (SVs) generate cancer genomes containing a mixture of 

rearranged genomic segments with extensive somatic copy number alterations. However, existing 

methods can identify either SVs or allele-specific copy number alterations, but not both 

simultaneously, which provides a limited view of cancer genome structure. Here we introduce 

Weaver, an algorithm for the quantification and analysis of allele-specific copy numbers of SVs. 

Weaver uses a Markov Random Field to estimate joint probabilities of allele-specific copy number 

of SVs and their inter-connectivity based on paired-end whole-genome sequencing data. Weaver 

also predicts the timing of SVs relative to chromosome amplifications. We demonstrate the 

accuracy of Weaver using simulations and findings from whole-genome Optical Mapping. We 

apply Weaver to generate allele-specific copy numbers of SVs for MCF-7 and HeLa cell lines, and 

identify recurrent SV patterns in 44 TCGA ovarian cancer whole-genome sequencing datasets. 

Our approach provides a more complete assessment of the complex genomic architectures inherent 

to many cancer genomes.
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Graphical abstract

eTOC Blurb

A new algorithm that quantifies allele-specific structural variations can greatly improve the 

analysis of complex genomic alterations in cancer.

 Introduction

Genome aneuploidy, which presents abnormal copy numbers of alleles are present, is one 

hallmark of cancer (Gordon et al., 2012; Newburger et al., 2013). A large proportion of 

tumors are aneuploid and have undergone somatic copy number alterations (CNAs) 

involving chromosome arms, or even whole-genome duplications (WGD) (Beroukhim et al., 

2010; Gordon et al., 2012; Zack et al., 2013). In some types of cancers involving the bladder, 

ovarian, and lung, more than 50% of these tumors have undergone WGD (Zack et al., 2013). 

Structural variations (SVs), including deletions, insertions, duplications, and complex 

rearrangements, can further modify the aneuploid cancer genome into a mixture of 

rearranged genomic segments presenting an extensive range of CNAs. Indeed, aneuploid 

cancer genomes have significantly higher rate of CNAs as well as SVs (Zack et al., 2013). A 

comprehensive and precise characterization of these changes is key to understanding the 

somatic evolution of cancer genomes (Greenman et al., 2012) and interpreting cancer-

specific gene expression and epigenetic alterations using high-throughput next-generation 

sequencing (NGS) data (Adey et al., 2013).

Allele-specific copy number of genome (ASCN-G) analysis has been performed for SNP 

array data (Carter et al., 2012; Van Loo et al., 2010) and recently for NGS data as well 

(Chen et al., 2015a; Holt et al., 2014; Mayrhofer et al., 2013; Wang et al., 2015). Separately, 

SV identification methods have also been developed for NGS data, such as (Chen et al., 

2009; Rausch et al., 2012; Wang et al., 2011; Yang et al., 2013). It is essential to ask how 

SVs interact with ASCN-G and how different SVs interact with each other. The answers to 
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such questions may foster a greater understanding of how to interpret the complex genomic 

structures that often characterize cancer cells, in addition to providing a more nuanced 

understanding of tumor evolution. However, to our knowledge, integrative methods created 

specifically for simultaneously analyzing SVs and ASCN-G using whole-genome 

sequencing data have not been developed. Indeed, except arm-level gain and loss, the 

majority of somatic CNAs are associated with SVs (Li et al., 2014). It has been shown that 

analyzing CNAs and SVs together can improve breakpoint identification and reveal the 

mutational forces that may give rise to a specific cancer subtype (Chen et al., 2015b; Li et 

al., 2014; Waddell et al., 2015). Moreover, the integrated approach may further assist 

variants phasing in different scales (both SNPs and SVs) in the context of complex cancer 

genome architecture. Numerous functional genomic datasets have been generated for cancer 

cell lines such as MCF-7 and HeLa, that prominently include findings from the ENCODE 

project (Consortium, 2012). However, most of such studies do not explicitly consider SVs 

and most of allelic functional genomic analyses only consider diploid genomes (Rozowsky 

et al., 2011). To fully characterize gene regulatory networks and epigenetic alterations in 

cancer genomes, it is critical to identify SVs and CNAs in allele-specific manner and in 

haplotype resolution to integrate with functional genomic studies (Adey et al., 2013).

Here, we introduce Weaver, a computational method to identify allele-specific copy number 

of SVs (ASCN-S) as well as the inter-connectivity of them in aneuploid cancer genomes. To 

our knowledge, no existing method can simultaneously analyze SVs and ASCN-G directly 

from whole-genome sequencing data. The methodological contributions of Weaver are 

trifold: (i) The method provides a quantitative copy number measurement of SVs in an 

allele-specific manner; (ii) It estimates the phasing of SVs using NGS data; (iii) The method 

generates highly accurate base-pair resolution ASCN-G profiling in aneuploid cancer 

genomes by simultaneously achieving (i) and (ii).

We assessed the accuracy of Weaver using simulated data, benchmarking against whole-

genome Optical Mapping findings (Gupta et al., 2015; Ray et al., 2013), and comparison 

against previous analyses of cancer genome datasets. We applied Weaver to two widely used 

cancer cell lines, MCF-7 and HeLa. For both cell lines, we generated base-pair resolution 

ASCN-S and ASCN-G, which provide resources for future studies based on these two cell 

lines. As a proof of principle that Weaver can be used to study patient samples, we also 

applied it to TCGA ovarian cancer whole-genome sequencing data and identified recurrent 

patterns of structural variation.

 Results

 Overview of the Weaver algorithm

An overview of the Weaver algorithm is shown in Figure 1. The input of Weaver is the BAM 

file of aligned and unaligned reads from a particular cancer sample. If there is matched 

normal sample available, it can also be used (see Supplemental Experimental Procedures). 

The first step is to call variants (including both SNPs and SVs) based on the BAM file. Our 

framework is flexible and allows users to choose their own variant calling tools. The detailed 

description for preparing Weaver input is in the Supplemental Experimental Procedures. 

Using the intermediate results (yellow boxes in Figure 1A) including the cancer genome 
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graph construction, Weaver builds the Markov Random Field (MRF) model. By solving the 

MRF maximum a posteriori (MAP) function (Equation 1), Weaver generates output as 

shown in the green boxes in Figure 1A. Figure 1B shows an example that illustrates ASCN-

S and timing of SV from Weaver’s output. In contrast to existing methods, Weaver quantifies 

the copy number of SVs in an allele-specific manner (i.e., ASCN-S), thus providing useful 

information to help infer when the SV happened relative to the chromosome duplication 

(i.e., timing of SV). See Experimental Procedures and Supplemental Experimental 

Procedures for the details of the algorithm. Weaver’s source code is freely available at: 

https://github.com/ma-compbio/Weaver.

Weaver uses the variant calling results to build a cancer genome graph (Figure 2B), which 

represents the connections among genomic regions in both normal genome and cancer 

genome. Next, the cancer genome graph is converted into a pair-wise MRF (Figure 2C). 

MRF is a type of probabilistic graphical model that captures the joint probability 

distributions, where nodes in the graph represent random variables and undirected edges 

represent dependencies among variables. In the MRF, ASCN-S and SV phasing 

configuration, together with genomic ASCN-G, are hidden states in the nodes and the 

observations contain sequencing information, including coverage and read linkage between 

variants (Figure 2D). Our goal of finding ASCN-S and SV phasing together with ASCN-G 

is formulated as searching for the MAP solution for the MRF. We utilize the loopy belief 

propagation framework to solve the problem.

 Evaluation using simulations

We evaluated the performance of Weaver on simulated datasets. The simulated dataset 

contains different allele copy numbers with different ranges of SVs. The detailed steps on 

how the simulated data were generated are described in Supplemental Experimental 

Procedures.

Overall, Weaver identified 97.1% SVs with correct copy number and 95.7% of SVs were 

phased to correct allele (with dispersion parameter 1.26). The timing of SV can be inferred 

with pre- and post-aneuploid SVs. We correctly detected 97.3% pre- and 98.7% post-

aneuploid SVs. Sensitivity (SN) is defined as [(correctly identified ASCN-S)/(all ASCN-S in 

the simulation benchmark)] and Specificity (SP) is defined as [(correctly identified ASCN-

S)/(all reported ASCN-S from Weaver)] with specific copy numbers (Figure 3A–B). The 

dispersion parameter ϕ is approximated by adding various degrees of random noise to the 

original coverage of the simulated data. With increasing noise levels (larger dispersion ϕ), 

both SN and SP drop. However, based on our observation from TCGA samples, the 

dispersion is typically less than 1.5 (mean=1.2), suggesting that Weaver should perform well 

on actual cancer genome data. Overall, Weaver identified ASCN-G with both SN and SP 

>95% for simulated ASCN-G ranging from 0 to 4 copies (Figure 3C).

Next, we compared the output of Weaver to results from BEAGLE (Browning and 

Browning, 2009), a statistical SNP phasing method based on a population reference-panel of 

phased chromosomes. We evaluated Weaver using switching error rate, which is the standard 

metric for assessing phasing accuracy (Browning and Browning, 2011). The switching error 

is the proportion of switches in the inferred haplotypes to recover the correct phase in an 
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individual. In our evaluation, we omitted the phasing information of the testing individual, 

and used the rest of the 1000 Genomes Project (1KGP) individuals as reference-panel. 

Overall, Weaver reported an average switching error rate 0.2%, while BEAGLE had an error 

rate of 3% on regions with imbalanced allele ratio. We have also observed a clear decrease 

of switching rate for Weaver on datasets with increasing allele imbalance (Figure 3D).

 Application to the MCF-7 genome

We applied Weaver to whole-genome sequencing data of the MCF-7 breast cancer cell line, 

with approximately 78X overall coverage and 20X haplotype level coverage.

 Overview of the results—Genome-wide ASCN-S and ASCN-G are shown in Figure 

4A. 68.3% of MCF-7 genome have imbalanced ASCN-G, enabling accurate phasing of 

SNPs and distal SVs. Weaver identified 546 SVs with 83.3% having copy number greater 

than one. Among them, Weaver found 276 post-aneuploid SVs. Details of the Weaver 

ASCN-S results are in Data S1.

We found two deletions that represent the unique capability of Weaver: Del1 

(chr9:21,837,011-22,081,282) and Del2 (chr9:21,819,514-21,989,631), within the MTAP-

CDKN2A/B region (Figure 1B), where deletions have been frequently observed in various 

cancers (Brennan et al., 2013; Zack et al., 2013). Weaver found that the short arm of chr9 

was triplicated with loss of heterozygosity, having two different deletions Del1 and Del2, 

with copy number two and one, respectively. The copy number of deletions implies that the 

region has been amplified twice. Before the first amplification, which changed copy number 

from one to two, no deletion occurred. After the first amplification and before the second 

amplification, Del1 occurred on one haplotype, which was then duplicated in the second 

amplification, leading to two copies of Del1. Independent from Del1, Del2 was formed in 

approximately the same region on the other haplotype after the first amplification. Such 

evolutionary information cannot be revealed without SV copy number quantification.

 Comparison with Optical Mapping analysis—We used Optical Mapping analysis 

of MCF-7 to compare with the results from Weaver. Optical Mapping (Dimalanta et al., 

2004; Gupta et al., 2015; Schwartz et al., 1993; Teague et al., 2010; Valouev et al., 2006a; 

Valouev et al., 2006b) is a single-molecule system that constructs genome-wide physical 

maps from large datasets comprising ordered restriction maps (Rmaps; 1 Rmap is 1 

restriction mapped DNA molecule) from individual genomic DNA molecules (300 kb – 

2,000 kb). After assembly of Rmap datasets into optical maps (Rmap contigs), automated 

detection of structural variants (2 kb to multiple Mb) are discovered across the entire 

genome (Antonacci et al., 2010; Gupta et al., 2015; Ray et al., 2013; Teague et al., 2010), 

which provides long range linkage information that current NGS approaches are not able to 

achieve.

We selected 268 long range MCF-7 SVs detected by Weaver (inter-chromosomal or intra-

chromosomal SVs with breakpoints distance >500 kb) and built an in silico ‘cancer 

reference map’ from these SVs by piecing together 300 kb flanking regions of two 

breakpoints for each SV. Of the 268 Weaver detected SVs, 235 are consistent with Optical 

Mapping analysis, suggesting that Weaver can accurately identify SVs. Note that the 33 
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missed by Optical Mapping may not be false positives from Weaver, as it is also possible 

that no Rmaps happened to capture that SV. The Optical Mapping data also corroborated the 

length and location of 26 (of 29) tandem duplications detected by Weaver (see an example in 

Figure S2A).

 Integrated analysis with functional genomic data—Recent work in HeLa cells 

has suggested the need for haplotype-resolved cancer genomes for allelic analysis of 

transcriptome and epigenome data (Adey et al., 2013). Using data from the ENCODE 

project on MCF-7, here we show that the results generated by Weaver could help better 

interpret cancer functional genomic sequencing data.

ASCN-G predicted by Weaver correlates well with the allelic expression data (RNA-seq) in 

MCF-7 (Figure 4B). We further assessed the capability of Weaver in understanding the 

impact of cancer genome structure on gene regulation. We utilized the chromatin interaction 

data from ChIA-PET, which is a technology that combines 3C-based methods with ChIP to 

probe chromosomal contacts that involve certain proteins (Fullwood et al., 2009). The 

expected range of chromatin interactions probed by ChIA-PET is ≤ 400 kb, however, 

unexpected interactions with ultra-long range were also observed in previous analysis (Li et 

al., 2012). We wanted to assess whether these seemingly ultra-long range interactions were 

actually established by long range SVs in cancer genome. We selected ultra-long range 

ChIA-PET clusters using the following criteria: (i) paired-end tag (PET) count >4 for each 

PET cluster; (ii) intra-chromosomal clusters with genomic span >400 kb. We searched SVs 

identified by Weaver against each ultra-long range ChIA-PET cluster and then called a 

ChIA-PET cluster being correlated with SV, if: (i) the orientation of SV is consistent with 

the relative position of SV and ChIA-PET cluster; and (ii) the new genomic span of ChIA-

PET in cancer genome remodeled by SVs is ≤ 400 kb, but still >8 kb to exclude ChIA-PET 

cluster from self-ligation on the same DNA fragment (Li et al., 2012).

Indeed, we found many potentially artificial ‘MCF-7 specific chromatin interactions’ 

because, when considering SVs, they reside right on two SV breakpoints and likely were 

originated from single binding site on either side of SV, rather than two distinct ones (details 

in Table S2). For SV-related intra-chromosomal ChIA-PET clusters, the median genomic 

span on the human reference genome and the MCF-7 genome is 3,353,180 bp and 212,803 

bp, respectively. SV-related inter-chromosomal ChIA-PET clusters are on the same 

chromosome in MCF-7 genome and the median genomic span is 151,872 bp. To test the 

significance of the correlation between MCF-7 SV and MCF-7 long-range ChIA-PET 

clusters, we also searched the correlation between MCF-7 SV and ChIA-PET clusters from 

other cell lines (Table S2), which is much less significant.

We have identified a potential chromothripsis event (Korbel and Campbell, 2013; Stephens 

et al., 2011) with eight fragments from chr17 and nine fragments from chr20 in MCF-7, 

supported by long-range ChIA-PET cluster. In Figure S2B, a ChIA-PET cluster has linked 

two flanking promoters (BMP7 and INTS2) together, supporting the existence of the entire 

complex cancer contig. Note that this region has been amplified many times and the chr20 

amplified region also links to another amplified region on chr20. Additionally, we have 

discovered that the phasing of different SVs and allele-specific information produced by 
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Weaver can enable the analysis of interaction between genomic rearrangements and long-

range gene regulation at much broader scale. We use Figure 5A as an example. Combining 

the SV results from Weaver and the ChIA-PET data, the allele-specific expression of 

SLC35C1 was likely caused by the chromatin interaction formed by the allele-specific SVs 

(see details in Figure 5). The phasing of the SVs in Figure 5A is also consistent with the 

Optical Mapping analysis (Figure 5B).

These analyses indicate that the SV information provided by Weaver will be useful for 

analyzing epigenome data from cancer genomes with large-scale somatic alterations.

 Application to the HeLa CCL-2 genome

We applied Weaver to the whole-genome sequencing data of the HeLa cells CCL-2 

generated by (Adey et al., 2013). Haplotype level coverage is approximately 28X.

 Overview of the results and comparison with Adey et al. (2013)—The original 

study by (Adey et al., 2013) reported 12 inter-chromosomal SVs, and no large scale intra-

chromosomal SV was reported (only deletions and inversions with size <10 kb are reported). 

However, from our analysis on the same data, we identified 8 inter-chromosomal and 86 

intra-chromosomal SVs (if intra-chromosomal SVs are deletion or tandem duplication type, 

only those with size >20 kb are reported) (Data S1).

Overall, there are 62 genes harboring SV breakpoints. Genome-wide representation of the 

Weaver results on HeLa is in Figure 6A. ASCN-G predicted by Weaver correlates well with 

the allele-specific expression in HeLa (Figure S3A). The large-scale aneuploidy and loss of 

heterozygosity regions have high agreement with (Adey et al., 2013). Comparing with the 

results from (Adey et al., 2013), for all genomic regions with copy number profiled, 96.1% 

have consistent overall copy number estimation between the two studies. For ASCN-G, the 

consistency is 97.3% by comparing Weaver output with Table S13 in (Adey et al., 2013) (see 

also Figure 1a in (Adey et al., 2013)). Note that Weaver only used Illumina sequencing reads 

from (Adey et al., 2013) (where different types of long-reads data were also utilized).

Weaver found an allele-specific SV (deletion) of the FHIT gene which was missed in the 

result from (Adey et al., 2013) (Figure 6B). FHIT is a tumor suppressor gene that is 

frequently down-regulated in various human cancer samples, including the HeLa cell line 

(Druck et al., 1998; Otterson et al., 1998; Wistuba et al., 1997). In this region, there are five 

deletions, all of which have copy number one. Weaver identified these deletions as well as 

their allele-specific history (Figure 6B).

 ASCN-S on chr11 and chr19 in HeLa—Chr11 and chr19 have undergone extensive 

amount of SVs (Figure 6C and Figure S3B), which have also been reported in HeLa Kyoto 

cell line (Landry et al., 2013). Weaver was able to assign different timing for the two 

possible chromothripsis events on chr11 and chr19.

The chromothripsis on chr11 happened before whole chromosome duplication (since most 

of the breakpoints have copy number > 1) (Figure 6C), while chromothripsis on chr19 

happened after duplication (since most of the breakpoints have copy number 1). For chr11, 
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we found that all SVs are on allele 1 (blue), while allele 2 (green) is intact and does not have 

SVs. The SVs were likely to be formed by chromothripsis (Korbel and Campbell, 2013; 

Stephens et al., 2011).

For chr19, all SVs have copy number one and are on one copy of allele 1 (blue), except the 

inter-chromosomal SV (chr13:55,878,043-chr19:12,898,480) which is on allele 2 (green). 

Since no fold-back inversions have been observed on chr19, the elevated rate of 

rearrangements on chr19 is not from breakage-fusion-bridge cycles (Bignell et al., 2007; 

Campbell et al., 2010; Li et al., 2014; Zakov et al., 2013). Moreover, the high allele 

specificity of SVs on allele 1 implies that allele 1 of chr19 was rearranged from one 

chromothripsis event. Weaver has labeled all intra-chromosomal SVs on chr19 as post-

aneuploidy, such that one copy of allele 1 does not have SVs after the initial amplification of 

allele 1, which is consistent with previous observation that there are two normal copies of 

chr19 in HeLa (Macville et al., 1999).

 Application to 44 TCGA ovarian cancer whole-genome sequencing samples

Previous studies have shown that ovarian cancers exhibit genomic instability, including 

recurrent non-random chromosomal abnormalities, multiple chromosomal losses and gains, 

and the presence of marker chromosomes (Diebold et al., 2000; Micci et al., 2009; Pejovic et 

al., 2006; Wang et al., 2014). The TCGA project has created a detailed catalogue of genomic 

aberrations in ovarian cancer and suggested that the degree of somatic CNAs in ovarian 

cancer is strikingly high as compared to other types of cancer (Cancer Genome Atlas 

Research, 2011). To demonstrate that Weaver can be applied to patient samples to refine the 

analysis of complex SVs, we applied Weaver on 44 high-coverage (>15X on haplotype 

level) TCGA ovarian cancer samples.

As previously mentioned, the current state of Weaver does not work with tumor samples 

harboring complex subclones. To quantify this limitation, we did a simulation study and 

found that if the subclone fraction is 10%, the ASCN-G result from Weaver can still achieve 

over 95% accuracy (Supplemental Experimental Procedures and Figure S4). Of the 44 

ovarian cancer samples we selected, 40 have subclone fraction less than 10% (based on 

Supplementary Table 1 from (Carter et al., 2012)), suggesting that the vast majority of these 

samples do not have an abundance of subclones and Weaver results are reliable. The results 

from Weaver for all the samples are presented in Figure S5. Details of the Weaver ASCN-S 

results of these TCGA samples are in Data S1. Genome-wide representation of Weaver 

results from one sample, TCGA-36-1571, is in Figure S6A. Using this sample as an example 

(Figure 7A), we demonstrate that Weaver can refine the ASCN-G analysis (as compared to 

ASCAT (Van Loo et al., 2010) and ABSOLUTE (Carter et al., 2012)) with additional 

ASCN-S information.

Compared to other chromosomes, chr19 is significantly enriched with fold-back inversions 

(Figure S6D). Fold-back inversions, together with copy number profiles, are reliable 

indicators of break-fusion-bridge cycles (Zakov et al., 2013). Figure 7B shows the overall 

copy number profile of chr19 across 44 ovarian cancer samples. Gene CCNE1 is within the 

most significantly amplified region. Amplification of CCNE1, which encodes cyclin E1, is 

associated with primary treatment failure in ovarian cancer patients and has been validated 
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as a dominant marker of patient outcome (Etemadmoghadam et al., 2009). Previous studies 

have reported that CCNE1 amplification is one of the most common focal CNA events in 

ovarian cancer (Cancer Genome Atlas Research, 2011; Patch et al., 2015).

One small region on 19p13.3 (4.6M-6.7M) is enriched with fold-back inversions that lead to 

the amplification of 19p13.2. Especially TCGA-04-1514, TCGA-24-1552, TCGA-13-1491 

and TCGA-13-0727 (4 out of 44 deep sequencing samples analyzed) have fold-back 

inversions with breakpoints within a <60 kb region (Figure 7C). Notably, the breakpoints are 

right around KDM4B from KDM4 protein family. Studies have shown that KDM proteins, 

including KDM4B, are perturbed in various types of cancers (Berry and Janknecht, 2013).

 Discussion

Genomes of somatic cells undergo dramatic and complex alterations during cancer 

progression that include point mutations, SVs, large-scale gains or losses, and even 

aneuploidy. Aneuploidy is a common attribute of cancer as reconfirmed by sequencing in a 

recent pan-cancer study that estimated that over one third of the analyzed tumors have 

WGD, and the proportion can reach over 50% in some types of cancer (Zack et al., 2013). In 

addition, genome aberrations caused by SVs and CNAs are a common feature of a wide 

variety of neoplastic lesions. Recent advances in NGS and single molecule technologies 

have provided us with an unprecedented opportunity to better characterize these different 

genomic changes in cancer. However, even though methods have been separately developed 

to identify SVs and CNAs using NGS reads (Chen et al., 2009; Hormozdiari et al., 2009; 

Medvedev et al., 2010; Rausch et al., 2012; Sindi et al., 2012; Wang et al., 2011; Yang et al., 

2013), no algorithm is currently available to simultaneously identify SVs and CNAs in 

aneuploid cancer genomes, which would be critical to reveal detailed tumor evolution 

(Greenman et al., 2012). Our algorithm is generic for the consideration of both WGD and 

local CNAs, such as focal amplification (note that WGD can be treated as a global CNA). 

This gives us the capability to handle complex genomes with SVs and CNAs in the same 

regions. By connecting different SVs in the context of WGD and local CNAs, Weaver allows 

determination of whether a copy number change of an SV is caused by local amplification/

deletion or whole chromosome duplication/deletion. Therefore, Weaver quantifies allele-

specific copy number of SVs in cancer genomes and provides a more integrative solution to 

study complex cancer genomic alterations.

We expect that Weaver will prove to be a useful route for the refinement of the extant 

analyses of datasets created by large-scale projects such as TCGA and ICGC, which were 

mostly sequenced using short read NGS technologies. In particular, as we have demonstrated 

in this work, it is important to consider ASCN-G and ASCN-S when we perform functional 

genomic analysis from the same genome (e.g., using RNA-seq, ChIP-seq, and other 

epigenomic datasets) in order to identify tumor-specific gene regulations. The algorithm in 

Weaver is not restricted to short reads and can in principle adapt to data from longer read 

sequencing technology (Chaisson et al., 2015; Pendleton et al., 2015; Zheng et al., 2016) and 

even newer mapping approaches (Jo et al., 2007; Kounovsky-Shafer et al., 2013), because 

the cancer genome graph can incorporate SVs identified by longer reads. However, it will 

remain difficult to completely elucidate those very large complex SVs in cancer genomes, 
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using contemporary sequencing data, especially when the breakpoint regions caused by SVs 

contain highly repetitive sequences.

There are a number of areas that the Weaver algorithm can be further improved. Copy 

number neutral events where breakpoints do not have significant copy number changes are 

currently not handled well in Weaver. Although Weaver sets no limit on maximum copy 

number, its accuracy in quantifying SVs is hampered for those residing in highly repetitive 

regions found in either the reference, or cancer genome. In regards to the MCF-7 genome, 

chromosomes 3, 17 and 20 have regions with higher than 100 copies. Consequently, 

estimations of copy number and phasing of SVs within those regions may be less reliable. In 

addition, even though the probabilistic graphical model employed in Weaver is generically 

designed to consider complex tumor subclones caused by intra-tumor heterogeneity, the 

current version of Weaver only works for samples with a dominating tumor cell clone 

(which can be estimated by tools such as ABSOLUTE) with some possible contamination 

by normal cells. However, recently a number of new algorithms have been developed to 

specifically identify subclonal structure of tumor cell populations (Fischer et al., 2014; 

McPherson et al., 2015; Miller et al., 2014; Oesper et al., 2013; Oesper et al., 2014; Popic et 

al., 2015; Prandi et al., 2014). Method like TITAN (Ha et al., 2014) was also developed to 

estimate allele-specific copy number alterations in a mixture of tumor cell population, 

although TITAN does not handle complex SVs. Nevertheless, the results from these 

algorithms that identify tumor subclone architecture are complementary to what Weaver can 

achieve. However, new methods are needed to quantify ASCN-S and understand how 

complex SVs interact in the context of a mixture of aneuploid tumor cell population to 

reconstruct the evolutionary history of tumor genomes.

 Experimental Procedures

 Genome partitioning and cancer genome graph construction

In the Weaver algorithm, we first partition the genome into non-overlapping regions (with 

default size W =5 kb) as follows: (i) Breakpoints in the input SV set  must be on region 

boundaries; (ii) Each region may contain no more than one SNP; (iii) The size of each 

region must be ≤ W. Based on various datasets in this work, we found that the number of 

regions from the initial segmentation ranges from 1.7 million to 2 million, depending on the 

size of the loss of heterozygosity regions and the number of SVs. This is a combined 

strategy that utilizes both fixed window size and SV boundaries for segmentation. Since SV 

breakpoints and CNA boundaries do not always match, our proposed MRF models this 

probabilistically. This approach has the advantage of providing base-level ASCN-G 

boundaries as compared to existing genome segmentation methods in copy number analysis, 

which typically use fixed segmentation size.

Given the initial segmentation of the genome and the SV set 𝓒, we then build cancer genome 
graph 𝓖:={𝓡, ℰ}, with nodes representing the genomic region set (ℛ) and edges 

representing reference adjacencies (ℰr) (solid lines in Figure 2B) if two nodes are adjacent in 

the normal genome and cancer adjacencies (ℰc) (dashed lines in Figure 2B) if two nodes are 

adjacent in the cancer genome by SV c linkage. Similar types of graphs have been used 

previously to study cancer SVs with different purpose (McPherson et al., 2015; Oesper et al., 
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2012). Edge configurations ℰ between nodes Ri and Rj can be represented as: (δiRi~δjRj), δ 

∈ {+,−}, with + and − representing the tail (right) and head (left) of a given genomic region 

R, e.g., (+Ri~ − Ri+1) ∈ ℰr, if Ri and Ri+1 are adjacent regions from the same chromosome in 

the normal genome.

We then convert the original cancer genome graph 𝓖:= {ℛ,ℰ} to Markov Random Field 

(MRF, ℳ:= (ℛ,ℛc, ℰr, ℰc), which is a widely used probabilistic graphical model to estimate 

joint probabilities. The detailed steps of this conversion are described in Supplemental 

Experimental Procedures with example in Figure 2. The MRF can be viewed as an 

undirected graph and the aggregated inference problem in Weaver given sequencing data can 

be viewed as a maximum a posteriori (MAP) problem with hidden states and observations 

explained in the following section. Unlike conventional methods for estimating copy number 

changes based on hidden Markov models (HMMs), which are designed for sequential data 

and only consider the dependencies between ‘local’ variables, MAP solution of MRF model 

provides the most probable configuration of aneuploid cancer genomes with complex SVs, 

involving ‘global’ variable dependencies defined by long-range SVs (i.e., distal connections 

of variants). This is the main rationale of using MRF for our problem. In the following 

section, we describe the formulation of the MRF MAP problem. Detailed definitions of 

hidden states, observations, and potential functions of nodes and edges are provided in 

Supplemental Experimental Procedures. In Figure 2D, we use an example to illustrate the 

input/output as well as genome node, cancer node, genome edge, and cancer edge.

 Solving the MRF model ℳ

The overall goal of our MRF model is to predict hidden states ℋ based on the observations 

𝓞 (see Supplemental Experimental Procedures for the definitions of ℋ and 𝓞). After we 

convert the cancer genome graph 𝓖 to the MRF ℳ framework using the steps detailed in 

Supplemental Experimental Procedures, the problem is formulated as searching for the MAP 

solution, which is given by:

(1)

where ΘR( |Hi) is the genome node (green box in Figure 2C) potential function (e.g., we use 

negative binomial model to consider the over-dispersion of read coverage); Θ ( |Hc) 

denotes constraint function in cancer nodes (red box in Figure 2C); ΨR( |Hi, Hi+1) is the 

genome edge (link between green boxes in Figure 2C) function, providing pairwise 

constraints of hidden states of neighboring nodes Ri and Ri+1; Ψ (Hi, Hc) is the cancer edge 

(link between green and red box in Figure 2C) potential function; and 𝓝(c) stands for the 

index of genome nodes linked to SV c. Figure 2D provides a zoom-in view of the MRF to 

highlight these notations. The definition of these functions are given in Supplemental 

Experimental Procedures.

Li et al. Page 11

Cell Syst. Author manuscript; available in PMC 2017 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Intuitively, ℋ̂ represents the hidden states H (which represent the solutions to allele-specific 

copy number estimation for all the nodes in ℳ) that maximize the given function. 

Specifically, ℋ̂ includes the best global estimation for base-pair resolution ASCN-G as well 

as ASCN-S. The general MRF MAP problem is computationally intractable (Shimony, 

1994). Several approximation approaches have been proposed to solve this problem. Here 

we utilize Belief Propagation to solve the MRF MAP problem. Belief Propagation was 

originally proposed for graphs without cycle (Pearl, 1988), in which case the fixed point of 

max-product belief propagation algorithm is also the assignment of MAP (Weiss and 

Freeman, 2001). When applying on graph with arbitrary topology, the loopy belief 

propagation can still approximate well to the MAP configuration (Frey and MacKay, 1998). 

See Figure 2E and Supplemental Experimental Procedures for details.

As illustrated in Figure 2F, the final output of Weaver has three major parts: (i) the purity (μ0 

and μ1) and haplotype level coverage b; (ii) ASCN-G; (iii) ASCN-S, as well as the timing of 

SVs with respect to chromosome amplification or deletion (see an example in Figure 1B).

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Weaver is an algorithm for analyzing cancer whole-genome sequencing 

data

• It quantifies allele-specific structural variants (SVs) in aneuploid 

genomes

• Weaver provides an integrative way to study complex SVs and copy 

number alterations

• We compare with Optical Mapping analysis and apply to HeLa, 

MCF-7, and TCGA samples
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Figure 1. 
Overview of the Weaver method. (A) Schema diagram for Weaver. Dark green boxes show 

the different types of analyses, unique to Weaver that are not dealt with by other methods. 

Light green boxes are ‘by-products’ of Weaver shown to have an improvement over existing 

methods. (B) An example demonstrating a Weaver output focused on ASCN-S and Timing 

of SV. Dark blue segments (two copies) and light blue segment (one copy) represent a 

portion of the MCF-7 genome that originated from the same allele on chr9. The other allele 

was lost during tumorigenesis, resulting in loss of heterozygosity. The predicted evolution of 

this region based on Weaver’s output is shown at the bottom: the ASCN-S of Del1 is 2 and 

the ASCN-S of Del2 is 1; both deletions occurred after the first amplification of the allele 

and before the second amplification.
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Figure 2. 
Illustration of the MRF model used in Weaver. (A) Hypothetical cancer chromosomes with 

the information of SVs and CNAs hidden. Boxes represent paternal (orange) and maternal 

(blue) alleles. Red dashed line represents linkages by SVs. dup, duplication; del, deletion; 

intrachr, intra-chromosomal rearrangement; interchr, inter-chromosomal rearrangement. (B) 
The cancer genome graph, constructed from (A), with nodes (boxes) representing genomic 

regions and edges representing reference adjacencies (solid lines) or cancer adjacencies 

(dashed lines). (C) MRF representation. Red boxes represent cancer nodes ℛc that have 

included SVs information; green boxes are the same as in (B) and represent genome nodes; 

ℛ the lines between genome nodes are genome edges ℰr; the lines between cancer nodes 

and genome nodes are cancer edges (ℰc). (D) Primary inputs and outputs are illustrated for 

each genome node and cancer node. Inputs are presented in the form of numbers ([coverage, 

allele frequency]) above each green box, and outputs are represented by colored circles 

below each box, with color showing the allele and occurrence reflecting the ASCN-G. For 

example, the observed coverage and allele frequency are 30 and 0.33 for genome node R1 

and its output shows that there are two copies of the orange alleles and one copy of the blue 

allele. For the cancer node Rm, the output (one blue circle) indicates that the duplication is 

on the blue allele with one copy. (E) Blue boxes represent supernodes formed by merging 

blue shaded chains of genome nodes n as shown in (C). (F) Input and output of MRF are 

separated into genomic regions and SVs. For region R1, the input is observed with coverage 

30 and allele frequency 0.33; the output has two copies on allele 1 and one copy on allele 2. 

n is a post-aneuploid deletion with one copy and both breakpoints are on allele 1 of chrA. t 
is a pre-aneuploid deletion with two copies and both breakpoints are on allele 1 of chrB. SV 
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m, p, q and s are from the allele that has not been duplicated. μ0and μ1 suggest purity and b 
indicates haplotype level coverage. See also Figure S7.
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Figure 3. 
Performance evaluation by comparing Weaver to other methods. In (A) and (B), SN and SP 

based on the results from Weaver are calculated for each ASCN-S under different coverage 

dispersions (ϕ) in simulation. Random fluctuations were imposed onto initial simulation 

dataset to create testing dataset with specific dispersion. Both SN and SP decrease with 

increasing SV copy number and dispersion. From the observation on whole-genome 

sequencing data, the real dispersion has mean value 1.2, suggesting that Weaver’s results on 

cancer whole-genome sequencing data will be highly accurate. (C) SN and SP are 

summarized for each ASCN-G from Weaver. (D) Switch error rate of Weaver and BEAGLE 

on simulated datasets with different allele ratios. With imbalanced dataset, the error rate of 

Weaver decreases to less than 0.5%. See also Figure S1, Table S1.

Li et al. Page 21

Cell Syst. Author manuscript; available in PMC 2017 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Overview of the genomic landscape from the Weaver analysis of the MCF-7 cell line. (A) 
Overall results in circos plot. Inter-chromosomal and intra-chromosomal SVs larger than 10 

Mbp are illustrated as red (1 copy) and purple (>1 copy) lines. Short range deletions, 

duplications and inversions (imbalanced) are presented as blue, red, and green vertical bars, 

respectively. Chr1, chr3, chr17 and chr20 have inter-connected focal amplifications. ASCN-

Gs are plotted as blue and green segments with copy numbers indicated. (B) Distribution of 

allelic expression ratio measured by RNA-seq for different allele copy number categories. 

Red stars indicate allele copy ratio. See also Figure S2, Table S2.
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Figure 5. 
An example showing that allelic gene expression is likely driven by allele-specific SVs. (A) 
The blue/green segments represent genomic regions originated from two different alleles. 

Two intra-chromosomal SVs (rearrangements) on chr11, both amplified to three copies and 

on the same allele, are indicated by blue lines, while the intact chr11 allele (green) has been 

amplified to two copies. The derived region from two allele-specific intra-chromosomal SVs 

brought gene SLC35C1 and gene PRSS23, which are normally ~40 Mb apart and on 

different chromosome arms, to only ~50 kb on three copies of the rearranged chromosomes 

(blue segments). ChIA-PET data reveals that the physical proximity of SLC35C1 and 

PRSS23 in cancer potentially leads to the MCF-7 specific promoter-promoter interaction 

(highlighted in green) of these two genes. RNA-seq reads aligned to two SNV sites within 

SCL35C1 exons (thin red lines) show greater (binomial test P-value < 1e–5) blue/green ratio 

as compared to DNA copy ratio (3/2), indicating that blue allele-specific expression of 

SLC35C1 has been elevated. Together with the SV data and the ChIA-PET data, the allele-

specific expression of SLC35C1 was likely caused by the chromatin interaction formed by 

the allele-specific SVs. (B) Optical Mapping analysis serves as an independent comparison 

of SV phasing in (A). Four Optical Mapping Rmaps were found consistent with the phasing 

in chr11 predicted by Weaver. Purple dots show the BamH1 cutting sites missed in the 

Li et al. Page 23

Cell Syst. Author manuscript; available in PMC 2017 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rmaps. Black and blue numbers represent the size of BamH1 cutting fragments on the 

reference genome and cancer SV. Red and purple numbers represent the size of Optical 

Mapping fragments from normal cutting and missed cutting, respectively.
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Figure 6. 
Overview of the genomic landscape from the Weaver result on the HeLa cell line. (A) 
Overall results in circos plot (same legend as in Figure 3A). (B) Complex SVs on the FHIT 

gene region. Blue/green segments represent chromosomes originated from the same parental 

allele in the normal genome. Allele frequency is plotted by minor allele frequency of 

germline SNPs. Five SVs were detected in this small region and all have copy number 1. 

Adey et al. (2013) did not report these SVs or CNAs in the FHIT gene. (C) Complex SVs 

and CNAs on chr11 in HeLa. HH: head-to-head inverted; TT: tail-to-tail inverted. Both copy 

number 1 and 2 are found for the SVs on Allele 1 here. SVs with ASCN-S 2 emerged before 

allele 1 amplification, while the SVs with ASCN-S 1 happened after the amplification of 

allele 1. See also Figure S3.
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Figure 7. 
Weaver results from TCGA ovarian cancer samples. (A) Weaver results from an ovarian 

cancer sample (TCGA-36-1571), as compared to ASCAT and ABSOLUTE. ASCN-G from 

Weaver, ASCAT and ABSOLUTE are plotted as blue and green segments, indicating the 

copy number of two different alleles as well as SVs involved. For region chr2:66–73 Mb, 

ABSOLUTE assigned ASCN-G 3:2, while Weaver and ASCAT reported 2:2, which is more 

consistent with the allele frequency 0.5. Similarly, ASCAT assigned the region chr2:75–83 

Mb with ASCN-G 3:2, while Weaver and ABSOLUTE reported it as 2:2, which is more 

consistent with the allele frequency 0.5. Weaver reported that region chr2:73.2–73.5 Mb is a 

duplication that has two copies and is linked (with base-pair resolution SV breakpoints) to 

chr12. ABSOLUTE, however, has given the incorrect boundaries (chr2:73.0–73.3 Mb) of the 

small duplication, while ASCAT has assigned less accurate boundaries and wrong copy 

numbers (5:2 is not consistent with the observed allele frequency). Both ASCAT and 

ABSOLUTE cannot recognize how the duplicated copies are connected in the cancer 

genome. (B) The overall copy number profile on chr19 across 44 ovarian cancer samples. 

The chromosome bands are highlighted with red and blue, representing the frequently 

amplified and deleted regions from the TCGA array data (Cancer Genome Atlas Research, 

2011). The CCNE1 gene is within the most significantly amplified region. Four pink vertical 
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bars represent the regions where the copy number profile has changed and all four regions 

have recurrent fold-back inversions (FBIs). (C) Four ovarian cancer samples with recurrent 

FBI at KDM4B are illustrated. Red fold-back arrows represent FBIs while blue lines 

represent other intra-chromosomal SVs. See also Figure S4, Figure S5, Figure S6.
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