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Inflammatory responses contribute to the pathogenesis of various neurological diseases,
and microglia plays an important role in the process. Activated microglia can differentiate
into the pro-inflammatory, tissue-damaging M1 phenotype or the anti-inflammatory,
tissue-repairing M2 phenotype. Regulating microglia differentiation, hence limiting a
harmful response, might help improve the prognosis of inflammation-related nervous
system diseases. The present study aimed 1. to observe the anti-inflammatory effect
of lipoxin A4 (LXA4) on the inflammatory response associated to lipopolysaccharide
(LPS)-induced microglia activation, 2. to clarify that LXA4 modulates the activation
and differentiation of microglia induced by LPS stimulation, 3. to determine whether
LXA4 regulates the activation and differentiation of microglia through the Notch
signaling pathway, 4. to provide a foundation for the use of LXA4 for the treatment
of inflammatory related neurological diseases. To construct a model of cellular
inflammation, immortalized murine BV2 microglia cells were provided 200 ng/ml LPS.
To measure the mRNA and protein levels of inflammatory factors (interleukin [IL]-1β, IL-
10, and tumor necrosis factor [TNF]-α) and M1 and M2 microglia markers (inducible nitric
oxide synthase [iNOS], cluster of differentiation [CD]32, arginase [Arg]1, and CD206), we
performed quantitative reverse transcription polymerase chain reaction (qRT-PCR) and
enzyme-linked immunosorbent assay (ELISA), immunofluorescence, or flow cytometry.
To determine the mRNA and protein levels of Notch signaling components (Notch1,
Hes1, and Hes5), we performed qRT-PCR and western blot. LXA4 inhibits the
expression of Notch1 and Hes1 associated with M1 type microglial differentiation and
decreases the M1 type microglia marker iNOS and related inflammatory factors IL-1β

and TNF-α. Moreover, LXA4 upregulates the expression of the M2-associated Hes5, as
well as the expression of the M2 microglia marker Arg1 and the associated inflammatory
factor IL-10. These effects are blocked by the administration of the γ-secretase inhibitor
DAPT, a specific blocker of the Notch signaling pathway. LXA4 inhibits the microglia
activation induced by LPS and the differentiation into M1 type with pro-inflammatory
effect, while promoting the differentiation to M2 type with anti-inflammatory effect. LXA4
downregulates the inflammatory mediators IL-1β, TNF-α, and iNOS, while upregulating
the anti-inflammatory mediator IL-10, which acts through the Notch signaling pathway.
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INTRODUCTION

Numerous studies have shown that neuroinflammation plays an
important role in the occurrence and development of central
nervous system disorders such as ischemic stroke, Alzheimer’s
disease, and Parkinson’s disease, and is associated to every stage
of the disease process(Griffin, 2006; McColl et al., 2009; Naegele
and Martin, 2014; Wang Q. et al., 2015; Cuello, 2017). The
inflammatory response is an automatic defense response of the
body to stimuli, which can promote the clearance of pathogenic
factors and the healing of damaged tissue. It is usually beneficial,
but it is a double-edged sword and is harmful in some cases.
For example, the inflammatory response of the central nervous
system sometimes aggravates the damage of nerve cells and
tissues, and worsens the condition (Gordon, 2003; Mantovani
et al., 2013). Simply inhibiting the inflammatory response
will inevitably weaken its protective effect. A more principled
approach is to take advantage of the benefits of the inflammatory
mediator itself, while preventing the potential toxicity due to high
concentrations of the mediator, and maintaining a good balance
between its protective and detrimental effects.

Microglia plays an essential role in innate immunity,
homeostasis, and neurotropic support in the central nervous
system (Streit, 2002). Microglia is considered to be a resident
macrophage in the brain and has important physiological
functions. However, it is rapidly activated as a consequence
of brain microenvironment changes, which induce microglia
differentiation into M1 and M2 cell types (Nimmerjahn et al.,
2005; Colton, 2009; Hu et al., 2015). M1 microglia is an activated
form responsible of releasing large amounts of inflammatory
and toxic factors with potential detrimental effects to central
nervous system cells and tissues (Tang and Le, 2016; Xiong
et al., 2016). M2 microglia is an alternative activation type,
releasing a pool of modulatory factors including brain-derived
neurotrophic factor, vascular endothelial growth factor and anti-
inflammatory mediators, and promoting nerve tissue repair and
nerve regeneration (Beyer et al., 2000; Jin et al., 2014; Tang and Le,
2016; Kanazawa et al., 2017; Ramirez et al., 2017). Therefore, it is
of great significance to regulate the differentiation of microglia
and counteract inflammatory damage.

In the central nervous system, the Notch signaling pathway
is involved in dynamic changes at the cellular level which
reflect into the regulation of the nervous system, which in turn
plays an important role in the activation and differentiation
of microglia (Grandbarbe et al., 2007). The Notch signaling
pathway is mainly composed of receptors, ligand expressed
on adjacent cell membranes, intracellular transcription factors,
regulatory molecules and downstream effector molecules (Foldi
et al., 2010). And γ-secretase catalysis is the key enzyme in
the activation of Notch pathway. After the interaction between
Notch receptor and ligand, the intracellular domain (notch intra-
cellular domain) NICD was released into the cytoplasm and
transferred into the nucleus under the catalysis of γ-secretase,
which promoted the production of transcriptional activator and
induced the expression downstream target genes in the Notch
pathway, including hairy enhancer of split (Hes)1, Hes5, nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB),

etc. (Oswald et al., 1998; Iso et al., 2003; Zhang et al., 2018).
A growing number of studies have shown that the Notch
signaling pathway is closely related to microglial activation and
differentiation and might play a role in central nervous system
diseases (Wei et al., 2011). The Notch pathway may represent
a critical therapeutic target for regulating the activation and
differentiation of microglia and inflammatory response. It is vital
to identify drugs that regulate the activation of differentiation of
Notch pathway and microglia.

Lipoxin is an endogenous anti-inflammatory lipid medium.
It is released only in small amount under physiological
conditions, but its synthesis is significantly increased under
pathological conditions in response to inflammatory stimuli. It
acts as a modulator of the inflammatory process, exerting anti-
inflammatory and pro-inflammatory effects (Lee, 1995; Takano
et al., 1997; Guo et al., 2016). Synthetic lipoxins such as lipoxin A4
(LXA4) possess desirable anti-inflammatory properties as shown
in experimental studies of respiratory inflammation, intestinal
inflammation and nephritis (Jin et al., 2007; Levy et al., 2007; Wu
et al., 2007, 2009; Kure et al., 2010). Recent studies revealed that
lipoxin has a protective role in central nervous system diseases
such as cerebral infarction (Ye et al., 2010; Martin et al., 2014;
Guo et al., 2016; Vital et al., 2016). There are very few studies
investigating the interaction between LXA4 and Notch signaling
pathways. Currently, only one study on transforming growth
factor beta-1 (TGF-β1)-induced renal fibrosis found that LXA4
attenuated the expression of the Notch ligand Jagged1 (JAG1) and
downstream molecule Hes1. Unfortunately, no further research
has been carried on this important topic (Brennan et al., 2013).
To date, there is no study exploring the regulatory role of LXA4
on the activation and differentiation of microglia induced by
lipopolysaccharide (LPS) stimulation, nor the LXA4-mediated
activation and differentiation of microglia through the Notch
signaling pathway.

The purpose of this study is to clarify the modulatory effect of
LXA4 on the inflammatory response associated to LPS-induced
microglia activation, with a focus on the regulatory role of LXA4
on the Notch signaling pathway.

MATERIALS AND METHODS

Cell Culture and Passage
The BV2 murine microglia cell line was purchased from the
Wuhan University China Culture Collection. BV2 microglia were
placed in MEM/EBSS medium containing 10% fetal bovine serum
(FBS) and 100 U/ml penicillin and streptomycin, and cultured
at 37◦C in an incubator with a 95% O2/5% CO2 atmosphere.
Every 2–3 days, the cells were washed twice with phosphate-
buffered solution (PBS). After adding 1–1.5 ml of 0.125% trypsin,
the attached cells were allowed to detach from the surface
of the cell cultures at 37◦C; the trypsin was neutralized with
culture medium, and the cells were transferred into a new
flask containing MEM/EBSS medium (supplemented with 10%
FBS and 100 U/ml penicillin and streptomycin) and placed in
the incubator. When cells grew adherent and the cell body is
branched, they were transferred into 24-well plates (105 cells/well
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for enzyme-linked immunosorbent assay [ELISA], 104 cells/well
for immunofluorescence), 6-well plates (2.5 × 105 cells/well
for quantitative reverse transcription polymerase chain reaction
[qRT-PCR], 5 × 105 cells/well for flow cytometry), or 100-mm
culture dishes (1.2× 106 cells/dish for western blotting).

Materials
In this study, we used the following materials: LXA4 (5S,6R,15R-
trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid; Cayman);
Minimum essential medium (Eagle) with 2 mM L-glutamine and
Earle’s BSS (MEM-EBSS )medium (Hyclone); FBS (Biological
Industries); interleukin (IL)-1β, IL-10, and TNF-α ELISA
kits (Shanghai ExCell Biotechnology); mouse anti-β-tubulin
monoclonal antibody, rabbit anti-mouse inducible nitric oxide
synthase (iNOS) monoclonal antibody, rabbit anti-mouse
arginase (Arg)1 monoclonal antibody, and rabbit anti-mouse
Notch1 monoclonal antibody (Proteintech Group); rabbit
anti-mouse CD32 monoclonal antibody and rabbit anti-mouse
CD206 monoclonal antibody (Abcam); mouse anti-mouse
Hes1 single-clone antibody (Tianjin Sungene Biotechnology);
murine anti-mouse Hes5 monoclonal antibody (Zen BioScience
Co); horseradish peroxidase (HRP)-labeled goat anti-mouse
secondary antibody and fluorescently labeled goat anti-rabbit
secondary antibody (Tianjin Sungene Biotechnology Co); HRP-
labeled goat anti-rabbit secondary antibody and anti-β-tubulin
(Proteintech Group); HiScript II Q RT SuperMix for qPCR
(+gDNA wiper) reagent and AceQ R© qPCR SYBR R© Green Master
Mix (Low ROX Premixed) kit (Vazyme Biotechnology Co); and
2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride,
DAPI dihydrochloride sealer and LPS (Sigma), DAPT (N-[N-
(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butylester)
(Sigma-Aldrich, München, Germany).

Cell Processing and Experimental
Grouping
Cell treatment: BV2 microglia cultured in vitro stimulated by
LPS as an inflammation model. Before each experiment, the cells
were cultured in serum-free culture for 12 h, and LXA4 and
Notch signaling pathway-specific blocker γ were administered
to different groups. Pretreatment with the γ-secretase inhibitor
DAPT. The concentration chosen for LPS is 200 ng/ml (Pan et al.,
2016). The concentration selected for LXA4: our previous study
compared the anti-inflammatory effects of 1, 10 and 100 nmol/l.
It was found that the anti-inflammatory effect of 100 nmol/l
was the best (Wu et al., 2011). Therefore, the study used LXA4.
The concentration is 100 nmol/l. The concentration selected for
DAPT is 10 µM (Wu et al., 2018).

Experimental grouping:

Part I LXA4 regulates the activation and differentiation of
microglia (Results 3.1–3.2).

Control group: cells cultured in serum-free medium
containing 0.035% ethanol.
LXA4 group: cells cultured in serum-free medium containing
100 nmol/l LXA4.

Lipopolysaccharide group: cells pretreated with serum-free
medium containing 0.035% ethanol for 30 min, after which
LPS was added to a final concentration of 200 ng/ml.
LXA4 group + LPS group: cells pretreated with serum-free
medium containing 100 nmol/l LXA4 for 30 min, after which
LPS was added to a final concentration of 200 ng/ml.

Part II Study on the regulation of Notch signaling pathway by
LXA4 (Results 3.3).

1. LXA4 inhibits the expression of molecules downstream of
the Notch signaling pathway.
Grouped with the first part

2. LXA4 regulates Notch signaling pathway.

Control group: cells cultured in serum-free medium
containing 0.035% ethanol.
LPS group: cells pretreated with serum-free medium
containing 0.035% ethanol for 30 min, after which LPS
was added to a final concentration of 200 ng/ml.
DAPT+LPS group: cells were pretreated with serum-free
medium containing 10 µmol/l DAPT for 1 h, after which LPS
was added to a final concentration of 200 ng/ml.
LXA4+LPS group: cells pretreated with serum-free medium
containing 100 nmol/l LXA4 for 30 min, after which LPS was
added to a final concentration of 200 ng/ml.
DAPT+LXA4+LPS group: after pretreatment with DAPT
with a final concentration of 10 µM for 1 h, 100 nmol/l LXA4
was added for 30 min, and then added to a final concentration
of 200 ng/ml LPS.

ELISA for IL-1β, IL-10, and TNF-α
The concentrations of IL-1β, IL-10, and TNF-α in cell
supernatants were determined by ELISA, according to the ELISA
kit manufacturer’s protocol (Shanghai ExCell Biotechnology).
BV2 microglia cultured on 24-well plates were treated with LPS
for 6 h. Next, the cell supernatants were collected, and the total
protein level therein contained was normalized for each sample
prior to performing the ELISA measurements for IL-1β, IL-10,
and TNF-α.

Quantitative Reverse Transcription
Polymerase Chain Reaction
Total RNA was extracted from BV2 microglia using TRIzol
reagent (Invitrogen, Carlsbad, CA, United States) according
to the reagent instructions. The concentration of RNA was
measured using Nanodrop-1000 (Nanodrop Technologies,
United States) and the purity was evaluated by the absorbance
ratio at 260 and 280 nm, and the RNA purity was between 1.9
and 2.1. The cDNA was synthesized according to HiScript II
Q RT SuperMix for qPCR (+gDNA wiper) (Nanjing Vazyme
Biotech Biotechnology) reagent and stored at −20◦C. The
mRNA expression level was detected by real-time fluorescent
quantitative PCR using the AceQ R© qPCR SYBR R© Green Master
Mix (Low ROX Premixed) kit. The expression level of the
gene of interest was normalized using GAPDH (glyceraldehyde
triphosphate dehydrogenase), the CT value represents a real-time
fluorescent quantitative PCR value, and the 2−11CT method
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was used to calculate relative change analysis data of gene
expression. No treatment affected the expression of GAPDH
mRNA. The primer sequences used are given in the Table 1
below.

Western Blot Analysis
BV2 microglia cells were treated with LPS for 4 and 8 h,
and the cell culture medium was discarded and washed
three times with sterile phosphate buffered saline. A 100:1
mixture of 100 µl of ice-cold cell lysis buffer and protease
inhibitor (PMSF) was added to the cell culture, then cells
were incubated on ice for 30 min, and the lysate was
clarified by spinning for 10 min at 4◦C (12,000 rpm),
leaving the supernatant for later use. Protein quantification
was performed using the micro bicinchoninic acid method.
A 5× sodium dodecyl sulfate loading buffer was added,
before incubating at 99◦C for 5 min. Then the samples were
loaded at 15 µg protein/lane on 6 or 12% acrylamide gels
and subjected to sodium dodecyl sulphate polyacrylamide gel
electrophoresis for about 1.5 h at 80 mV (stacking gel) and
120 mV (resolving gel). Proteins were then transferred to a
polyvinylidene fluoride membrane and blocking was made for
2 h in a 5% non-fat dry milk in Tris base/Tween-buffered
saline (TBST). The molecular weights of the iNOS, Notch1,
arginase (Arg)1, Hes1, Hes5, and β-tubulin proteins are 131,
120, 35/38, 35, 18, and 55 kDa, respectively. Samples were
incubated at 4◦C overnight with Rabbit anti-iNOS (1:500),
Notch1 (1:500) and mouse anti-Arg1 (1:300), Hes1 (1:500),
Hes5 (1:300), β-tubulin (1:1,000) primary antibodies. After
washing three times with TBST, the samples were incubated

TABLE 1 | Primers used for qRT-PCR.

Primer name Sequence (5′–3′)

GAPDH F-GGGTGTGAACCACGAGAAAT

R-CCTTCCACAATGCCAAAGTT

Arg1 F-GACCTGGCCTTTGTTGATGT

R-CCATTCTTCTGGACCTCTGC

iNOS F-ACGAGACGGATAGGCAGAGA

R-CACATGCAAGGAAGGGAACT

CD206 F-GGGACTCTGGATTGGACTCA

R-GCTCTTTCCAGGCTCTGATG

CD32 F-GCTCAAGGAAGACACGGTGA

R-GTGTAGCTGGCTTGGACCTG

TNF-α F-CCGATGGGTTGTACCTTGTC

R-AGATAGCAAATCGGCTGACG

IL-1β F-GCTGCTTCCAAACCTTTGAC

R-AGCTTCTCCACAGCCACAAT

IL-10 F-CCAGTTTTACCTGGTAGAAGTGATG

R-TGTCTAGGTCCTGGAGTCCAGCAGACTCAA

Notch1 F-GCCTTCGTGCTCCTGTTCTT

R-CTTCTTGCTGGCCTCTGACA

Hes1 F-TCATGGAGAAGAGGCGAAGG

R-CGGAGGTGCTTCACAGTCATT

Hes5 F-AGGCCGACATCCTGGAGAT

R-TCGCTGTAGTCCTGGTGCAG

for 1 h at room temperature with a secondary antibody of
the IgG family, conjugated with HRP. Enhancement of the
antibody reaction using an hypersensitive chemiluminescent
(ECL) reagent (Beyotime Biotechnology) allowed for visualizing
the protein. Protein bands were quantified using the ImageJ
software and the band intensity was normalized to the band
intensity of β-tubulin.

Immunofluorescence
To detect the expression of BV2 M1 and M2 microglia
biomarkers, we first treated the cells with LPS. After treatment,
the cells were washed 3 × 5 min with PBS (pH 7.4), and 4%
paraformaldehyde was added for 30 min at room temperature,
after which the cells were again washed 3 × 5 min with
PBS. The membranes were disrupted with 0.5% Triton X-
100 (PBS configuration) for 5 min. After washing three times
with PBS for 5 min each, we added PBS containing 2%
bovine serum albumin and 10% goat serum, and the plates
were sealed at 37◦C for 45 min. The following antibodies
were added overnight at 4◦C: rabbit anti-iNOS (1:200), rabbit
anti-CD32 (1:200), rabbit anti-Arg1 (1:100), and rabbit anti-
CD206 (1:100). After washing 3 × 5 min with PBS, we
added a fluorescently labeled goat anti-rabbit IgG secondary
antibody (1:500) for 1 h at room temperature. The cells
were again washed 3 × 5 min with PBS, and counterstained
in the dark with a mixture of 1 ml DAPI (1 mg/ml) +
1 ml H2O. The cells were incubated at 37◦C for 10 min,
washed 3 × 5 min with PBS, observed under an Inverted
fluorescence microscope (IX71 Japan OLYMPUS Corp.), and
photographed.

Flow Cytometry
BV2 microglia were seeded at 5 × 105/well and treated
according to their experimental group. After treatment, the
culture supernatant was discarded, and cells were washed gently
with 2 ml of PBS. Then, the PBS was aspirated and the adherent
cells were digested with 1 ml of trypsin; 1 ml of MEM/EBSS
medium was used to stop the digestion. The cells were centrifuged
(1,000 rpm, 5 min, 4◦C), washed twice with PBS, and resuspended
at 1 × 105 cells/ml. To label the cells, we added PE/Cy5 anti-
mouse CD16/CD32 monoclonal antibody (≤0.25 µg/106 cells,
100 µl) and Alexa Fluor R© 488-labeled anti-mannose receptor
antibody (1:500) for 20 min at room temperature in the dark,
washed the cells twice with PBS, and resuspended them in
300 µl PBS. The cell surface expression of CD16/CD32 and
CD206 was detected using a FACS Calibur flow cytometer
(BD Company), and the data were analyzed using FlowJo
software.

Statistical Analysis
All data are expressed as mean ± SD. Statistical analysis was
performed using SPSS 21.0 statistical software. One-way analysis
of variance (ANOVA) was used for comparison between groups,
and pairwise comparison between sample means was performed
using the Bonferroni method. Statistical significance was set at
p < 0.05.
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RESULTS

LXA4 Affects the Expression of
Interleukin (IL)-1β, IL-10, and TNF-α in
LPS-Treated BV2 Microglia
The expression of IL-1β, TNF-α and IL-10 mRNA was
determined by qRT-PCR 6 h after the corresponding treatment.
LPS induced a significant increase in IL-1β and TNF-α mRNA
in BV2 microglia as compared to the control group (p < 0.05)
(Figures 1A,C). LXA4 pretreatment reduced LPS-induced IL-1β

and TNF-α mRNA levels (Figures 1A,C), while IL-10 mRNA
expression increased significantly (p < 0.05) (Figure 1E). That
is, LXA4 inhibited the expression of IL-1β and TNF-α mRNA
in BV2 microglia induced by LPS, and upregulated the mRNA
expression of IL-10.

Eight hours after the corresponding treatment, the ELISA
method was used to detect the protein expression levels of
IL-1β, TNF-α and IL-10. As compared to the control group,
LPS induced a significant increase in IL-1β and TNF-α protein
levels in BV2 microglial culture supernatants, and the difference
was statistically significant (p < 0.05) (Figures 1B,D). LXA4
pretreatment inhibited the production of IL-1β and TNF-α
induced by LPS (p < 0.05) (Figures 1B,D), while the protein
level of IL-10 was significantly higher than that of the LPS
group (p < 0.05) (Figure 1F). That is, LXA4 inhibited the
expression of IL-1β and TNF-α mRNA induced by LPS in
BV2 microglia, and upregulated the protein expression of
IL-10.

Therefore, LXA4 inhibited the genes and protein expression of
M-1 microglia-associated inflammatory factors IL-1β and TNF-α,
and upregulated the expression of IL-10, an inflammatory factor
associated with M2 microglia.

LXA4 Affects LPS-Induced BV2
Microglial Morphological Changes and
Induces the Conversion of (M1) Microglia
to (M2) Microglia
The expression of iNOS, cluster of differentiation (CD)32, Arg1
and CD206 mRNA was detected via qRT-PCR 6 h after the
corresponding treatment. As compared to the control group,
the relative expression of iNOS and CD32 mRNA in the LPS
group was significantly increased (p < 0.05) (Figures 2A,B).
However, the relative expression of mRNA of the M2 markers
Arg1 and CD206 did not change significantly (p > 0.05).
After LXA4 pretreatment, the expression of iNOS and CD32
was both significantly decreased (p < 0.05) (Figures 2A,B),
and the expression of Arg1 and CD206 was both significantly
increased (p < 0.05) (Figures 2C,D). Therefore, LXA4 inhibited
the expression of the M1 markers iNOS and CD32 at the
transcriptional level and upregulated the expression of the M2
markers Arg1 and CD206.

Each group was tested 8 h after the corresponding treatment.
The levels of iNOS, Arg1, CD32 and CD206 proteins were
determined by Western blot, cellular immunofluorescence and
flow cytometry.

Western blot analysis showed that the expression of iNOS
protein in LPS group was significantly increased as compared
to the control group (p < 0.05) (Figures 3A–C), while
the expression of Arg1 protein did not significantly increase
(p > 0.05). As compared to the LPS group, the expression of
iNOS protein was inhibited and the expression of Arg1 protein
was increased in the LXA4 pretreatment group (p < 0.05)
(Figures 3A–D).

Cellular immunofluorescence showed that BV2 microglia
cells were activated in response to LPS treatment, the cell
body became larger and rounder, the protrusion decreased and
became thicker, and the morphology appeared as amoeba-like.
LXA4 pretreatment weakened the response to LPS in terms
of morphological changes (Figures 4–7). As compared to the
control group, the expression of iNOS and CD32 after LPS
treatment increased (p < 0.05) (Figures 4, 5). As compared to
the LPS group, the expression of iNOS and CD32 in the LXA4
pretreatment group was higher than that in the LPS group. The
expression of Arg1 and CD206 significantly decreased in the LPS
group (p < 0.05) (Figures 6, 7).

CD32 is a M1 microglia surface marker molecule and can be
detected by flow cytometry. As shown in Figure 8, we observed
positive expression of CD32. The mean fluorescence intensity
was only 17.6, indicating a low expression level. Treatment with
LXA4 alone induced positive expression of CD32 and the mean
fluorescence intensity was 11.6 (Figure 8B). In the LPS group, the
average fluorescence intensity increased to 41.3, indicating that
CD32 positive expression was significantly enhanced. In the LPS
group pretreated with LXA4, positive expression was observed,
but the mean fluorescence intensity was only 25.7. On the other
side, CD206 is a M2 type microglia surface marker molecule.
As shown in Figure 8E, the control group showed positive
expression of CD206. However, the mean fluorescence intensity
was only 30.2, indicating a low expression level. In the group
treated with LXA4 alone, a positive expression was observed,
with a mean fluorescence intensity value of 28.7, indicating a
low expression level. In the LPS group, the mean fluorescence
intensity increased to 27.2, showing low expression level. In
the LPS group pretreated with LXA4, the average fluorescence
intensity significantly increased to 51.2 (p < 0.05). That is, LXA4
inhibits the expression of CD32 and upregulates the expression
of CD206.

Western blot, cellular immunofluorescence and flow
cytometry were concordant in indicating that LXA4 inhibited
the expression of M1 type biomarkers iNOS and CD32 at the
protein expression and transcription levels, and upregulated the
M2 type biomarkers Arg1 and CD206. In other words, LXA4
promoted the shift of M1 to M2 microglia.

Mechanism of LXA4 Regulation of Notch
Signaling Pathway
Preliminary Observations of the Effect of LXA4 on the
Expression of Downstream Effector Molecules in the
Notch Signaling Pathway
The relative expression levels of Notch1, Hes1 and Hes5 mRNA
were determined by qRT-PCR 3 h after the corresponding
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FIGURE 1 | LPS-induced microglia activation and release of inflammatory factors; After 6 h of LPS stimulating (A,C,E): the mRNA expression levels of IL-1β, TNF-α
were measured by real-time fluorescent quantitative PCR; 8 h after LPS treatment, (B,D,F) The concentration of IL-1β, TNF-α and IL-10 in the supernatant of the
cells was detected by enzyme-linked immunosorbent assay (ELISA). LPS induces microglia activation, proinflammatory cytokines IL-1β, TNF-α and anti-inflammatory
factor IL-10 release. With LXA4 intervention, IL-1β, TNF-α expression decreased, IL-10 expression increased significantly, ##,∗∗p < 0.01; ###,∗∗∗p < 0.001; n.s., no
significance.

treatments were administered. As compared to the control group,
the expression of Notch1 and Hes1 mRNA in the LPS group
was significantly different (p < 0.05) (Figures 9A,B), while the
relative expression of Hes5 mRNA was not significantly increased
(p > 0.05) (Figure 9C). As compared to the LPS group, the
expression of Notch1 and Hes1 mRNA in the LXA4 pretreatment
group was decreased, and the expression of Hes5 mRNA was
significantly increased (p < 0.05) (Figures 9A–C).

Each group was performed for 4 h with corresponding
treatments and the expression levels of Notch1, Hes1, and Hes5
proteins were determined through Western blot. The expression
of Notch1 and Hes1 protein in the LPS group was significantly
higher than in the control group (p < 0.05), but the expression
of Hes5 was not significantly increased. The difference was not
statistically significant (p < 0.05). As compared to the LPS

group, the expression of Notch1 and Hes1 protein in the LXA4
pretreatment group was decreased, and the protein expression of
Hes5 was significantly increased (p < 0.05) (Figure 10).

Therefore, LXA4 affected the expression of downstream
effector molecules within the Notch signaling pathway at the level
of genes and protein; inhibited the expression of Notch1 and
Hes1, and upregulated the expression of Hes5.

LXA4 Regulation of the Notch Signaling Pathway
LXA4 regulation on downstream effector molecules of the
Notch signaling pathway
Each group was performed for 6 h with corresponding treatments
and the expression levels of Notch1, Hes1, and Hes5 proteins
were determined through Western blot. The levels of Notch1
and Hes1 protein in the LPS group were significantly higher

Frontiers in Cellular Neuroscience | www.frontiersin.org 6 February 2019 | Volume 13 | Article 19

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00019 January 31, 2019 Time: 18:41 # 7

Wu et al. LipoxinA4 Regulates BV2 Microglia Differentiation

FIGURE 2 | Quantitative RT-PCR analysis of iNOS, CD32, Arg1, CD206 mRNA levels in the BV2microglia 6 h after LPS treatment. (A,B) Quantitative RT-PCR
analysis of iNOS, CD32 mRNA levels. (C,D) Quantitative RT-PCR analysis of Arg1, CD206 mRNA levels. LPS upregluated M1 microglia biomarkers iNOS, CD32.
With LXA4 intervention, iNOS, CD32 expression decreased, M2 microglia biomarkers Arg1, CD206 expression increased significantly. ##,∗∗p < 0.01;
###,∗∗∗p < 0.001; n.s., no significance.

FIGURE 3 | Western blot analysis of the effect of LXA4 on iNOS and Arg1. (A–C) Western blot analysis of the protein level of iNOS in microglia. (A,B,D) Western blot
analysis of the protein level of Arg1 in microglia, LPS upregluated M1 microglia biomarkers iNOS. With LXA4 intervention, iNOS expression decreased, M2 microglia
biomarkers Arg1 expression increased significantly. ###,∗∗∗p < 0.001; n.s., no significance.
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FIGURE 4 | Immunofluorescence images showing the BV2 microglia after LPS stimulates which were labeled with iNOS antibody, with LXA4, the expression of iNOS
is decreased. Green fluorescence indicated iNOS positive cells, while blue fluorescence indicated DAPI-labeled nuclei. Scale bar: 20 µm.

than in the control group (p < 0.05), and there was no
significant Hes5 upregulation (p > 0.05) (Figures 11A,D–
F). In the DAPT-pretreatment group as compared to the
LPS group, the Hes1 protein level was significantly decreased
(p < 0.05) (Figures 11A,E), the Notch1 protein decreased
slightly, and the Hes5 protein increased, but the change
was not statistically significant (p > 0.05). In the LXA4
pretreatment group, the levels of Notch1 and Hes1 protein
significantly decreased (p < 0.05) and the Hes5 protein was
significantly upregulated (p < 0.05) (Figures 11A,D–F). After
combined DAPT/LXA4 pretreatment, Notch1, Hes1 and Hes5
group were significantly decreased (p < 0.05). There was no
change between Hes1 and Hes5 as compared to the control
group.

Therefore, LXA4 downregulated the expression of Notch1 and
the downstream effector Hes1 in M1 microglia differentiation
(Wang et al., 2010; Liu et al., 2012; Wu et al., 2018), and
upregulated the downstream effector Hes5 associated with
the M2 differentiation (Liu et al., 2012), promoting the
transformation of M1 to M2 microglia. However, after blocking
the Notch signaling pathway with the γ-secretase inhibitor DAPT,
the LXA4 regulation on the downstream effector molecules
Hes1 and Hes5 of the Notch signaling pathway was abolished,
indicating that LXA4 regulates the differentiation of microglia
through the Notch signaling pathway.

Effect of LXA4 on microglia differentiation
Each group was performed for 6 h with corresponding treatments
and the expression levels of microglia M1 biomarker iNOS
and M2 biomarker Arg1 proteins were determined through
Western blot. The expression of the iNOS protein increased in
the LPS group as compared to the control group (Figures 11A–
C). After treatment with DAPT and LXA4, the level of the
iNOS protein was decreased, while after LXA4 pretreatment, the
level of Arg1 protein was upregulated (Figures 11A–C). That
is, LXA4 promotes the conversion of M1–M2 phenotype; the
action of LXA4 can be abolished by the Notch signaling pathway
blocker DAPT. The figure shows that the expression of the iNOS
protein in the DAPT+LXA4+LPS group was increased, and the
expression of Arg-1 was not, confirming that LXA4 regulates the
differentiation of microglia through the Notch signaling pathway.

Effect of LXA4 on Notch signaling pathway and microglial
differentiation on expression of inflammatory mediators
Each group was performed for 6 h with corresponding treatments
and the ELISA method was used to detect the expression levels
of M1 microglia-associated inflammatory cytokines IL-1β and
TNF-α and M2 microglia-associated inflammatory factor IL-10.
As compared to the control group, the expression of IL-1β and
TNF-α protein in the LPS group increased (Figures 12A,B); as
compared to the LPS group, the expression of IL-1β and TNF-α
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FIGURE 5 | Immunofluorescence images showing the BV2 microglia after LPS stimulates which were labeled with CD32 antibody, with LXA4, the expression of
iNOS is decreased. Green fluorescence indicated CD32 positive cells, while blue fluorescence indicated DAPI-labeled nuclei. Scale bar: 20 µm.

in the DAPT+LPS group was significantly decreased (p < 0.05)
(Figures 12A,B). The expression of IL-10 was upregulated in
the LXA4+LPS group (Figures 12A,B), while IL-1β and TNF-
α significant decreased (Figure 12C), suggesting that LXA4
promoted the conversion of M1 to the M2 phenotype, and this
effect was abolished by the Notch signaling pathway blocker
DAPT. As shown in Figure 12C, the inflammatory factors IL-
1β and TNF-α are upregulated in the DAPT+LXA4+LPS group,
while IL-10 showed no significant upregulation, confirming that
the LXA4 modulates the expression of inflammatory cytokines
by regulating the differentiation of microglia through the Notch
signaling pathway.

DISCUSSION

An increasing number of studies reveal that inflammatory
reactions exert a significant influence on the occurrence and
development of central nervous system conditions such as
ischemic stroke, Alzheimer’s disease, Parkinson’s disease, and
multiple sclerosis, at multiple stages of the disease process.
Inflammation aggravates the damage to nerve cells and tissues,
worsening the pathological condition (Lucas et al., 2006; Xanthos
and Sandkuhler, 2014; Meng et al., 2016).

The role of microglia in the neuroinflammatory response is
important (Streit, 2002; Ramirez et al., 2017). Microglia cells are
related to mononuclear/macrophage cell lines as for morphology,
immunophenotype, and biological function, and are considered
to be resident macrophages in the brain (Streit, 2000). Under
physiological conditions, microglia plays an important role in
the development, structural formation and functional regulation
of the nervous system (Kim and de Vellis, 2005; Gomez-Nicola
and Perry, 2015; Wolf et al., 2017). After exogenous stimulation
or microenvironment changes in the brain, microglia is rapidly
activated, and a series of changes occur in cell morphology,
immunophenotype and function. Activated microglia mainly
differentiate into M1 and M2 types (Kloss et al., 2001; Hu
et al., 2014). M1 type is a classical activated microglia, and the
corresponding biological molecular markers include iNOS and
CD32. M1 microglia releases a large number of inflammatory
factors such as TNF-α and IL-1β, causing damage to central
nervous system cells and tissues. Increased expression of iNOS
produces a large amount of NO in the brain, and high-
load NO can exert toxic effects through various mechanisms
such as mitochondrial damage, peroxidation, activation and
inhibition of various signaling pathways, and DNA damage
(Pacher et al., 2007; Martinez et al., 2009). The M2 type is
an alternative activation type, and the corresponding biological
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FIGURE 6 | Immunofluorescence images showing the BV2 microglia after LPS stimulates which were not labeled with Arg1 antibody, with LXA4, the expression of
Arg1 is expressed at high levels. Green fluorescence indicated Arg1 positive cells, while blue fluorescence indicated DAPI-labeled nuclei. Scale bar: 20 µm.

molecular markers include Arg1 and CD206. M2 microglia can
release chemokines, induce resting microglia to focus on the
lesion, phagocytose toxic molecules and cell debris, and release
brain-derived neurotrophic factor, vascular endothelial growth
factor and the anti-inflammatory mediator IL-10 which inhibits
immune inflammation, promotes inflammation regression, as
well as nerve tissue repair and nerve regeneration (Jin et al.,
2014; Beyer et al., 2015; Tang and Le, 2016; Kanazawa et al.,
2017; Ramirez et al., 2017). M2 microglia releases Arg1, which
competes with iNOS for arginine substrate, downregulates NO
production, reduces tissue damage, and participates in tissue
damage repair (Yang et al., 2016). Regulating the differentiation
of microglia, and avoiding harm, is of great significance for the
improvement of the prognosis of various inflammatory related
nervous system diseases.

Activation and differentiation of microglia involves multiple
signaling pathways, such as the Notch signaling pathway, NF-κB,
tyrosine protein kinase (JAK) signal transduction/transcriptional
activator (STAT), peroxisome proliferator-activator receptor-γ
(PPAR-γ) and cAMP response element binding protein (CREB)
(Grandbarbe et al., 2007; Xu et al., 2015; Ghosh et al., 2016;
Chen J. et al., 2017; Qin et al., 2017; Wei et al., 2017; Liu
et al., 2018). The Notch signaling pathway is highly conserved
and participates in almost all physiological and pathological

processes such as differentiation, proliferation and apoptosis of
all cellular types. It can precisely regulate cell differentiation
by translocating signals directly from adjacent cells to the cell
nucleus to activate transcription factors, affecting embryonic
development and the homeostasis of adult tissues and organs
(Gazave et al., 2009; Oya et al., 2009; Ables et al., 2011; Andersson
et al., 2011). In the central nervous system, the Notch signaling
pathway is actively involved in dynamic changes at all scales, from
cellular structure to nervous system function, inhibiting neuronal
differentiation and promoting differentiation of glial subtypes
(Tanigaki et al., 2001), especially during microglia activation.
Moreover, it plays a very important role in differentiation
(Grandbarbe et al., 2007; Yuan et al., 2015). The Notch signaling
pathway is mainly composed of receptors, ligands expressed
on adjacent cell membranes, intracellular transcription factors,
regulatory molecules, and downstream effector molecules (Shang
et al., 2016). After the interaction between the Notch receptor
and the ligand, the NICD is released into the cytosol, thanks
to the cleavage operated by the key enzyme γ-secretase which
directly affected the activation of Notch pathway, and transferred
to the nucleus. The activated NICD promotes the production
of transcriptional activators, thereby inducing the expression
of downstream migratory molecules including Hes1, Hes5
and NF-κB. Some studies have shown that elevated levels of
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FIGURE 7 | Immunofluorescence images showing the BV2 microglia after LPS stimulates which were not labeled with CD206 antibody, with LXA4, the expression of
Arg1 is expressed at high level. Green fluorescence indicated CD206 positive cells, while blue fluorescence indicated DAPI-labeled nuclei. Scale bar: 20 µm.

FIGURE 8 | Protein expression levels of CD32 and CD206 were measured by flow cytometry. (A) The mean fluorescence intensity of CD32 was only 17.6. (B)
Treatment with LXA4 alone, the mean fluorescence intensity was 11.6. (C) In the LPS group, the average fluorescence intensity increased to 41.3. (D) In the LPS
group pretreated with LXA4, the mean fluorescence intensity was only 25.7. (E) In the control group, the mean fluorescence intensity of CD206 was only 30.2, (F) In
the group treated with LXA4 alone, the mean fluorescence intensity of CD206 was 28.7. (G) In the LPS group, the mean fluorescence intensity of CD206 was 27.2.
(H) In the LPS group pretreated with LXA4, the average fluorescence intensity significantly increased to 51.2.
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FIGURE 9 | Quantitative RT-PCR analysis of Notch1, Hes1 and Hes5 mRNA levels in the BV2 microglia. (A) Quantitative RT-PCR analysis of Notch1 mRNA levels.
(B) Quantitative RT-PCR analysis of Hes1 mRNA levels. (C) Quantitative RT-PCR analysis of Hes5 mRNA levels.LPS upregluated M1 microglia related signal
molecule Notch1, Hes1. With LXA4 intervention, Notch1, Hes1 expression decreased, M2 microglia related signal molecule Hes5 expression increased significantly.
###,∗∗∗p < 0.001; n.s., no significance.

FIGURE 10 | Western blot analysis of the effect of LXA4 on Notch1, Hes1 and Hes5. (A,B,D) Western blot analysis of the protein level of Notch1, Hes1 in microglia.
(A,C) Western blot analysis of the protein level of Hes5 in microglia, LPS upregluated M1 microglia related signal molecule Notch1, Hes1. With LXA4 intervention,
Notch1, Hes1 expression decreased, M2 microglia related signal molecule Hes5 expression increased significantly. ###,∗∗∗p < 0.001; n.s., no significance.

Notch1 receptor and downstream effector Hes1 are associated
to microglia differentiation into the M1 type (Wang et al., 2010;
Liu et al., 2012; Wu et al., 2018), while Hes5 is involved in
M2 differentiation (Liu et al., 2012). Downstream target genes
of the Notch pathway include Hes1, Hes5, NF-κB, Cyclin D1,
and C-myc. The Notch pathway may act as a cascade with
complex interactions with the NF-κB, Wnt, TGF/BMP, TLR and
other pathways (Wei et al., 2011). The Notch pathway may be
important for regulating the activation and differentiation of
microglia and the inflammatory response. More and more studies
show that the Notch signaling pathway and microglia activation
and differentiation are involved in central nervous system
diseases. The modulation of these processes is expected to be a

key to the treatment of several central nervous system conditions.
It is therefore imperative to identify drugs that regulate the Notch
pathway and microglia activation and differentiation.

Lipoxins (LXs) are a class of arachidonic acid-derived
mediators formed via lipoxygenase-catalyzed reactions, which
carry anti-inflammatory and pro-inflammatory properties, and
are classified according to the position and conformation of the
hydroxyl groups in the molecule. LXA4 and LXB4, and their
epimers 15-epi-LXA4 and 15-epi-LXB4, are synthesized only in
small amount under physiological conditions. However, their
levels significantly rise under various pathological conditions
involving inflammatory stimuli, to act as downregulators of the
inflammatory process. LXs play a role in anti-inflammatory and
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FIGURE 11 | Western blot analysis of the Notch1, Hes1, Hes5, iNOS and Arg1 effect after DAPT pretreatment. (A–C) Western blot analysis of the protein level of
iNOS, Arg1 in microglia. (A,D–F) Western blot analysis of the protein level of Notch1, Hes1, Hes5 in microglia. #,∗p < 0.05; ##,∗∗p < 0.01; ###,∗∗∗p < 0.001; n.s., no
significance.

FIGURE 12 | LPS-induced microglia activation and release of inflammatory factors; After 6 h of LPS stimulating (A–C): the protein expression levels of IL-1β, TNF-α,
IL-10 were measured by enzyme-linked immunosorbent assay (ELISA). #,∗p < 0.05; ##,∗∗p < 0.01; ###,∗∗∗p < 0.001; n.s., no significance.

pro-inflammatory decline. Some synthetic lipoxins such as LXA4
have exhibited anti-inflammatory effects in experimental studies
on respiratory tract infections, lung injury, peritonitis, enteritis,
nephritis, gynecological inflammation, and various tumor-related

inflammations (Gewirtz et al., 2002; Chen et al., 2010; Xu
et al., 2012, 2014; Okano Kwangbo Department of Medical
Science and Research of Okayama University Department of
Otolaryngology, 2015; Borgeson et al., 2015; Qi et al., 2015;
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Wang Z. et al., 2015; Chen X.Q. et al., 2017; Xu et al.,
2018). Experimental studies conducted in recent years have also
found that lipoxin has a regulatory effect on central nervous
system diseases such as cerebrovascular diseases and Alzheimer’s
disease (Wu et al., 2013; Guo et al., 2016; Han et al., 2016;
Kantarci et al., 2018). The LXA4 receptor is represented on the
microglia surface (Cui et al., 2002; Chen et al., 2006), which
means that microglia may also be a target for the LXA4 in
the central nervous system. There is very little research on
whether LXA4 can act on the Notch signaling pathway. Only
one study found that the LXA4 attenuates TGF-β1-induced renal
fibrosis by suppressing the Notch signaling pathway (Brennan
et al., 2013). However, whether the LXA4 can function through
the Notch signaling pathway in the central nervous system
diseases has not been reported before, especially in reference
to the regulation of microglia activation and differentiation.
Our study clarified that the LXA4 regulates microglia activation
and differentiation through the Notch signaling pathway and
plays an anti-inflammatory role, providing a new therapeutic
target for the treatment of inflammatory-related nervous system
diseases.

In this study, the immortalized murine microglial cell line
BV-2 was used to construct an inflammatory model. BV2
microglia retains many morphological features, phenotypical
characterization, and functional characteristics of the microglia,
and is consequently an ideal model for studying microglia. We
found that after LPS stimulation of BV2 microglia, the microglia
cells were activated, and the round, swelling, and thin processes
of the cell body retracted from branching to an amoeba-like asset.
After pretreatment with LXA4, microglia cells showed small
bodies and many branches.

This investigation capitalized on a complete set of
analyses, including qRT-PCR, ELISA, western blot, cell
immunofluorescence, and flow cytometry. A first part of
the study explored the regulatory role of the LXA4 on the
activation and differentiation of the microglia. We found
that LXA4 could inhibit gene and protein expression of M1
biomarkers iNOS, CD32 and M1 related inflammatory cytokines
IL-1β and TNF-α. Conversely, LXA4 caused upregulation of
the expression of M2 biomarkers Arg1 and CD206 and M2
microglia-associated inflammatory factor IL-10. LXA4 can
regulate the switch from M1 to M2 microglia and alleviate
inflammation. A second part of this study focused on the
LXA4 regulation of the Notch signaling pathway. LXA4 could
affect the expression of downstream effector molecules of the
Notch signaling pathway at both the gene and protein levels:
it inhibited the expression of Notch1 and Hes1 related to the
differentiation of M1 microglia. Upregulating the expression
of Hes5 in association with M2 differentiation suggests that
LXA4 promotes the transformation of M1 type to M2 microglia
through the Notch signaling pathway.

It was subsequently found that the specific blocker Notch
signaling pathway and the regulation of Notch downstream
effector molecules Hes1 and Hes5 by LXA4 were blocked after the
treatment of γ-secretase inhibitor DAPT. The results suggest that
LXA4 regulates the differentiation of microglia through Notch
signaling pathway.

Further studies showed that LXA4 decreased the expression
of M1 related biomarkers iNOS and the related inflammatory
cytokines IL-1β and TNF-α. The upregulation of the expression
of Arg1 and the related inflammatory factor IL-10 can also
be blocked by the DAPT. Therefore, we finally confirmed that
LXA4 can exert its anti-inflammatory effects by regulating
the differentiation of microglia through the Notch signaling
pathway.

In conclusion, LXA4 inhibited the activation of microglia
induced by LPS, promoted the transformation of M1–M2, and
reduced the expression of IL-1β, TNF-α, and iNOS, while
enhancing the expression of the anti-inflammatory mediator IL-
10 through the Notch signaling pathway. This study shows: 1.
LPS stimulation induced M1 microglia activation and increased
the secretion of pro-inflammatory factors; 2. The Notch1
receptor and downstream effector Hes1 increased, suggesting that
microglia differentiated into M1 type; 3. We revealed that LXA4
has desirable anti-inflammatory properties, which is consistent
with previous studies (Wang et al., 2011; Zhou et al., 2011).
But most importantly, we proved for the first time that LXA4
can regulate the differentiation of microglia and inhibit the
inflammatory response induced by LPS, especially through the
Notch signaling pathway, which is the focus and bright spot of
this study.

It should be highlighted that γ-secretase is a key enzyme
in the activation of the Notch pathway. DAPT can inhibit the
activation of the Notch pathway by inhibiting the γ-secretase.
However, the expression of the Notch1 protein was not affected
in theory. Therefore, the expression of Hes1 and Hes5 was
mainly inhibited after DAPT administration, and the change
of Notch1 was not significant. Previous studies have shown
that the γ-secretase enzyme blockers affect the Notch signaling
pathway and produce a series of side effects at the level of the
gastrointestinal tract and hematopoietic system, as well as induce
thymocyte damage (Mumm et al., 2000; Real and Ferrando, 2009;
Coric et al., 2012). Therefore, γ-secretase blockers are relatively
far away from clinical use. A large number of studies have
confirmed that lipoxin has the ability of inhibiting the further
deterioration of inflammation in vivo and in vitro, promoting
the timely regression of inflammation (Wang et al., 2014; Yao
et al., 2014). Lipoxin acts in local tissues after its production,
and then rapidly deactivates, it does not interfere with normal
physiological function, is safe, has no toxic side effects, and
can be used as an anti-inflammatory and modulating substance.
Based on these advantages, and on its ability to maintain a
balance between the benefits of the inflammatory mediators
themselves and their potential toxicity at high concentrations
(Zhou et al., 2011; Zhao et al., 2013), Lipoxin is expected to
be a new anti-inflammatory drug, especially in the treatment
of inflammatory nervous system diseases. Previous studies have
also emphasized the expression of LXA4 receptors in neurons,
microglia, astrocytes, and neural stem cells in the central nervous
system (Wada et al., 2006; Decker et al., 2009; Wang et al.,
2011). This suggests that they may be the target of lipoxin
action in the central nervous system. Future studies will focus on
ascertain the interplay between lipoxin-mediated pathways and
other cells, notably neurons, astrocytes, and neural stem cells, to
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further confirm the anti-inflammatory effect of lipoxin, reveal its
anti-inflammatory mechanisms, and provide more evidence for
clinical applications.
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