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Improvements in human-machine interaction may help overcome the unstable and

uncertain environments that cause problems in everyday living. Here we experimentally

evaluated intent feedback (IF), which estimates and displays the human operator’s

underlying intended trajectory in real-time. IF is a filter that combines a model of the

arm with position and force data to determine the intended position. Subjects performed

targeted reaching motions while seeing either their actual hand position or their estimated

intent as a cursor while they experienced white noise forces rendered by a robotic

handle. We found significantly better reaching performance during force exposure using

the estimated intent. Additionally, in a second set of subjects with a reduced modeled

stiffness, IF reduced estimated arm stiffness to about half that without IF, indicating a

more relaxed state of operation. While visual distortions typically degrade performance

and require an adaptation period to overcome, this particular distortion immediately

enhanced performance. In the future, this method could provide novel insights into the

nature of control. IF might also be applied in driving and piloting applications to best

follow a person’s desire in unpredictable or turbulent conditions.

Keywords: movement control, reaching, planning, feedback, intent, intention, desire

1. INTRODUCTION

Humans often interact with machines in uncertain and complicated environments, such as
crowds and traffic, where they must contend with turbulence, moving obstacles, distractions,
and disturbances. Despite our capacity to learn and adapt, some environments evolve too
quickly or with too much uncertainty for meaningful learning. Human and animal nervous
systems intelligently solve many problems by planning ahead (Belen’kii et al., 1967) and
suppressing suboptimal actions (Mirabella, 2014), yet in the face of uncertainties we often cannot
adequately prevent errors. There is the possibility, however, to exploit additional information
from instruments—particularly fast and accurate force sensors—that can measure human machine
interactions. Combining sensors with filtering techniques makes it possible to determine a person’s
underlying intent, operationally defined as the motion they would have made had they not been
disturbed. While other components of a movement, such as its goal, are also intended (Mirabella,
2014), our work here addresses only the intended trajectory. This intent provides new ways to
understand the nature of control and provide novel feedback.
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Recent work in our laboratory has attempted to outline a
methodology for obtaining estimates of intent (Horowitz and
Patton, 2015). This method assumes a model of the dynamics
and control of the human arm. Following manipulations of the
equations of motion, the method integrates to find a unique
estimate of intent. The algorithm recovers the trajectory a person
intended to take, even if they were forced away from it due
to environmental disturbances. This analysis has enabled us to
show how some subjects sometimes alter their intent following
exposure to unexpected force pulses.

A new question that arises is whether seeing one’s own intent,
rather than what actually happens, may be useful. The intent
extraction method can be streamlined to allow for real-time
estimations of intent that can be presented to the subject as
a cursor. Estimated intention may outperform the movement
accuracy in the presence of unexpected disturbances. If so, such a
method holds great promise in any situation where humans and
machines interact as it enables the machine to give the human
operator what they want. This human-machine collaboration
could outperform what a person can do alone.

Displaying anything other than what truthfully happens is
a distortion and a deceit. Like many other visual distortion
experiments (Miles and Eighmy, 1980; Pine et al., 1996), intent
feedback (IF) introduces a visuomotor discrepancy that may be
confusing to the nervous system. Preplanning a specific route
may not be necessary, and instead the systemmight continuously
react to any environmental disturbances until it reaches the
goal. If people try to achieve a goal while minimizing some
measure of cost, it is possible to compute a set of rules for
reacting to the environment (Todorov and Jordan, 2002). No
specific intended route is needed when using optimal feedback
control. While this modeling strategy has been very successful at
explaining data, it fundamentally assumes that corrective actions
will be taken in response to relevant disturbances. Goals can
also be reached at minimal expected cost by constructing—and
possibly updating—a specific intended route. If no particular
trajectory is intended, the nervous system could be unable to
recognize IF.

While performance is the best indicator of IF’s worth, changes
in arm stiffness can provide supporting evidence that subjects
are actually getting what they want. Arm stiffness is known to
increase during exposure to instability (Franklin et al., 2003) and
uncertainty (Takahashi et al., 2001). We anticipated that these
changes might also be modulated by the presence of IF. Reducing
the effects of environmental instability and presenting the subject
with a signal already known to them should relax their arm and
make it more compliant. We hypothesized that any elevated arm
stiffness from noisy disturbances would decrease while subjects
received IF.

In this paper, we describe our streamlined method for
real-time IF to which we exposed subjects in an unstable
and unpredictable environment. Their ability to perform goal-
directed reaching using visual feedback of their hand position
was compared against IF. We hypothesized that IF should lead to
better performance in the presence of force-based disturbances.
Accordingly, we hypothesized that during random disturbances,
the intent trajectory should deviate less than the hand trajectory.

2. MATERIALS AND METHODS

2.1. Intent Extraction
The well-known motion control structure of Shadmehr and
Mussa-Ivaldi (1994) relates arm trajectory, q, to desired arm
trajectory, qd, and any external disturbance, E using physical
parameters of the arm. To show how this model can be
algebraically inverted to instead describe desired arm trajectory
as a function of arm trajectory and external disturbance, we write
it as a torque balance:

Inertia
︷ ︸︸ ︷

M(q)q̈+

Coriolis, Centripal
︷ ︸︸ ︷

G(q, q̇)
︸ ︷︷ ︸

Plant

+E =

Feedforward
︷︸︸︷

τff +

Feedback
︷︸︸︷

τfb
︸ ︷︷ ︸

Controller

(1)

WhereM is themassmatrix, q is the joint angles, q̇ is joint angular
velocities, q̈ is joint angular accelerations, and G contains both
Coriolis and centripetal effects. Typical applications solve this
torque balance for q̈ and use a numerical differential equation
solver to predict arm trajectory in the context of a disturbance of
interest, a feedback model, and feedforward torques determined
by inverse dynamics. Rather than test hypotheses regarding the
learning, production, or composition of this feedforward torque,
we instead solved for it:

τff = M(q)q̈+ G(q, q̇)+ E− τfb (2)

Then we noted that feedforward torque can have a one-to-one
correspondence with desired acceleration, q̈d:

M̂(qd)q̈d + Ĝ(qd, q̇d)+ Ê = τff (3)

Hats (ˆ) denote the nervous system’s best estimate of a
physical quantity. Combining these expressions, suppressing
state dependencies, and solving for q̈d:

q̈d = M̂−1{Mq̈+ G− Ĝ+ E− Ê− τfb} (4)

In this form, a differential equation solver can determine qd as it
evolves in time if a few assumptions are made and conditions are
met. First, Ê must be modeled or assumed, so we chose Ê = 0.
In the presence of a zero mean white noise force disturbance, its
mean should be zero, but it is unlikely to be exactly zero and
may reflect an average of only the last few exposures (Scheidt
et al., 2001). Next, the matrix M̂(qd) must be invertible, but we
ensured this through our choice of workspace. Finally, feedback
torque requires a model of arm impedance, which is known to
be task-dependent (Gomi and Osu, 1998) and may vary over the
course of a reach (Niu et al., 2010). With no prior knowledge
of arm impedance for this task-disturbance combination, we
presumed the feedback torque model of Shadmehr and Mussa-
Ivaldi (1994) anticipating that it is sufficiently accurate or easy to
learn (Experiment 1). The experiment was repeated with a lower
stiffness estimate (Experiment 2) to explore any dependence on
this assumption.
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2.2. Apparatus
A planar manipulandum (described in Patton and Mussa-
Ivaldi, 2004 and depicted in Figure 1) was programmed to
minimize any friction or mass. The MATLAB XPC-TARGET
package (MATLAB, 2008) was used to render this force
environment at 1000Hz and data was collected at 1000Hz.
Visual feedback of cursor position was performed at 60 Hz
using OpenGL. Closed-loop data transmission time (position
measurement to completed rendering to recognition of rendering
by the position measurement system) was less than 8 ms,
ensuring a visual delay less than one 60 Hz frame. Numerical
simulation was performed in real-time using the GNU Scientific
Library’s odeiv2 driver with Runge-Kutta-Fehlberg (4,5) stepping
(Gough, 2009). Visual feedback was given using an opaque
screen that prevented subjects from seeing their arm during
movement.

2.3. Human Subjects
The human data trajectories analyzed here are drawn from
sixteen subjects who gave informed consent in accordance
with Northwestern University Institutional Review Board, which
specifically approved this study and followed the principles
expressed in the Declaration of Helsinki. Fourteen male and two
female right-handed subjects (ages 21–30) performed the reaches
with their right arm and were not compensated. Subjects’ arm
segment lengths were directly measured in situ while body mass
and handedness were self-reported.

FIGURE 1 | Subjects were seated at a planar manipulandum capable of

measuring position and force as well as rendering forces. The subject’s

hand was positioned below an opaque screen so the subject could not see

their hand as they reached toward the targets. On the screen, a red circle (the

target to reach to) appeared on the screen and subjects were shown a blue

circle that either represented the actual position of their hand or their estimated

intent as they moved toward the target depending on the movement block.

2.4. Experimental Design
Subjects performed center-out reaches of the right arm to one
of three visually-presented targets 15 cm from the center and
chosen at 120◦ intervals. These targets were represented as a
red circle with a radius of 1 cm. Target selection was carried
out pseudorandomly such that each outer target was visited 16
times in all five blocks of 96 reaches each. During blocks 2
through 4, subjects experienced filtered white noise forces drawn
from a white noise generator at 1000Hz with flat power spectral
density of 1 Newton. Forces were then passed through a 4th order
low-pass Butterworth filter with cutoff 10π radians per second.
In all blocks, except block 3, cursor position (represented as a
blue circle with a radius of 1 cm) indicated the subjects’ actual
hand positions. In block 3, the cursor position indicated the
subjects’ estimated intents. Once the cursor (blue circle) made
contact with the target (red circle), a new target was immediately
presented. Both actual hand position and intent were recorded at
all times, even though at any given moment only one was visible
to the subject.

2.5. Dynamic Simulation of Arm and
Intended Trajectories
Anatomical landmarks and values from Dempster and Center
(1955) and Winter (2009) were used to estimate relationships
between body mass, limb mass, limb length, limb center of mass,
and moment of inertia. Viscosity parameters, Kd, were taken
from Shadmehr and Mussa-Ivaldi (1994). Stiffness parameters
were either taken from Shadmehr and Mussa-Ivaldi (1994) (KP1,
Experiment 1) or estimated (KP2, Experiment 2). Expressed in
Newton-meters per radian:

KP1 =

[

15 6
6 16

]

KP2 =

[

8 2
2 5

]

(5)

To estimate this reduced stiffness, a pilot subject was asked
to intend to remain still on the center target, qd, while co-
contracting as little as possible. KP2 was then calculated from 1
min of white noise forces, E, and joint angle traces, q as the least
squares solution to the system:

KP2

(

qd(t)− q(t)
)

= M
(

q(t)
)

q̈(t)+ G(q(t), q̇(t))+ E(t)+ KDq̇(t)
(6)

where KP2 is a 2-by-2 matrix while the state difference and torque
are 2-by-60,000 matrices.

Feedback torque was calculated as the sum of viscous and
elastic impedances

τfb = KD(q̇d − q̇)− KP(qd − q) (7)

with KP chosen as described and KD taken from Shadmehr and
Mussa-Ivaldi (1994) as expressed below in Newton-meters per
radian-second.

KD =

[

2.3 0.09
0.09 2.4

]

(8)
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2.6. Metrics and Statistical Analysis
Trajectories and forces were rotated such that movement and
force parallel to the line connecting the previous target (the
reach origin) and the presented target were along a progress
axis, while perpendicular movement and force were along an
error axis. Reach onset was detected as the moment the cursor’s
distance from the center of the previous target first exceeded 1
cm.Maximum perpendicular error for a trajectory was the largest
error magnitude within 250 ms of reach onset. A scalar stiffness,
k, was calculated for the error axis during this same 250 ms time
span by linear regression:

Fe = më+ bė+ ke+ FO (9)

Force (Fe) and state (ë, ė, e) were known. Mass (m),
viscosity (b), and stiffness offset (F0) terms were calculated,
but discarded. While joint stiffness is usually described as
a matrix, instantaneous endpoint stiffness in only the error
direction is a scalar. This effective stiffnessmetric isolated stiffness
in the error direction and facilitated statistical comparison
between treatments and blocks. The paired t-test was used to
detect differences in maximum perpendicular error and stiffness
between blocks and treatments at the 5% significance level using
the MATLAB statistics toolbox package (MATLAB, 2014).

3. RESULTS

As expected, the model was able to deduce an intended trajectory
and all subjects were able to use this estimate of their intent to
perform targeted reaching while experiencing turbulent forces
(Figure 2). There were no obvious changes in performance using
intent over time. We also observe no after-effects of either IF
or the forces. In block 3 where IF replaced visual feedback of
the hand, the intent significantly (p = 0.02) outperformed
the hand itself. For this intent estimate to be useful, subjects
should perform better when using IF than when using feedback

of the hand. Comparing the hand’s performance in block 2
(Figure 3B) to IF’s performance in block 3, subjects performed
significantly (p = 0.02) better using their estimated intent.
While subjects also performed better using IF in block 3 than
using their hand in block 4, this difference was not significant
(p = 0.07).

Interestingly, our measure of effective stiffness changed
dramatically across the experimental conditions. Subjects
stiffened significantly (p < 0.001) in response to white noise
forces (compare stiffness in blocks 1 and 2 of Figure 4B). Next,
subjects’ effective stiffness significantly (p = 0.01) decreased
when IF replaced the hand location as their cursor (compare
blocks 2 and 3 in Figure 4). This decrease did not return stiffness
to undisturbed levels, and it remained even after feedback of
the hand resumed (comparing blocks 3 and 4). Subjects appear
to have adjusted their stiffness in response to the stiffness used
by IF. Subject’s stiffness’s did not significantly (p = 0.1) differ
from the stiffness of the standard model when it was used
by IF. Finally, subjects reported that this IF treatment of the
cursor feedback made it easier and they felt more relaxed.
Detailed statistics of these differences are summarized in
Table 1.

As we found evidence of IF dramatically reducing effective
arm stiffness, we next examined whether we could reduce
effective arm stiffness even more. We asked a second group of
subjects to perform the same experiment, except that the arm
model used by IF was adjusted to assume a greatly reduced
stiffness of the arm. Surprisingly, we found the same performance
benefits (Figure 3C), but effective stiffness reduced even more
(Figure 4C). Performance using IF in block 3 again significantly
outperformed the hand in block 3 (p < 0.001) and the
hand in block 2 (p = 0.02). We found the same beneficial
effect relative to block 4, but this difference was not significant
(p = 0.06). Moreover, this reduced stiffness IF allowed subjects
to relax to approximately two-thirds the effective stiffness of
Shadmehr and Mussa-Ivaldi (1994) during block 3 (p = 0.004).

FIGURE 2 | Typical subjects (one from each experiment) made center-out targeted reaching motions under experimentally varied force and feedback

conditions. Subjects used feedback of either hand motions (blue lines) or estimated intent (red lines) to complete these reaches. Shown also are the measured hand

motions in the third block, which were recorded even though they were not visible to the subject (blue) to be compared to intent (red). Intent was estimated using

either the standard stiffness model of Shadmehr and Mussa-Ivaldi (1994) or a reduced stiffness model to explore any dependence of reaching stiffness or accuracy on

this assumption. The white noise force disturbance was designed to be unpredictable in order to minimize any effect of learning.
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FIGURE 3 | Subjects’ reaching accuracy depended on the presence of

force disturbance and the contents of visual feedback (A). (B,C)

Maximum deviation from straight-line reaching calculated during the first 250

ms after the onset of movement revealed that turbulent force disturbance

degraded reaching performance. Comparison across feedback modalities

revealed that IF (red) in block 3 alleviated performance error relative to hand

performance (blue) in blocks 2 and 4. Note that in block 3 we show blue dots

indicating the hand’s performance, although it was not visible to the subject.

(D) Several comparisons showing pairwise performance differences amongst

blocks 2, 3, and 4. Comparisons between hand performance in block N and IF

performance in block 3 are abbreviated as HN − I3 (asterisks denote t-test

significance at α = 0.05 level). Performance did not appear to depend on the

choice between the standard stiffness model of Shadmehr and Mussa-Ivaldi

(1994) (B, and “S” labels in D) or a reduced stiffness (C, and “R” labels in D) to

determine intent.

As before, stiffness increased following exposure to white noise
forces (p < 0.001) that was significantly (p = 0.01)
alleviated by IF. Removal of IF was still associated with an

FIGURE 4 | Subjects’ effective stiffness depended on the presence of

force disturbance and the contents of visual feedback (A). (B,C)

Effective stiffness, K, calculated by linear regression during the first 250 ms

after the onset of movement revealed that turbulent force disturbance

increased this stiffness. (D) Comparisons between treatment conditions

revealed that exposure to turbulent forces caused significant stiffening, but IF

could significantly alleviate arm stiffness. As in Figure 3, the estimated arm

stiffness in block 3 significantly depended on our choice of either the classic

stiffness model of Shadmehr and Mussa-Ivaldi (1994) (B, “S” labels) or a

reduced stiffness (C, “R” labels) to determine intent. Significant differences

were determined by paired t-test at the α = 0.05 significance level and are

denoted by an asterisk.

increase in arm stiffness, but this increase was not significant
(p = 0.08). Subjects who received this lower stiffness IF also
reported that IF was easier and allowed them to greatly relax. In
other words, subjects reduced arm stiffness to accommodate the
model.
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TABLE 1 | Error and stiffness change with feedback type and presence of disturbance.

T(7) P Mean SEM

ERROR COMPARISONS, EXPERIMENT 1: STANDARD STIFFNESS

Hand (Block 3)—Intent (Block 3) 7.11 <0.01 0.33 cm 0.05 cm

Hand (Block 2)—Intent (Block 3) 3.00 0.02 0.36 cm 0.13 cm

Hand (Block 4)—Intent (Block 3) 2.15 0.07 0.40 cm 0.15 cm

ERROR COMPARISONS, EXPERIMENT 2: REDUCED STIFFNESS

Hand (Block 3)—Intent (Block 3) 5.69 <0.01 0.34 cm 0.06 cm

Hand (Block 2)—Intent (Block 3) 2.80 0.03 0.40 cm 0.15 cm

Hand (Block 4)—Intent (Block 3) 2.26 0.06 0.28 cm 0.13 cm

STIFFNESS COMPARISONS, EXPERIMENT 1: STANDARD STIFFNESS

Hand Stiffness (Block 2)—Hand Stiffness (Block 1) 10.2 <0.01 1.17 N/cm 0.12 N/cm

Hand Stiffness (Block 3)—Hand Stiffness (Block 2) –3.24 0.01 –0.30 N/cm 0.10 N/cm

Hand Stiffness (Block 4)—Hand Stiffness (Block 3) 0.98 0.36 0.09 N/cm 0.10 N/cm

Hand Stiffness (Block 3)—Model Stiffness (KP1) –1.92 0.10 –0.37 N/cm 0.21 N/cm

STIFFNESS COMPARISONS, EXPERIMENT 2: REDUCED STIFFNESS

Hand Stiffness (Block 2)—Hand Stiffness (Block 1) 5.53 <0.01 0.97 N/cm 0.19 N/cm

Hand Stiffness (Block 3)—Hand Stiffness (Block 2) –4.75 <0.01 0.33 N/cm 0.07 N/cm

Hand Stiffness (Block 4)—Hand Stiffness (Block 3) 2.03 0.08 0.25 N/cm 0.13 N/cm

Hand Stiffness (Block 3)—Model Stiffness (KP2) 3.69 <0.01 0.43 N/cm 0.12 N/cm

4. DISCUSSION

The work presented here highlights the use of a novel visual
distortion of the cursor that leads to superior performance
in a hand-eye coordination task in the presence of random
disturbances. This real-time distortion marks the estimated
intent of the subject rather than the hand location in order to
make movements easier. Although exposure to random forces
hindered subjects reaching accuracy and increased their arm
stiffness, replacing the veridical feedback with intent feedback
(IF) improved accuracy and decreased stiffness. While other
visual distortions typically degrade performance and require
an adaptation period to overcome, IF immediately enhanced
performance. This type of feedback may be a new method for
enhancing performance in human-machine interactions, and
also sheds light on how the nervous system uses visual feedback.

The most striking result is that although the nervous system
sees an untruth about where the end-effector is, it appears to
be effective for improving performance. The IF presentation is
one of many visuomotor discrepancies in hand-eye coordination

tasks, yet this one does not degrade performance and does
not require adaptation. Not all perceptual lies appear to be

unwanted. Two possibilities explain this result: either the central
nervous system was able to adapt to this new feedback within
a single reach, or the means to make use of this signal

were already available. For instance, IF may mimic efference
copy. The performance variability inherent in white noise
force disturbances complicated our observations of the learning

process, but simple examination showed there were no obvious
differences in performance between the first and final exposures
to IF. There were also no obvious after-effects from exposure to IF
(Figure 1, final panels). The simplest explanation for this is that
IF approximates a signal already known to the brain: the path

planned for the hand. In addition to its promise in performance
enhancement, IF represents a novel means of revealing and
studying the mechanisms of motor planning and motor control.

While IF alleviated the increased stiffness caused by exposure
to random forces, stiffness remained significantly above baseline
levels. Many explanations are reasonable. In particular, we
hypothesized that subjects would adapt their own arm stiffness
to decrease conflict with the stiffness model used to estimate
their intent and thereby increase the accuracy of the estimate,
and while the data did support this conclusion the effect was
not strong. Alternatively, inaccuracy and incompleteness of the
simple models used might have resulted in an less accurate
estimate of intent. Since noise and performance inaccuracy can
both lead to co-contraction, this may account for the residual
stiffness. Finally, as subjects were not cued regarding the onset
or removal of IF, the residual co-contraction may have been a
precaution against the resumption of veridical feedback.

The ease with which subjects could make use of their
estimated intent provides strong preliminary evidence that a
specific intended trajectory was computed for the hand even
when reaching in a highly variable environment. While recent
work has identified kinematic constraints unnecessary for a task
(Mistry et al., 2013), this is the first direct evidence that the entire
trajectory is controlled even in the absence of specific instructions
or constraints. While portions of the intended trajectory are
surely computed before the onset of movement, movement
intent is not finalized before the onset of movement and is
not strictly ballistic. There is mounting evidence of multiple
corrective actions formulated after movement onset in recent
literature. For example, Mirabella (2008) compared onset and
movement times during a task that could be countermanded,
and found that quicker onset times were compensated by longer
movement times, most likely due to the need for on-line proactive
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adjustments in anticipation of known task demands. Such a
context effectİ has also been recently replicated on Parkinsons
patients (Mirabella et al., 2013).

It is important to distinguish the signal we are exploring from
others that may use the word “intent.” One source of complexity
is that formation of actions is a multi-step process in which
several brain regions contribute. The intent we refer to here
is not the goal-oriented intent that might temporally precede
the computation of the motor plan (Haggard, 2008; Mirabella,
2014). The intended trajectory and goal remain malleable and
can change (or be suppressed) even after execution (Ghez et al.,
1997). Work by Mirabella et al. (2013) showed that inhibition
is important for quickly aborting, interrupting, and re-planning
motion after its onset. In contrast, our version of intent focuses
on the final stage of planning and hence the command at the
present-time. This is after the nervous system has completed any
further checks and released the plan. In a sense, the intent we
provide is in the present and not pre-planned (for the future) or
post-processed a posteriori (in the past).

It is also important to distinguish this from other methods
that attempt to determine the ultimate target of action (the goal).
A number of human-computer approaches strive to identify, for
example, the final target of a movement (Ziebart et al., 2012). In
our rather limited task with only three possible reaching targets,
identification was trivial. We analyzed this on our task and were
able to easily identify the target with 95% visuomotor efficiency
(closely related to accuracy, Sakitt, 1980) within the first 80 ms of
motion, regardless of whether we used the hand or IF. In contrast
to these target-prediction methods, our approach allowed for the
instantaneous determination of the intended hand location. The
novelty of such instantaneous detection created the prospect of
real-time feedback in human-machine interactions.

Intent Feedback might facilitate human-machine
collaboration and artificial performance augmentation by
enabling the machine to preserve an operator’s intent while
canceling unexpected disturbances from the environment.
This should reduce the demand on the human operator and
increase performance—especially in environments with rapidly
changing conditions. This assistance goes beyond environment
cancellation by also accounting for any errors the operator might
make based on their expectation of disturbance.

While IF holds promise, it also has strong limitations. IF
is entirely dependent on the accuracy of the models used.
While we were able to leverage measurements of cadaver
anthropometrics, average tendencies do not capture individual
variability. Similarly, the model of Shadmehr and Mussa-Ivaldi

(1994) appears to have accurately captured the mean tendencies
(Figure 3D, rightmost comparison) without accounting for
variation among individuals or variation over time. Techniques
that could estimate changing stiffness, perhaps even in real-time,
would greatly increase the accuracy and utility of IF. While IF
is limited by the accuracy of the models used, many candidate
models are available and may outperform the simple model we
investigated here in this preliminary study.

More broadly, this IF approach may be useful in any situation
where some model of the dynamics is available and disturbances
can be measured. For example, brain-computer interfaces may

need to address measurable common-mode electrical artifacts,
such as the electromagnetic disturbances that occur from lights
being turned on. In cases where a disturbance can be measured
due to its similar effect across all sensors, IF allows the interface
to respond in a manner congruent with the user’s intent. This
is especially important when simply canceling the disturbance is
not sufficient or practical, such as an exoskeleton’s user intending
to crouch down during an earthquake rather than trying to
remain upright.

In any case, intent feedback led to performance benefits
for subjects moving in a changing, uncertain environment. In
addition to increasing subjects’ accuracy, IF may have allowed
subjects to reach their goals with less effort as arm stiffness
decreased. IF provides a novel form of feedback that may
facilitate new insights into the nature of motor control and allows
a machine to collaborate more effectively with a human user.
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