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A new quantum‑safe multivariate 
polynomial public key digital 
signature algorithm
Randy Kuang1*, Maria Perepechaenko1* & Michel Barbeau2*

We propose a new quantum-safe digital signature algorithm called Multivariate Polynomial Public Key 
Digital Signature (MPPK/DS). The core of the algorithm is based on the modular arithmetic property 
that for a given element g, greater than equal to two, in a prime Galois field GF(p) and two multivariate 
polynomials P and Q, if P is equal to Q modulo p-1, then g to the power of P is equal to g to the power 
of Q modulo p. MPPK/DS is designed to withstand the key-only, chosen-message, and known-
message attacks. Most importantly, making secret the element g disfavors quantum computers’ 
capability to solve the discrete logarithm problem. The security of the MPPK/DS algorithm stems 
from choosing a prime p associated with the field GF(p), such that p is a sum of a product of an odd 
prime number q multiplied with a power x of two and one. Given such a choice of a prime, choosing 
even coefficients of the publicly available polynomials makes it hard to find any private information 
modulo p-1. Moreover, it makes it exponentially hard to lift the solutions found modulo q to the ring 
of integers modulo p-1 by properly arranging x and q. However, finding private information modulo 
the components q and power x of two is an NP-hard problem since it involves solving multivariate 
equations over the chosen finite field. The time complexity of searching a private key from a public 
key or signatures is exponential over GF(p). The time complexity of perpetrating a spoofing attack is 
also exponential for a field GF(p). MPPK/DS can achieve all three NIST security levels with optimized 
choices of multivariate polynomials and the generalized safe prime p.

The demand for secure communications increased dramatically in the last few decades. Authentication algo-
rithms play a major role in providing security in the digital world. Most of the digital signature algorithms are 
implemented using the well-known and well-studied cryptosystems Rivest–Shamir–Adleman (RSA)1, Digital 
Signature Algorithm (DSA), and Elliptic Curve Digital Signature Algorithm (ECDSA)2,3. However, none of the 
algorithms based on prime factorization, such as RSA, or the Discrete Logarithm Problem (DLP), such as DSA 
and ECDSA, are secure against quantum attacks4. Thus, a need for a secure Public Key Infrastructure (PKI) cre-
ated a new effort to find one or efficient quantum-safe digital signature algorithms.

We propose a new quantum-safe digital signature algorithm, Multivariate Polynomial Public Key Digital 
Signature (MPPK/DS). It stems from the Kuang et al.’s Multivariate Polynomial Public Key (MPPK) Key Encap-
sulation Mechanism (KEM) algorithm5. The MPPK/DS signature scheme design is different from a decryption-
encryption digital signature scheme addressing the key-only attack vulnerability, such as with RSA. MPPK/
DS also withstand known quantum computing attacks, such as solving DLP, by using a secret random base in 
modular arithmetic exponentiation in the signing algorithm. In addition, we focus on developing a probabilistic 
digital signature. The core of the signing-verifying relationship in the MPPK/DS algorithm is a modular arithme-
tic property that states that given an integer x co-prime with n and two integers a and b, if a = b modulo ϕ(n) , 
then xa = xb modulo n, where ϕ(n) is the Euler’s totient function evaluated at n. Most importantly, a and b are 
values of multivariate polynomials modulo ϕ(p) . The security of the algorithm is based on the hardness of solving 
multivariate polynomials over a large finite field6. Moreover, by using a clever choice of prime p associated with 
a finite field Fp that has form p = 2xq+ 1 , where q is a large prime, and special choice of the coefficients of the 
publicly available polynomials, we make it hard for an attacker to find private key components modulo ϕ(p) , and 
exponentially difficult to lift the solutions found modulo q and 2x to the ring Z/ϕ(p)Z. The best complexity of 
cracking the MPPK/DS algorithm is O([2(2�+ 1) log p]q 3

2 2x(n+1)+x/2 + 2(�+ 1)× 2x)  using a classical system, 
and O(

√

q2x(n+1) + (2�+ 1)×
√
2x)  respectively using a quantum device.
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We review the related  in "Related work". "MPPK digital signature and verification" describes the MPPK/DS 
algorithm in detail, including key generation, signing, verification, and signing-verifying relationship. Security 
analysis is done in "Security analysis". We discuss an optimal choice of parameters and give a brief overview 
of the performance of MPPK/DS in "Brief benchmarking results and optimal parameters of MPPK/DS". The 
conclusion is drawn in the last section.

Related work
In the digital age that we live in today, simple day-to-day activities, such as surfing the Internet7,8 or performing 
financial transactions using credit cards9, require the use of digital signature cryptosystems. Tan et al. identified 
14 real-world applications of digital signature cryptosystems across the financial, critical infrastructure, Inter-
net, and enterprise sectors3. Currently, the most widely used digital signature schemes are RSA1 and ECDSA2. 
As of July 2013, both are digital signature standards10. However, none of them are secure against attacks using 
fault-tolerant quantum computers4,11. That is, ECDSA, like DSA10, relies on DLP that can be broken using Shor’s 
algorithm4. RSA depends on the integer factorization problem that can also be efficiently solved using Shor’s 
algorithm implemented on a quantum computer4. Some other digital signature algorithms, such as hash-based 
algorithms, are considered to be quantum-resistant12,13. However, they might not be suitable for specific use-cases, 
such as when the platform of execution is a chip-card3. In an attempt to tackle this issue, National Institute of 
Standards and Technology (NIST) launched a Post-Quantum Cryptography (PQC) project aiming to standard-
ize one or more key exchange and digital signature algorithms that withstand classical and quantum attacks14.

In November 2017, NIST received a total of 82 submissions, out of which seven are digital signature algo-
rithms falling into the category of multivariate algorithms that proceeded to the first round15. Only four of the 
seven first-round candidates moved on to the second round, namely the Lifted Unbalanced Oil and Vinegar 
(LUOV), Rainbow, GeMSS, and MQDSS schemes. The Rainbow scheme has been accepted as a Round three 
finalist. GeMSS has been accepted as a Round three alternate candidate. Based on the overall consideration of 
public key size, signature size, and performance of key generation, signing, and verification, NIST plans to reopen 
for submissions of PQC digital signature in early 2022.

LUOV16 and Rainbow17 are both multivariate digital signature algorithms based on the Unbalanced Oil and 
Vinegar (UOV) scheme, originally introduced by Kipnis et al.18. There have been some attacks over the years on 
the UOV scheme; however, overall, the UOV scheme remains secure19. Braeken et al. did a study20 of the security 
of the UOV scheme. They showed that if the number of variables n used in the scheme is greater than 2m, where 
m is the number of equations used in the scheme, then the cryptosystem is particularly vulnerable to the Grö-
bner basis attacks. This is an improvement of the result showed by Courtois et al. for n ≥ 4m21. Moreover, they 
showed that choosing coefficients from a small sub-field raises serious security concerns and should be avoided. 
In addition, Braeken et al. extended the Youssef et al. attack22 against Scheme B from Imai and Matsumoto23 
against the Unbalanced Oil and Vinegar scheme. This new attack is particularly efficient when the number of 
vinegar variables v is small. Faugère and Perret also studied24 the security of the UOV scheme. They showed 
that some of the parameters proposed by Kipnis et al.18 are not secure against a special Gröbner basis attack. 
The attack entails computing Gröbner bases of an “easier” system of equations rather than computing a single 
Gröbner basis for the original system of equations. However, most of these attacks can be resisted by updating 
the proposed parameters.

Ding et al. developed an attack method on LUOV, called the Subfield Differential Attack (SDA)25. SDA does 
not rely on the Oil and Vinegar structure of LUOV; rather, it takes advantage of the fact that the coefficients of 
the quadratic terms are contained in a small subfield. This attack reduces the complexity of the LUOV scheme 
below the targeted security for the NIST post-quantum standardization competition. Ding et al. point out that 
the SDA does not work on UOV or the Rainbow digital signatures algorithm25. Later, Ding et al. proposed a 
modified SDA, called the Nested Subset Differential Attack, which fully breaks half of the parameter sets of the 
LUOV scheme and can practically be done in under 210 minutes for the NIST level I security parameters26. This 
attack is the reason for LUOV’s elimination from the standardization project. As the original SDA, the updated 
Nested SDA does not leverage the UOV scheme and rather takes advantage of the lifting technique of LUOV; 
thus, it does not apply to the Rainbow digital signature algorithm.

Recall that the Rainbow algorithm relies on the UOV scheme. In addition to the attacks on the UOV scheme 
described above, Beullens gave two new attacks against the Rainbow signature schemes, namely the intersection 
and rectangular MinRank attacks27. Given the Rainbow third round parameters17, these new attacks reduce the 
cost of a key recovery by a factor of 220 for the security level I, 240 for the security level III, and 255 for security 
level V, making these parameter sets fall short of the security requirements set out by NIST.

In addition to mathematical cryptanalysis, physical implementation attacks on UOV and Rainbow are also 
studied to ensure the security of the NIST Round 3 finalists. Hashimoto et al. presented general fault attacks 
on the multivariate quadratic equations-based schemes28. Later, Krämer et al. showed how to apply Hashimoto 
et al.’s attack to the UOV and Rainbow schemes. It did not, however, lead to the complete private key recovery29. 
Shim et al. performed an extensive fault analysis of UOV and Rainbow30. They focused on attacks that cause 
faults on random Vinegar values used in signing. Shim et al. showed that the equivalent key of UOV is wholly 
recovered in polynomial time from (m+ 1), n and m signatures generated by the entire faulty Vinegar values 
in the three cases, respectively. The equivalent key of Rainbow is also recovered from 44, 79, and 43 signatures 
with 36 bytes of faulty Vinegar values in the three cases, respectively. This is the first result that leads to the full 
secret key recovery of UOV and Rainbow from the leakage of the Vinegar values.

Two other NIST round two finalists, the GeMSS31 and MQDSS algorithms32, have also been studied for any 
possible security concerns. Kales and Zaverucha presented an attack on the MQDSS scheme33. Their attack can 
be applied to signature schemes built upon five-round identification schemes constructed via the Fiat-Shamir 
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transformation. MQDSS falls under this category. They showed that forging a signature for the 128-bit security 
level version of MQDSS can be done in 295 operations. To avoid the attack, new parameters were proposed that 
make the scheme significantly worse in performance15. That caused the elimination of the MQDSS method from 
the standardization project. The GeMSS scheme did not have any serious security concerns in Round two. One 
of the significant drawbacks of the system is enormous public keys, difficulty implementing the algorithm on 
low-end devices, and slow signing times19. The security of the GeMSS scheme relies on HFE construction. Ding 
et al. studied the security of the HFE cryptosystem34. They presented a new algebraic method to attack the HFEv 
cryptosystem, using the algebraic structure of HFEv. The idea of the attack is to view the new vinegar variables as 
an external perturbation and to try to separate them, which can be done efficiently for small parameters D + r . 
However, the complexity of the attack is exponential in the small parameter r. Overall, the GeMSS scheme is 
considered secure and is a NIST round-three finalist in the alternative digital signature scheme category.

We now shift the attention to the DLP. The DLP is the core mathematical problem underlying many widely 
used cryptosystems such as Diffie–Hellman (DH) and Elliptic Curve Diffie–Hellman (ECDH). It is, however, as 
we pointed out, not secure against attacks using quantum devices4. In our digital signature scheme, we use in part 
a construction similar to the one of DH. However, we do not share the base with the verifier, nor do we share the 
exponent. Nevertheless, we feel that it is worthwhile investigating any advances related to DLP.

Using Pollard’s rho algorithm one might solve DLP in a cyclic group of size q with computational complexity 
of O(√q)35. Assuming DLP in a group GF(n), where n = uv , if one knows u and v, one might reduce DLP to a 
smaller DLP using the Chinese Remainder Theorem and Pohlig–Hellman algorithm. Then it is possible to solve 
the reduced problem with O(√q) modular multiplications36.

Boudot et al. set two new records: factorize RSA-240, 795-bit number, and compute a discrete logarithm 
over a 795-bit prime field. They used the same system to set both records, thus showing that the difficulty of 
computing discrete logarithm is comparable to the problem of factorization of the same bit size37. Granger et al. 
computed a discrete logarithm in the finite field GF(230750) using the elimination step of the Granger, Klein-
jung, and Zumbrägel’s algorithm38 recursively. Corrigan-Gibbs and Kogan studied algorithms to solve DLP that 
utilizes pre-processing39. They showed that any generic discrete logarithm algorithm with pre-processed S-bit 
“advice” string runs in online time T and succeeds with probability ǫ if ST2 = �(ǫN), where N is the order of the 
underlying group. They also demonstrated two new generic pre-processing attacks: one for the multiple-discrete-
log problem and certain decisional-type problems in groups. Hong et al. proposed a fuzzy Hellman algorithm 
that solves DLP using a one-time pre-computation process36. Given the pre-computation cost and online effi-
ciency, this algorithm performs better than other known algorithms. Bellare introduced the Multi-Base Discrete 
Logarithm40 that fills a gap exhibited by all known standard proofs41,42 of the security of Schnorr’s identification 
and signatures algorithms43. Teseleanu produced the first l out of n threshold kleptographic attack on discrete 
logarithm-based digital signatures by combining the notions of threshold scheme and kleptographic attack44.

Recently, Abdullah et al. presented a new way to solve the elliptic curve DLP, using initial minors45. Practical 
implementation showed that the attack could be performed for groups of orders up to 250.

Roetteler et al. gave a precise estimate of quantum resources needed to compute discrete logarithm on elliptic 
curves over prime fields using Shor’s algorithm46. They showed that it takes at most 9n+ 2⌈log2(n)⌉ + 10 qubits 
to compute discrete logarithm on an elliptic curve defined over n-bit prime field, using a quantum circuit of at 
most 448n3 log2(n)+ 4090n3 Toffoli gates. This result supports the one presented earlier by Proos and Zalka47 
and suggests that the number of qubits required to break Elliptic Curve Cryptography (ECC) is less than the 
number needed to break RSA. Ekerå bridged their work with Shor’s work on computing discrete logarithms as 
well as Seifret’s work on computing orders with trade-offs to give an algorithm that computes discrete logarithms 
without any knowledge of the group order48. Moreover, compared to Shor’s algorithm, their algorithm has a factor 
of two fewer group operations evaluated quantumly in each run, at the expense of multiple runs.

In addition to PQC digital signature schemes, another promising idea using quantum systems to create digital 
signatures has emerged, called Quantum Digital Signature (QDS). The QDS was first proposed by Gottesman and 
Chuang49, signing classical bits with qubits. QDS offers information-theoretic security of signatures guaranteed 
by the laws of quantum mechanics. Lü and Feng proposed their QDS based on quantum one-way functions50, a 
novel arbitrated quantum digital signature scheme to sign general quantum states. Clarke et al. experimentally 
demonstrated QDS using phase-encoded coherent states51. Wallen et al. presented their QDS with QKD com-
ponents and offered their security proof52. Hong et al. presented their QDS in a network with a signer, multiple 
verifiers, and a trusted center, a quantum counterpart of the classical PKI53. Single-bit QDS was first extended to 
multi-bit QDS by Wang et al.54 and further by Wang and Wang in 2019 with a more efficient protocol55. Inspired 
by the measurement-device-independent continuous-variable scheme in QKD, Zhao et al. first proposed their 
Continuous-Variable QDS (CV-QDS) in 2021 for both single-bit and multi-bit schemes56. They later improved 
CV-QDS to remove the loopholes of the practical detectors and eliminate all side-channel attacks57.

To visualize the various approaches and differences between the described digital signature schemes, we 
provide the Table 1. There are two groups of rows: classical data and quantum data. The first column lists classical 
techniques applicable to classical data. The second group of columns summarizes quantum techniques applicable 
to classical or quantum data. In the classical data case, we provide the name of the primitive, basis, known most 
effective attack, and whether it is considered for the NIST third round. In the quantum data case, we provide the 
name of two applicable techniques.

MPPK digital signature and verification
MPPK/DS is a digital signature and verification scheme that uses public keys. We formally define the concept of 
a digital signature and verification using public keys, consistently with other authors58,59.
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Definition 3.1  (Digital signature) A digital signature scheme is specified by a pair of algorithms. There are two 
parties: a signer and a verifier. To sign a message µ , the signer uses a signing private key s and an algorithm Ss() 
to create a message-digital signature pair (µ, t) = Ss(µ) . The signer sends the pair (µ, t) . Upon reception of a 
message-digital signature pair (µ′, t′) , the verifier uses a public key v, corresponding to s, and a signature verify-
ing algorithm Vv() to evaluate if t ′ is a matching digital signature for µ′ . When there is a match, the evaluation 
Vv(µ

′) returns (µ′,VALID) , otherwise it yields (µ′, INVALID).

Key generation can also be addressed explicitly. Hence, MPPK/DS comprises three algorithms: key genera-
tion, signing and signature verifying. They are respectively described in "Key generation algorithm", "Signing 
algorithm" and "Signature verifying algorithm".

Key generation algorithm.  MPPK/DS has its own public-key and private-key operations. A key genera-
tion algorithm produces a private key and a corresponding public key. Said algorithm is described in this subsec-
tion. The algorithm has the following security parameters: 

1.	 A chosen generalized safe prime p = 2xq+ 1 that determines the index of a finite field defining the domain 
of all coefficients and variables. Note that its Euler’s totient ϕ(p) is equal to p− 1 , or 2xq.

2.	 Positive integers m, n,  and � , that respectively specify the number of noise variables, the degree of a base 
polynomial, defined in the Eq. (1), and the degree of two univariate polynomials, defined in the Eq. (3).

3.	 The positive integers ℓ1, . . . , ℓm that determine the degrees of noise variables in the base polynomial, as 
defined in Eq. (2).

The signer and verifier agree on the actual values of the security parameters upon establishing communication.
Note that the set GF(p), or Z/pZ . denotes the integers modulo p. Let GF(p) be the domain of variables 

x0, x1, . . . , xm . Variable x0 denotes a message or the hashed value of a message. Variables x1, . . . , xm ≥ 1 represent 
noise. We also refer to the set GF(ϕ(p)) , or Z/ϕ(p)Z , the integers modulo ϕ(p).

With all arithmetic done modulo ϕ(p) , the following mathematical objects are created by the signer: 

1.	 A multivariate base polynomial of the form 

	   The constants l1, . . . , lm are positive integers. The coefficients cij1...jm are randomly selected from GF(ϕ(p)) . 
Written with respect to the variable x0 , Eq. (1) is a polynomial of the form 

2.	 Two univariate polynomials of the form 

	   The coefficients fi and hi are randomly selected from GF(ϕ(p)).
3.	 Using the base polynomial and two univariate polynomials, two product polynomials are created 

	   Polynomial φ(x0, x1, . . . , xm) can also be written in the form (similarly for ψ(x0, x1, . . . , xm) ) 

(1)β(x0, x1, . . . , xm) =
n∑

i=0

l1∑

j1=0

· · ·
lm∑

jm=0

cij1...jmx
i
0x

j1
1 · · · xjmm .

(2)β(x0, x1, . . . , xm) =
n∑

i=0

βi(x1, . . . , xm)x
i
0, with βi(x1, . . . , xm) =

l1∑

j1=0

· · ·
lm∑

jm=0

cij1...jmx
j1
1 · · · xjmm .

(3)f (x0) =
�∑

i=0

fix
i
0 and h(x0) =

�∑

i=0

hix
i
0.

φ(x0, x1, . . . , xm) = f (x0)β(x0, x1, . . . , xm) and ψ(x0, x1, . . . , xm) = h(x0)β(x0, x1, . . . , xm).

Table 1.   Summary of related work.

Classical technique Quantum technique

Classical data

Primitive Based on Most effective attack NIST 3rd round finalist

RSA1 LUOV16 UOV18 Nested subfield attack26

DSA Rainbow17 UOV18 Min-Rank attacks27 �

ECDSA2 GeMSS31 HFE34 Due to Ding34 �

MQDSS32 Fiat-Shamir Due to Kales and Zaverucha33

Quantum data
– QDS49–55

CV-QDS56,57
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	   For i ∈ {0, . . . , n} and j ∈ {0, . . . , �} , every φk(x1, . . . , xm) (similarly for ψk(x1, . . . , xm) ) has the form 

4.	 Two univariate polynomials containing only the message variable x0

 for randomly selected eφi , eψi ∈ GF(ϕ(p)).
5.	 Two even random integers R0,Rn in GF(ϕ(p)).
6.	 Using the integers R0,Rn, two noise functions are created 

 where β0(x1, . . . , xm) and βn(x1, . . . , xm) are as defined in the Eq. (2).
7.	 Let �(x0, x1, . . . , xm) be the polynomial φ(x0, x1, . . . , xm) without the highest order term and the constant 

term with respect to the variable x0 , namely 

 where the coefficients φk(x1, . . . , xm) are as defined in the Eq. (5), ignoring the constant term and highest 
order term with respect to the variable x0 . Such polynomial is created. Similarly, polynomial 

 is created.
8.	 Using Eφ(x0) , Eψ(x0) , R0 , Rn , �(x0, x1, . . . , xm) , and �(x0, x1, . . . , xm) two polynomials 

 are created.
The private key s consists of the following items: 

1.	 The two univariate polynomials f (x0) and h(x0).
2.	 The values of the two even noise constants R0 and Rn.
3.	 Polynomials Eφ(x0) and Eψ(x0).

The public key v comprises the following elements: 

1.	 The two polynomials P(x0, x1, . . . , xm) and Q(x0, x1, . . . , xm).
2.	 The two noise functions N0(x1, . . . , xm) and Nn(x0, x1, . . . , xm).

Signing algorithm.  Let µ be a message, or the hash of a message. Let g ∈ GF(p) , with g ≥ 2 , be a randomly 
selected base. All arithmetic is done modulo ϕ(p) , unless specified otherwise. Using the signer’s private key s, the 
signing algorithm consists of computing the following items: 

1.	 A = ga mod p , with a = R0f (µ).
2.	 B = gb mod p , with b = Rnh(µ).
3.	 C = gc mod p , with c = s0(µ) = Rn[h(µ)f0 − f (µ)h0].
4.	 D = gd mod p , with d = sn(µ) = R0[h(µ)f� − f (µ)h�].
5.	 E = ge mod p , with e = t(µ) = R0Rn[h(µ)Eφ(µ)− f (µ)Eψ(µ)].

(4)φ(x0, x1, . . . , xm) =
n+�∑

k=0

φk(x1, . . . , xm)x
k
0 .

(5)φk(x1, . . . , xm) =
∑

k=i+j

fiβj(x1, . . . , xm).

Eφ(x0) =
n+�−1∑

i=1

eφi x
i
0 and Eψ(x0) =

n+�−1∑

i=1

eψi x
i
0

(6)N0(x1, . . . , xm) =R0β0(x1, . . . , xm) and

(7)Nn(x0, x1, . . . , xm) =Rnβn(x1, . . . , xm)x
n+�

0

(8)�(x0, x1, . . . , xm) =
n+�−1∑

k=1

φk(x1, . . . , xm)x
k
0 ,

(9)�(x0, x1, . . . , xm) =
n+�−1∑

k=1

ψk(x1, . . . , xm)x
k
0

(10)P(x0, x1, . . . , xm) =R0
(
�(x0, x1, . . . , xm)− Eφ(x0)

)
=

n+�−1∑

k=1

R0(φk(x1, . . . , xm)− eφk )x
k
0 and

(11)Q(x0, x1, . . . , xm) =Rn
(
�(x0, x1, . . . , xm)− Eψ(x0)

)
=

n+�−1∑

k=1

Rn(ψk(x1, . . . , xm)− eψk
)xk0
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The digital signature is the quintuple (A, B, C, D, E). The signing algorithm yields Ss(µ) = (µ, (A,B,C,D,E)) . 
The components A, B, C, D and E are required to be not equal to 0 or 1. If any of A, B, C, D and E is 1, a new ran-
dom base g is chosen and a new quintuple (A, B, C, D, E) is created. The signer sends the pair ((µ, (A,B,C,D,E)) 
to the verifier.

Signature verifying algorithm.  All arithmetic is done modulo ϕ(p) , unless specified otherwise. Upon 
receiving a message (or the hash of a message) µ and a corresponding signature (A, B, C, D, E) from a signer, 
the verifier applies the signature verifying algorithm using the signer’s public key v. Using µ for x0 and randomly 
chosen positive values r1, . . . , rm ∈ GF(ϕ(p)) for the noise variables x1, . . . , xm , the verifier evaluates the two 
public polynomials

and the noise functions

When AQ̄ is equal to BP̄CN̄0DN̄nE mod p , the signature verifying algorithm Vv(µ) returns (µ,VALID) , oth-
erwise it yields (µ, INVALID).

Note that there are multiple choices for the random variables x1, . . . , xm . They all produce various values for 
P̄, Q̄ , N̄n , and N̄0 . Thus, MPPK/DS falls into the category of non deterministic digital signature algorithms in 
the sense that verifying the same valid signature several times with different values of the polynomial resolves 
in equalities.

Lemma 3.2  (Completeness) Given a message µ , a public key v and corresponding private key s we have 
Vv(Ss(µ)) = (m,VALID).

Proof  It follows from the modular arithmetic property: if a ≡ b mod ϕ(p), then ga = gb mod p, where g and 
p are co-prime numbers. Note, that polynomial R0Rnφ(x0, x1, . . . , xm) can be expressed as

and polynomial R0Rnψ(x0, x1, . . . , xm) can be expressed as

Multiplying polynomial φ(x0, x1, . . . , xm) by R0Rnh(x0) , and ψ(x0, x1, . . . , xm) by R0Rnf (x0) yields the fol-
lowing equality.

Using Eqs. (12) and (13), Eq. (14) can be expanded as

This expression can be rewritten as

where s0(x0) = Rn(h(x0)f0 − f (x0)h0 ), sn(x0) = R0(h(x0)f� − f (x0)h�) , and t(x0) = R0Rn
(
h(x0)Eφ(x0)− f (x0)

Eψ(x0)
)
. Performing modular exponentiation of Eq. (17) results in

This equality can be rewritten as

Security analysis
We discuss attack models on digital signature algorithms. There are three attack types: chosen-message, known-
message, and key-only. There are two sub-categories in the chosen-message attack: direct-chosen and generic-
chosen, depending on whether the adversary knows the public key. If the adversary knows the public key, then 
the direct-chosen method can replace a message signed by the signer with a message the adversary wants but 
with the signer’s signature. If the adversary does not know the public key, then the generic-chosen method can 
trick the signer into digitally signing a message that it does not intend to sign. In the known message attack, the 
adversary obtains old messages and signatures. It tries to forge signatures for messages that the signer does not 
intend to sign. It uses brute force to analyze old data to recreate the signer’s signature. This attack is analogous to 

P̄ = P(x0, x1, . . . , xm) and Q̄ = Q(x0, x1, . . . , xm).

N̄0 = N0(x1, . . . , xm) and N̄n = Nn(x0, x1, . . . , xm).

(12)Rnf0N0(x1, . . . , xm)+ R0f�Nn(x0, x1, . . . , xm)+ RnP(x0, x1, . . . , xm)+ R0RnEφ(x0)

(13)Rnh0N0(x1, . . . , xm)+ R0h�Nn(x0, x1, . . . , xm)+ R0Q(x0, x1, . . . , xm)+ R0RnEψ(x0).

(14)R0Rnh(x0)φ(x0, x1, . . . , xm) = R0Rnf (x0)ψ(x0, x1, . . . , xm).

(15)h(x0)
(
Rnf0N0(x1, . . . , xm)+ R0f�Nn(x0, x1, . . . , xm)+ RnP(x0, x1, . . . , xm)+ R0RnEφ(x0)

)
=

(16)f (x0)
(
Rnh0N0(x1, . . . , xm)+ R0h�Nn(x0, x1, . . . , xm)+ R0Q(x0, x1, . . . , xm)+ R0RnEψ(x0)

)
.

(17)
f (x0)R0Q(x0, x1, . . . , xm) = h(x0)RnP(x0, x1, . . . , xm)+ N0(x1, . . . , xm)s0(x0)

+ Nn(x0, x1, . . . , xm)sn(x0)+ t(x0).

gf (x0)R0Q(x0,x1,...,xm) = gh(x0)RnP(x0,x1,...,xm)+N0(x1,...,xm)s0(x0)+Nn(x0,x1,...,xm)sn(x0)+t(x0) mod p.

gaQ̄ = gbP̄gcN̄0gdN̄nge mod p or AQ̄ = BP̄CN̄0DN̄nE mod p.
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the known-plaintext attack on encryption. The signer’s public key is assumed to be available to everyone in the 
key-only attack. The adversary uses this fact and tries to recreate the signer’s signature and digitally sign messages 
that the signer does not intend to do. This causes a significant threat to the authentication of messages, which is 
non-repudiated as the signer cannot deny signing it.

A digital signature using RSA1, without hashing messages, is vulnerable to the known-message and chosen-
message attacks. This is due to its multiplicative property where a product of messages leads to a product of their 
signatures. Once an attacker knows the public key, then the signer is requested to sign a public key encrypted 
message y. The returning signature x forms a message-signature pair of x and y called a key-only attack. Therefore, 
the RSA digital signature must be used with a cryptographic hash function. The ElGamal digital signature60 and 
Digital Signature Algorithm (DSA)10, based on the DLP, also require the use of a cryptographic message hash 
function to prevent existential forgery.

These digital signature attacks are not applicable to MPPK/DS. Unlike the RSA signature scheme, MPPK/DS 
is not a one-way trap door type of digital signature, with decryption for signing and encryption for verification. It 
is also not a DLP-type signature scheme like DSA, with a public generator as modulo arithmetic exponentiation 
base. Most importantly, it does not use a secret message directly as the exponent in the modulo arithmetic expo-
nentiation to calculate the signature. It uses polynomials evaluated at the message in the exponent for modulo 
arithmetic exponentiation. Therefore, MPPK/DS is not vulnerable to the above signature attacks. Furthermore, 
techniques for solving the DLP, such as the ones using the Shor’s quantum algorithm, are not directly applicable.

Cracking MPPK/DS boils down to producing a signature for a fake message that passes verification. In other 
words, it requires a universal or selective forgery of signatures. To achieve that, adversaries must crack public 
keys or signatures to obtain private keys or directly brute force the values A, B, C, D, and E consistently with the 
verification relationship. In the remainder of this section, we analyze the security of MPPK/DS. We examine 
possible approaches a malicious party could take to obtain the private key from a public key and a signature. We 
also discuss digital signature spoofing vulnerabilities.

Security of the private key given the public key.  MPPK/DS stems from MPPK KEM. Most of the 
security analysis done by Kuang et al.5 directly applies to MPPK/DS. Public keys in both algorithms are almost 
identical, except for the modulo ϕ(p) in the exponent polynomial computations. They share the same relation-
ship with the corresponding private keys.

We start by considering whether it is possible to obtain any components of the private key from the published 
coefficients of polynomials P(x0, x1, . . . , xm) and Q(x0, x1, . . . , xm). Note that all the calculations involving private 
and public keys are performed modulo ϕ(p) = p− 1 = 2xq. Recall, that every term of the coefficients of the 
public polynomials P(x0, x1, . . . , xm) and Q(x0, x1, . . . , xm) contains R0 and Rn respectively. Since both R0 and 
Rn are not co-prime with ϕ(p) , it is not possible for a malicious party to solve the system of equations generated 
by the coefficients of P(x0, x1, . . . , xm) and Q(x0, x1, . . . , xm) correctly in the ring Z/ϕ(p)Z. That is because it is 
impossible to divide by the terms containing R0 and Rn in the ring Z/ϕ(p)Z. However, q and 2x are co-prime, 
so the ring of integers Z/ϕ(p)Z ∼= Z/qZ× Z/2xZ. Hence, calculations to obtain private keys from public keys 
can essentially be performed modulo q and 2x , and then lifted to modulo ϕ(p) = 2xq. Notice, that since R0 and 
Rn are even it is not possible to gain any information modulo 2x . Hence, the attacker is reduced to solving the 
system of equations modulo q, and lifting the solutions to the ring Z/ϕ(p)Z in order to find the actual solution.

Since it is not possible to fully solve the system of equations generated by the coefficients of P(x0, x1, . . . , xm) 
and Q(x0, x1, . . . , xm) modulo ϕ(p) or 2x , since R0 and Rn are even, we turn our attention to the ring Z/qZ . We 
first discuss two ways of considering the publicly available coefficients of P(x0, x1, . . . , xm) and Q(x0, x1, . . . , xm) 
modulo q. One way is to consider the coefficients of P(x0, x1, . . . , xm) and Q(x0, x1, . . . , xm) that are not associ-
ated with the pure x0 term, namely pkj1j2...jm and qkj1j2...jm for all k ∈ {1, . . . , n+ �− 1} and j1j2 . . . jm  = 00 . . . 0. 
Solving this system of equations does not give the attacker any information about the signature component E. 
The other way for a malicious party to find private keys from public keys is to consider all of the shared coef-
ficients of P(x0, x1, . . . , xm) and Q(x0, x1, . . . , xm) including coefficients pk00...0 =

∑

k=t+s ft cs00...0 − eφk and 
qk00...0 =

∑

k=t+s htcs00...0 − eψk
 respectively for all k ∈ {1, . . . , n+ �− 1}. The latter approach involves systems 

of equations with more variables and equations. Note also that the term E can be derived from A, B, C, and D 
as E = AQB−PC−N0D−Nn .

We start by considering the first approach, namely the one without coefficients of P(x0, x1, . . . , xm) and 
Q(x0, x1, . . . , xm) associated with pure x0 terms modulo q. Note that similar to MPPK KEM5, we can set the public 
key parameters in such a way that the attacker is faced with an underdetermined systems of equations when 
considering the shared coefficients of the polynomial P(x0, x1, . . . , xm) separately from the shared coefficients 
of the polynomial Q(x0, x1, . . . , xm).

Proposition 4.1  Let β(x0, x1, . . . , xm) =
∑n

i=0

lk∑

jk=0
k∈{1,...m}

cij1...jmx
i
0x

j1
1 . . . x

jm
m  be the base polynomial. Publicly avail-

able coefficients of P(x0, x1, . . . , xm) , without pure x0 terms, form an underdetermined system of equations, when 
(�− 2)([

∏m
k=1(lk + 1)] − 1) < �+ 2 . The same holds true for the coefficients of Q(x0, x1, . . . , xm) considered 

independently without the pure x0 terms.

Proof  Let (�− 2)([
∏m

k=1(lk + 1)] − 1) < �+ 2 . Publicly available coefficients of P(x0, x1, . . . , xm) or 
Q(x0, x1, . . . , xm) considered independently, and without pure x0 terms, form a system of
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if the base polynomial is defined as β(x0, x1, . . . , xm) =
∑n

i=0

lk∑

jk = 0
k ∈ {1, . . .m}

cij1...jmx
i
0x

j1
1 . . . x

jm
m . Since 

(�− 2)([
∏m

k=1(lk + 1)] − 1) < �+ 2 , the number of variables 
[
(n+ 1)

([∏m
k=1(lk + 1)

]
− 1

)]
+ �+ 2 is greater 

than the number of equations (n+ �− 1)
([∏m

k=1(lk + 1)
]
− 1

)
.

Corollary 4.2  Let the base polynomial be β(x0, x1, . . . , xm) =
∑n

i=0

(
∑J

j=1 cijXj

)

xi0, where Xj =
∏

k x
jk
k  for any 

desired jk . Then publicly available coefficients of P(x0, x1, . . . , xm) , without pure x0 terms, form an underdetermined 
system of equations, when (�− 2)(J − 1) < �+ 2 . The same holds true for publicly available coefficients of 
Q(x0, x1, . . . , xm) considered independently without the pure x0 terms.

Proof  Let the base polynomial be defined as β(x0, x1, . . . , xm) =
∑n

i=0

(
∑J

j=1 cijXj

)

xi0, where Xj =
∏

k x
jk
k  for 

any desired jk . In this case, the coefficients of the polynomial P(x0, x1, . . . , xm) or Q(x0, x1, . . . , xm) without pure 
x0 terms considered independently from one another form a system of

Let (�− 2)(J − 1) < �+ 2 . Then, the number of variables (n+ 1)(J − 1)+ �+ 2 is greater than the number 
of equations (n+ �− 1)(J − 1).

Proposition 4.3  When the coefficients of P(x0, x1, . . . , xm) and Q(x0, x1, . . . , xm) , without the pure x0 terms, are 
examined together they form an overdetermined system of equations.

Proof  Let the base polynomial be as defined in the Corollary  4.2. Considering two public polynomials 
P(x0, x1, . . . , xm) and Q(x0, x1, . . . , xm) together yields a system of

Equivalently, if the base polynomial is defined as in the Proposition 4.1, then considering P(x0, x1, . . . , xm) 
together with Q(x0, x1, . . . , xm) yields a system of

We now consider the second approach, namely the one that includes coefficients of P(x0, x1, . . . , xm) and 
Q(x0, x1, . . . , xm) associated with pure x0 term modulo q.

Proposition 4.4  Let the base polynomial be β(x0, x1, . . . , xm) =
∑n

i=0

lk∑

jk=0
k∈{1,...m}

cij1...jmx
i
0x

j1
1 . . . x

jm
m  . Let 

(�− 2)(
∏m

k=1(lk + 1)) < n+ 2�+ 1 . The shared coefficients of the polynomial P(x0, x1, . . . , xm) , including the 
pure x0 terms, considered separately from the shared coefficients of the polynomial Q(x0, x1, . . . , xm) , and vice versa, 
produce an underdetermined system of equations.

Proof  Let the base polynomial be defined as β(x0, x1, . . . , xm) =
∑n

i=0

lk∑

jk=0
k∈{1,...m}

cij1...jmx
i
0x

j1
1 . . . x

jm
m  . Considering 

the shared coefficients of the polynomial P(x0, x1, . . . , xm) separately from the shared coefficients of the polyno-
mial Q(x0, x1, . . . , xm) and vice versa produces a system of

Let (�− 2)(
∏m

k=1(lk + 1)) < n+ 2�+ 1 . The number of variables 
[
(n+ 1)

(∏m
k=1(lk + 1)

)]
+ n+ 2�+ 1 is 

greater than the number of equations (n+ �− 1)
(∏m

k=1(lk + 1)
)
.

Corollary 4.5  Let the base polynomial be defined as β(x0, x1, . . . , xm) =
∑n

i=0

(
∑J

j=1 cijXj

)

xi0, where Xj =
∏

k x
jk
k  

for any desired jk . Let (�− 2)J < n+ 2�+ 1 . The shared coefficients of the polynomial P(x0, x1, . . . , xm) , including 
the pure x0 terms, considered separately from the shared coefficients of the polynomial Q(x0, x1, . . . , xm) , and vice 
versa, produce an underdetermined system of equations.

(n+ �− 1)

([
m∏

k=1

(lk + 1)

]

− 1

)

equations in

[

(n+ 1)

([
m∏

k=1

(lk + 1)

]

− 1

)]

+ �+ 2 variables,

(n+ �− 1)(J − 1) equations in (n+ 1)(J − 1)+ �+ 2 variables.

2(n+ �− 1)(J − 1) equations in (n+ 1)(J − 1)+ 2�+ 4 unknowns.

2(n+ �− 1)

([
m∏

k=1

(lk + 1)

]

− 1

)

equations in (n+ 1)

([
m∏

k=1

(lk + 1)

]

− 1

)

+ 2�+ 4 unknowns.

(n+ �− 1)

(
m∏

k=1

(lk + 1)

)

equations in

[

(n+ 1)

(
m∏

k=1

(lk + 1)

)]

+ n+ 2�+ 1 variables.
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Proof  Let the base polynomial be β(x0, x1, . . . , xm) =
∑n

i=0

(
∑J

j=1 cijXj

)

xi0, where Xj =
∏

k x
jk
k  for any desired 

k and jk . Considering all the public coefficients of P(x0, x1, . . . , xm) or Q(x0, x1, . . . , xm) separately produces a 
system of

Let (�− 2)J < n+ 2�+ 1 . Then such system is underdetermined.

Proposition 4.6  If the publicly available coefficients of the polynomials P(x0, x1, . . . , xm) and Q(x0, x1, . . . , xm) are 
considered together, they can produce an overdetermined or an underdetermined system of equations, depending 
on the parameters n, �,m, and lk for each k ∈ {1, . . . ,m}.

Proof  Let the base polynomial be as in the Proposition 4.1. Considering the coefficients of P(x0, x1, . . . , xm) and 
Q(x0, x1, . . . , xm) together, they will produce a systems of

Then if � = 3, n = 2, and 
∏m

k=1(lk + 1) = 5 , the system of equations produces by the coefficients of 
P(x0, x1, . . . , xm) together with Q(x0, x1, . . . , xm) is overdetermined. On the other hand, if n = 2, � = 2, and 
∏m

k=1(lk + 1) = 3 , such system is underdetermined.
Equivalently, if the base polynomial is defined as in the Proposition 4.2, then public polynomials considered 

together result in the system of

Such system is overdetermined if � = 3, n = 2, and J = 5 , and underdetermined when n = 2, � = 2, and J = 3.

We claim that one possible way for the attacker to solve the systems of equations produced by the coefficients 
of the shared polynomials P(x0, x1, . . . , xm) and Q(x0, x1, . . . , xm) , regardless of whether it is underdetermined 
or overdetermined, is to solve the system modulo q first, then lift the solutions to the ring Z/ϕ(p)Z. For instance, 
assume that the attacker can solve the system of equations produced by the polynomial P(x0, x1, . . . , xm) in the 
ring Z/qZ to find f0 . This result considered modulo ϕ(p) is not a single value, but rather an entire equivalence 
class or equivalently a list of values of the form f0 + iq less than ϕ(p) for positive integers i. Such a list consists 
of 2x values. One of the list values is the correct solution modulo ϕ(p). One way to deterministically conclude 
whether the value is correct is to solve the same system of equations in the ring Z/2xZ . Similarly, consider the 
equivalence class generated by the solution f0 modulo 2x to lift it to the ring Z/ϕ(p)Z . The correct value modulo 
ϕ(p) is an element present in both equivalence classes or lists. On its own, this problem depends on the size of 
the lists, or equivalently the number of elements of the equivalence classes less than ϕ(p) . Note, however, that 
the attacker is unable to fully solve the system of equations modulo 2x , since R0 and Rn are even numbers, thus 
it is impossible to find an inverse of R0 or Rn in the ring Z/2xZ . So the attacker is reduced to only solving the 
system of equations in the field Z/qZ , and then trying to lift the solution to the ring Z/ϕ(p)Z using another way. 
The complexity of solving underdetermined systems of m equations in n unknowns over a field Fq is 

O



q
m−min

�

m
2 ,

��
n
2−

√
n
2

��

21. The complexity of solving an overdetermined system of equations modulo q is 

O

(

qn
(
2.718k
log q

)n)

 , where n is the number of variables, and k is the highest degree of the polynomials61. Note that 
the results found modulo q are not deterministic, since the lifting step adds uncertainty to the solution. One way 
to successfully lift the solutions modulo q to modulo ϕ(p) is to recreate the terms of the form pkj1j2...jm and 
qkj1j2...jm , where pkj1j2...jm and qkj1j2...jm are coefficients of the polynomials P(x0, x1, . . . , xm) and Q(x0, x1, . . . , xm) 
respectively using the elements in the equivalence classes of the solutions found modulo q. Classical complexity 
of this lifting approach is O

(

2c
⌈
n+1
�+1

⌉

2xv
)

, where v is the number of unknowns, and c is an integer that depends 

on n, and � . Quantum complexity is O
(√

2c
⌈
n+1
�+1

⌉

2xv
)

 due to Grover’s algorithm. Depending on if the attacker 

is including the pure x0 terms, v and c will vary.
Thus, as with MPPK KEM5, the malicious party chooses whether to take advantage of the shared coefficients 

and solve an overdetermined system of equations or consider an underdetermined system of equations and use 
the solution to such system to solve another set of equations. Let pkj1...jm be the shared coefficient of the polyno-
mial P(x0, x1, . . . , xm) associated with the term xk0x

j1
1 · · · xjmm .

Claim 4.7  There exists a way to attack the publicly available coefficients of P(x0, x1, . . . , xm) and Q(x0, x1, . . . , xm) 
modulo q, and then lift the solution to the ring Z/ϕ(p)Z.  This attack has classical complexity of 
O

(

q�+2
[

2
⌈
n+1
�+2

⌉

2x(�+2)
])

.

(n+ �− 1)J equations in [(n+ 1)J]+ n+ 2�+ 1 variables.

2(n+ �− 1)

(
m∏

k=1

(lk + 1)

)

equations in

[

(n+ 1)

(
m∏

k=1

(lk + 1)

)]

+ 2n+ 4�+ 2 variables.

2(n+ �− 1)J equations in [(n+ 1)J]+ 2n+ 4�+ 2 variables.
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Proof  Begin by working in the ring Z/qZ . First, use brute force search to find the noise coefficient R0 . Then, 
divide the values of the shared coefficients pk11...1 by R0 to obtain new values p′k11...1 , for all k ∈ {1, . . . , n+ �− 1} . 
Suppose that � = 3 . The system of equations generated by the new coefficients of public polynomials can be 
viewed as

Then the coefficients cij1...jm of the base polynomial can be expressed as

The values p′k11...1 are known for each k ∈ {1, . . . , n+ �− 1} . Suppose that the values for ft are found for each 
t ∈ {0, 1, . . . , �} , then it is possible to find the coefficients ci11...11 for all i ∈ {0, . . . , n} . Once the coefficients ci11...11 
are found, they can be directly substituted in the system of equation generated by the publicly available terms 
qk11...1 of Q(x0, x1, . . . , xm) to solve for h′t = Rnht for all t ∈ {0, 1, . . . , �} . Suppose that Rn is known, then it is a 
simple calculation to find ht for all t ∈ {0, . . . , �}. Note that the attacker can divide coefficients of Nn by the coef-
ficients of the base polynomial to derive Rn . Then the attacker can construct signature components A, B, C, and 
D once they lift the solutions to the ring Z/ϕ(p)Z . The malicious party can use values A, B, C and D to derive E 
since E = AQB−PC−N0D−Nn . So in order to find all the private information modulo q necessary to forge a sig-
nature one needs to brute force search R0 and ft for all t ∈ {0, . . . , �} . The complexity of this part of the approach 
is O

(
q�+2

)
 using classical system and O

(√

q�+2
)

 using a quantum system.
Note however, that to find the original value modulo ϕ(p) , the attacker needs to lift the solutions modulo q 

to modulo ϕ(p) . The attacker knows actual shared values of the coefficients of P(x0, x1, . . . , xm) and 
Q(x0, x1, . . . , xm) . Thus, the attacker can try to recreate these coefficients using elements of the equivalence classes 
or lists generated by the solutions modulo q to find a match between the actual value and the one recreated by 
the attacker. The classical complexity of the lifting method is O

(

2
⌈
n+1
�+2

⌉

2x(�+2)
)

. Using Grover’s algorithm, 

quantum complexity of the lifting method is O
(√

2
⌈
n+1
�+2

⌉

2x(�+2)

)

.

Overall, the classical complexity of this attack is O
(

q�+2
[

2
⌈
n+1
�+2

⌉

2x(�+2)
])

 and the quantum complexity of 

this attack is O
(√

q�+2
[

2
⌈
n+1
�+2

⌉

2x(�+2)
])

.

It is worth mentioning, that in the case of digital signatures, there exists a way to simplify some of the 
equations produced by the coefficients of P(x0, x1, . . . , xm) and Q(x0, x1, . . . , xm) . Let pij1...jm be a coefficient 
of the polynomial P(x0, x1, . . . , xm) associated with the term xi0x

j1
1 · · · xjmm  . Since the coefficients of the noise 

function N0(x1, . . . , xm) are components of the terms plj1j2...jm for l ∈ {1, . . . , �} and jk ; k ∈ {1, 2, . . . ,m} , their 
values can be directly substituted in these expressions. Similar calculations can be done for the coefficients of 
Nn(x0, x1, . . . , xn) and terms qkj1j2...jm for jl ; l ∈ {1, 2, . . . ,m}, and k ∈ {n, n+ 1, . . . , n+ �− 1}. Such advantage 
does not effect the solution modulo ϕ(p) , since R0 and Rn are not co-prime to ϕ(p), however these substitutions 
do benefit the attacker working in the ring Z/qZ by providing unique solution modulo q. Lifting the solutions 
up to the ring Z/ϕ(p)Z has complexity O(2c(2xv)), where v is the number of unknowns and c is some constant 
that depends on � and n.

Another attack on the public keys is described in the Kuang’s et al.’s MPPK KEM paper. It leverages the fact 
that the malicious party can produce as many noise functions N0 and Nn as they want, and solve the system pro-
duced by the noise variables to retrieve private information. However, similarly to MPPK KEM, if the malicious 
party generated a set of equations of the form N0(x0, x

′
1, . . . , x

′
m) = N̄0 aiming to find R0 or the coefficients of the 

form c0j1...jm , they are unable to succeed. In the MPPK/DS case the inability to carry out this attack comes from 
the incapacity to divide by R0 , since R0 is not co-prime to ϕ(p) . The same holds true for equations of the form 
N̄n = Nn(x0, x

′
1, . . . , x

′
m) , and Rn not co-prime with ϕ(p). If the attacker considers these equations modulo q, 

they have the same issue as we described in Kuang et al.’s paper5, namely the system will produce all zero results.
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One of the differences between the MPPK KEM and MPPK/DS algorithms is that the ratios of the form f0h0 ,
f�
h�

 , 
c0j1 ...jm
c0j′1 ...j

′
m

 , and cnj1 ...jmcnj′1 ...j
′
m

 for any j1 . . . jm cannot be derived modulo ϕ(p) in the MPPK/DS algorithm since R0 , and Rn 
are not co-prime with ϕ(p) . This makes the MPPK/DS algorithm more secure in the sense that it is not possible 
to obtain explicit relationships between the components of the private key.

We now describe another attack on the public key carried out in the ring GF(ϕ(p)) . Considering only the 
public key, one strategy for the attack in the ring Z/ϕ(p)Z is to brute force search for the terms R0,Rn , ft , and 
ht for all t ∈ {0, . . . , �} in the ring Z/ϕ(p)Z . The complexity of this search is O([(ϕ(p))2�+2][ϕ(p)− ϕ(p− 1)]2) 
using classical device and O([

√

(ϕ(p))2�+2][ϕ(p)− ϕ(p− 1)]) using a quantum system. Given the values for 
R0,Rn , ft , and ht for all t ∈ {0, . . . , �} , the attacker can produce the signature components A, B, C, and D for any 
hashed message x0 . The malicious party can use values A, B, C and D to derive E since E = AQB−PC−N0D−Nn , 
thus, fully forge the signature.

However, the next attack on the public key in the ring Z/ϕ(p)Z is far more efficient.

Claim 4.8  Finding the private key from public key in the ring Z/ϕ(p)Z has an optimal complexity of 
O([ϕ(p)]n+1 + 2× 2x(�+1)) , classically, and O(

√

[ϕ(p)]n+1 + 2×
√
2x(�+1)) using a quantum computer.

Proof  For the sake of simplicity, let us suppose that � = 3 . Begin by brute force searching for values ci111...1 for all 
i ∈ {0, 1, . . . , n}. The complexity of this step is O(ϕ(p)n+1) classically and O(

√

ϕ(p)n+1) using quantum computer. 
The coefficients pk11...1 of a public key polynomial P(x0, . . . , xm) for k ∈ {1, . . . , n+ �− 1} can be expressed as

where f ′t = R0ft for all t ∈ {0, 1, . . . , �}. Then the variables f ′t  can be found using

Equivalent calculations can be done for the variables h′t = Rnht for all t ∈ {0, 1, . . . , �}. The attacker can first 
verify if the coefficients ci11...1 found using brute force search are correct. For that, the attacker can check if all 
f ′t  s are zero for t > � . If the condition is met, then verify if all h′t s are zero for t > � . Then we have a candidate 
list of f ′t  , h′t , and ci11...1 for i ∈ {0, 1, . . . , n} . If the list only contains a single set of those coefficients, we then find 
the right coefficients. Having this information, the attacker can create signature components A and B. In order to 
create C and D, the attacker needs to find fi and hi for all i ∈ {0, ..., λ}. The most efficient way to do that would be 
to find it modulo q and then lift it to the ring Z/ϕ(p)Z. The attacker knows R0f0, c111...11 and N0 modulo q, these 
values can be used to find fi modulo q for all i ∈ {0, ..., λ}. Similar calculations are done for the values h0, ..., hλ in 
the field GF(q). The adversary then needs to lift these values to the ring  Z/φ(p)Z. Classical complexity of this part 
is O (2x(�+1)) because the adversary needs to test that the lifting is successful by confirming that  R0fifi

= R0 for 
all i ∈ {0, ..., λ}. Same is true for values of h0, ..., hλ. Using Grover’s algorithm implemented on a quantum device, 
the complexity becomes O(2×

√
2x(�+1)) for all 2(λ+1) values. Now the attacker is lacking only the signature 

component E, which he can get through A, B, C, D since E = AQB−PC−N0D−Nn . Hence, the overall complexity 
of this attack is O([ϕ(p)]n+1 + 2× 2x(�+1)) using classical system and O(

√

[ϕ(p)]n+1 + 2×
√
2x(�+1)) using 

quantum system.

Corollary 4.9  Given the public key, the most efficient attack for the private key has classical complexity of 
O(ϕ(p)n+1 + 2× 2x(�+1)) and quantum complexity of O(

√

ϕ(p)n+1 + 2×
√
2x(�+1)).

Security of the private key given the signature.  As mentioned in "Key generation algorithm", nei-
ther the base g nor the exponents R0f (x0),Rnh(x0), s0(x0), sn(x0) or t(x0) are known to anyone but the signing 
party. The signer simply shares the signature A, B, C, D and E. We now examine whether there are relationships 
between the signature components that a malicious party can exploit.
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Proposition 4.10  There is no explicit way to express A and B in terms of each other in the ring Z/ϕ(p)Z.

Proof  Recall, that A = gR0f (x0) and B = gRnh(x0) , where R0f (x0),Rnh(x0) are calculated modulo ϕ(p) = 2xq . If 
we consider the definition of a logarithm as logA B is a constant t, such that At = B mod p, it is apparent that 
t = h(x0)Rn

f (x0)R0
. However, the element 1R0 does not exist modulo ϕ(p) , since R0 is not co-prime with ϕ(p). Thus, such 

value t cannot be computed modulo ϕ(p). Similarly, logB A = f (x0)R0
h(x0)Rn

 but 1Rn does not exist in the ring Z/ϕ(p)Z . 
Hence, there is no explicit way to express A and B in terms of each other in the ring Z/ϕ(p)Z.

These values exist, however, modulo q. The attacker might be able to calculate them to find a ratio of the 
form h(x0)Rnf (x0)R0

 modulo q. It will not be possible, however, to correctly lift this value to the ring Z/ϕ(p)Z since the 
solution modulo 2x does not exist. However, if we consider the signature together with the public key there is 
a way to find public key, and as a result, forge the signature. We discuss this approach later, towards the end of 
the section. Moreover, if the adversary uses Shor’s algorithm to solve for a discrete logarithm, he will run into a 
problem. Indeed, let ḡ be a generator of a multiplicative group (Z/pZ)× , then

where none of the terms g ,R0, or f (x0) are known. Therefore, given the numerical value of logḡ A it is not be 
possible to conclude anything about the private key. Similarly,

where Rn, h(x0), and g are unknown. Thus, taking discrete logarithms of values A and B does not yield any explicit 
information modulo ϕ(p). Considering these logarithms modulo q, is the same as logB A since logB A = logḡ A

logḡ B
.

Proposition 4.11  There is no explicit way for the elements C and D to be expressed in terms of A and B modulo ϕ(p)

Proof  Consider

The expression RnR0  does not exist mod ϕ(p) . So it is not be possible to express C in terms of A and B modulo 
ϕ(p) . Similarly, D could be written as

but R0Rn does not exist mod ϕ(p) . Taking discrete logarithm does not yield any meaningful information either since

where f0, h0 are unknown, and RnR0  does not exist modulo ϕ(p). For the same reasons logḡ D does not offer any 
meaningful information.

On the other hand, note that the expression

where multiplication by R0 is purely symbolic, can exist modulo ϕ(p) . Then one might suggest to create a system 
of such equations for different values of A, B, and C in order to find R0,Rn, h0, and f0. Note, however, that it is 
not possible to solve such system as it will not be possible to express one variable in terms of the other. Indeed, 
expressing f0 or h0 in terms of Rn or R0 requires dividing by R0 and Rn respectively. Expressing R0 and Rn in terms 
of other values requires dividing by logḡ B or logḡ A , however, both of these values are a multiple of Rn and R0 
respectively, thus, not co-prime to ϕ(p). So approaching the problem this way does not provide a solution to the 
attacker. Similar argument can be made for Rn logḡ D = Rnf� logḡ B− R0h� logḡ A.

Nevertheless, these expressions can be considered modulo q, but it is exponentially hard to lift the solution 
to Z/ϕ(p)Z . Note that systems of equations with polynomials such as R0 logḡ C = R0f0 logḡ B− Rnh0 logḡ A 
considered modulo q will yield R0,Rn, f0, h0. Considering system of equations that consists of polynomials of the 
form Rn logḡ D = Rnf� logḡ B− R0h� logḡ A, yields R0,Rn, f�, and h� modulo q. Let � = 3 . One way to determine 
which elements of the equivalence classes of R0,Rn, f0, f�, h0 , and h� are the actual solutions in Z/ϕ(p)Z , is to use 
brute force search to find coefficients c011...1, c111...1, c211...1, c311...1 and f1, f2, h1, h2 and then compare the expres-
sions R0[f0c311...1 + f1c211...1 + f2c111...1 + f3c011...1] and Rn[h0c311...1 + h1c211...1 + h2c111...1 + h3c011...1] for all 
R0,Rn, f0, h0, f3, h3 in the equivalence classes to the actual values p3111...1 and q311...1 in Z/ϕ(p)Z . The classical 
complexity in this case is O((23x+1)(ϕ(p))8) . Otherwise, it is impossible to deterministically lift the solution to 
Z/ϕ(p)Z since these equations can not be considered modulo 2x . This approach can yieldA, B, C and D. The 
term E can be expressed using A, B, C, D as E = AQB−PC−N0D−Nn.

logḡ A = logḡ g
R0f (x0) = R0f (x0)× logḡ g (mod ϕ(p)),

logḡ B = logḡ g
Rnh(x0) = Rnh(x0)× logḡ g (mod ϕ(p)),

C = gRn[h(x0)f0−f (x0)h0] = Bf0 × A
− Rn

R0
h0 (mod p).

D = B
R0
Rn

f� × A−h� (mod p)

logḡ C = f0 × logḡ B+
(

−Rn

R0
h0

)

× logḡ A (mod ϕ(p)),

R0 logḡ C = R0f0 logḡ B− Rnh0 logḡ A (mod ϕ(p)),
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Lastly, we check if the term E can be used to gain any private information. The term E can be written as

Taking logarithm with respect to some generator ḡ ∈ Z/pZ yields

It is natural to consider a system of such equations for every new x0,A,B and E; however, the unknowns Eφ(x0) 
and Eψ(x0) change with every new choice of x0 so the system regardless of the number of polynomials is always 
underdetermined. Modulo q, the system is also underdetermined and does not produce unique solutions.

Another possible attack to deduce the private key from signature utilizes the public key. We describe it in 
the following proposition.

Proposition 4.12  For any hashed documents or message value x0 , cracking the MPPK/DS using sig-
nature, obtained from communication records, and public key has classical time complexity of 
O([2(2�+ 1) log p]q 3

2 2x(n+1)+x/2 + 2(�+ 1)× 2x) and quantum complexity of O(√q
√
2x(n+1) + 2(�+ 1)×

√
2x).

Proof  Start by computing logḡ A and logḡ B modulo q for different values of A and B associated with different x0 
to obtain a system of equations of the form

where θ = logḡ A

logḡ B
, and f ′t = R0ft , h

′
t = Rnht for all t ∈ {0, 1, . . . , �} . This step can be done in polynomial time 

using Shor’s algorithm implemented on a quantum computer. However, classically, one needs to use Baby-Step-
Giant-Step algorithm with classical computational complexity of O(2√p log p) for each value θ. Thus, to create 
the said system of equations the total complexity of this step is (2�+ 1) O (2

√
p log p). Then use brute force 

search to find the value h′0 , since the system is homogeneous. Classical complexity of the brute force search is 
O(q) and quantum complexity is O(√q) due to Grover’s algorithm. The value h′0 can be used to find f ′t  for all 
t ∈ {0, 1, . . . �} and h′l for all l ∈ {1, . . . , �} . Once these values are found, they can be used to create a matrix 
modulo q with respect to the coefficients of the public polynomials P(x0, x1, . . . , xm) and Q(x0, x1, . . . , xm) as 
shown in "Security of the private key given the public key". This matrix is used to find the coefficients ck111...1 of 
the base polynomial. Note that the coefficients of the noise functions and the base polynomial can be used to 
find R0 and Rn , and therefore, ft and ht for t ∈ {0, 1, . . . , �} . Everything computed using this approach up to this 
point is computed modulo q. Now, we lift the values ck11...1 for k ∈ {0, 1, . . . , n} to the ring Z/ϕ(p)Z , and use 
these values as well as the coefficients of the public polynomial P(x0, x1, . . . , xm) to check if the lift is successful. 
It is successful if the inverse of the matrix constructed using the coefficients of the base polynomial multiplied 
by the vector of the coefficients of the public polynomial p(x0, x1, . . . , xm) yields a vector with a few bottom values 
equal to 0. We discussed this construction in more detail "Security of the private key given the public key". Clas-
sical complexity of this lifting part is O(2x(n+1)) , and the quantum complexity is O(

√
2x(n+1)) due to Grover’s 

algorithm. The lifted values of the base polynomial coefficients are then used to find f ′t  and h′t in the ring Z/ϕ(p)Z 
for all t ∈ {0, 1, . . . , �} . In order to find R0 and Rn in the ring Z/ϕ(p)Z , one can simply divide the coefficients 
R0c011...1 of N0 by c011...1 and Rncn11...1 of Nn by cn11...1 . The only thing left to do in order to be able to create A, B, C 
and D for any x0 is to lift ft and ht to the ring Z/ϕ(p)Z for all t ∈ {0, 1, . . . , �} . That can be done by comparing 
the values f ′t  and h′t computed using matrix of base polynomial coefficients and the values R0 , Rn that are known 
and ft , ht lifted from Z/qZ . Classical complexity of lifting values ft and ht is O(2(�+ 1)2x) , and quantum com-
plexity is O(2(�+ 1)

√
2x) due to Grover’s algorithm. The overall classical complexity is then 

O([2(2�+ 1) log p]q 3
2 2x(n+1)+x/2 + 2(�+ 1)× 2x). Quantum complexity is O(√q

√
2x(n+1) + 2(�+ 1)×

√
2x) . 

Usingthis attack the malicious party can compute A, B, C and D for any hashed documents or message value x0. 
The value E can then be expressed as E = AQB−PC−N0D−Nn .

Proposition 4.13  For any hashed document or message value x0 , cracking the MPPK/DS using only signatures 
obtained from communication records, has classical time complexity of O(4(�+ 1)p�+1[√p log p]2x(2�+4)) and 
quantum complexity of O(

√

4(�+ 1)p�+12x(2�+4)).

Proof  This attack utilizes signature components A, B, C and D without the public key. Note that for any genera-
tor ḡ ∈ Fp , logarithm logḡ A = [f ′0 + f ′1x0 + . . .+ f ′

�
x�0 ] logḡ g . This equation has �+ 1 unknowns f ′t = R0ft , for 

t ∈ {0, . . . , �} . Let an adversary consider the following system of equations, where values Ak are obtained from 
communication records between the signer and the verifier for all values k ∈ {1, . . . , �+ 1}. 

E = gR0Rn[h(x0)Eφ(x0)−f (x0)Eψ (x0)] = BR0Eφ(x0)ARnEψ (x0) (mod p).

logḡ E = logḡ B(R0Eφ(x0))− logḡ A(RnEψ(x0)).

f ′0 + (f ′1 − θh′1)x0 + (f ′2 − θh′2)x
2
0 + . . .+ (f ′

�
− θh′

�
)x�0 = θh′0 (mod q),
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Classical computational complexity of computing discrete logarithms logḡ Ak is O(√p log p) for any 
k ∈ {1, . . . , �+ 1} , using Baby-Step-Giant-Step algorithm. On the other hand, using quantum computer one 
can compute discrete logarithms in polynomial time. The malicious party can brute force search for values logḡ gk 
for all k ∈ {1, . . . , �+ 1}. The complexity of this search is O(p�+1). Once, these values are found, the adversary 
can solve deterministically the system of equations modulo q in the Eq. (18) to retrieve private information f ′t  
for t ∈ {0, . . . , �} . The same values logḡ gk , for all k ∈ {1, . . . , �+ 1} , can be used to deterministically find the 
private information h′t = Rnht , for t ∈ {1, . . . , �} , from the system of equations similar to the one in Eq. (18) 
with signature component B computed modulo q. Classical complexity of this part comes from solving discrete 
logarithms of the form logḡ Bk for all k ∈ {1, . . . , �+ 1} . The complexity is equal to O([�+ 1][√p log p]). Using 
private values found this way, the adversary can construct A and B for any message. For values C and D the 
adversary can consider the following system of equations modulo q

where s0(x0) = c0 + c1x0 + . . .+ c�x
�
0 for s0(x0) as described in "Signing algorithm". Values logḡ gk , for 

all k ∈ {1, . . . , �+ 1} are known so the complexity comes from solving discreet logarithms logḡ Ck for 
k ∈ {1, . . . , �+ 1}. Similar system of equations can be created for the signature component D. All the obtained 
private values need to be lifted to the ring ℤ/φ(p)ℤ. The classical complexity of the lifting step is (2x(2λ+4)).The 
component E can be calculated using E = AQB−PC−N0D−Nn . Overall, the total classical complexity of the attack 
is O(p�+14(�+ 1)(

√
p log p)2x(2�+4)). Quantum complexity is O(

√

4(�+ 1)p�+12x(2�+4)) using Grover’s algo-
rithm for brute force search.

We conclude that the smallest computational complexity of finding private key from signature, depending on 
the parameter choices, is either O([2(2�+ 1) log p]q 3

2 2x(n+1)+x/2 + 2(�+ 1)× 2x) using a classical computer, 
and O(√q

√
2x(n+1) + 2(�+ 1)×

√
2x) using a quantum device.

Spoofing attacks.  Recall, that the base g ∈ Fp , as well as polynomials f (x0), h(x0) ∈ Z/(ϕ(p))Z[x] , 
constants R0,Rn ∈ Z/ϕ(p)Z , and polynomials Eφ(x0),Eψ(x0) ∈ Z/(ϕ(p))Z[x] are unknown. The attacker 
might try to look at any existing relationship between the values A, B, C, D and E. Then, if any other values 
A′ �= A,B′ �= B,C′ �= C,D′ �= D and E′ �= E satisfy the same relationship, they might be used as a signature, 
and pass verification. We showed in the “Security of the private key given the public key” section that none of the 
values A, B, C, D and E can be expressed in terms of one another.

Another way for the malicious party to carry out a spoofing attack is to break the value A = gR0f (x0) into

and obtain every element of the form gR0fi for i ∈ {0, . . . , �} . Similarly, obtain the terms gRnhi from B = gRnh(x0) , 
the terms gRnf0hi , g−Rnh0fi from C = gs0 , and terms gR0f�hi , g−R0h�fi from D = gsn for all i ∈ {0, . . . , �} . The attacker 
also need to obtain the terms gR0Rn[hieφj−fieψj ] from E. This way, the attacker can easily change the original docu-
ment x0 into a different document with the correct signature, in other words, achieve universal forgery. In this 
case, the verifier will not be able to determine any malicious activity as the document and the signature will pass 
the verification without raising any issues.

We show that such an attack is not applicable because it does not yield deterministic results if the terms 
described above are found using brute force.

Proposition 4.14  Generating all components of the form gR0fi , gRnhi , (gRnf0hi , g−Rnh0fi ), (gR0f�hi , g−R0h�fi ), and 
g
R0Rn[hieφj−fieψj ] associated with A, B, C, D and E respectively for each i ∈ {0, 1, . . . , �} , has time complexity of 

O(pn+4�) . Once the correct tuples are found, they can be used to repeatedly forge a signature for any hashed mes-
sage x0.

(18)

logḡ A1 = [f ′0 + f ′1x0 + . . .+ f ′
�
x�0 ] logḡ g1

logḡ A2 = [f ′0 + f ′1 x̂0 + . . .+ f ′
�
x̂0

�] logḡ g2
...

logḡ A�+1 = [f ′0 + f ′1 x̃0 + . . .+ f ′
�
x̃0

�] logḡ g�+1.

(19)

logḡ C1 = [c0 + c1x0 + . . .+ c�x
�
0 ] logḡ g1

logḡ C2 = [c0 + c1x̂0 + . . .+ c�x̂0
�] logḡ g2

...

logḡ C�+1 = [c0 + c1x̃0 + . . .+ c�x̃0
�] logḡ g�+1,

(gR0f0)× (gR0f1)x0 + (gR0f2)x
2
0 + · · · + (gR0f�)x

�
0
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Proof  For the proof we consider a simplified example with quadratic polynomials f (x0) and h(x0) . The proof for 
the general case is identical. We have the following equations

Using brute force, the attacker needs to go over every term gR0f1 and gR0f2 , and consider an equality of the form

which yields gR0f0 . Thus, to generate tuples (gR0f0 , gR0f1 , gR0f2) the malicious party needs to sample p2 elements. 
Since the ratios of the form R0fiRnhi

 do not exist for any i ∈ {0, 1, 2}, the attacker has to find tuples

using the same strategy. However, the terms gR0f1 and gR0f2 are simply elements of the field Fps . The attacker has 
already calculated ax0bx20 for all possible elements a, b ∈ Fps . All such terms can be reused to find all possible 
gRnh0 from the equality

Thus, to construct tuples (gRnh0 , gRnh1 , gRnh2) the attacker does not need to sample any more terms but the 
calculations require going through p2 terms. Similarly, the existing sampled terms ax0bx20 for all possible elements 
a, b ∈ Fps can be reused for C. Indeed, the equations are

Checking the value for C requires going through p2 items. In our example, with quadratic functions 
f (x0), h(x0) , the equation for D has the following form

The attacker needs to go through p2 values to check for D.
Lastly, the malicious party has to consider the following equation with mod p

The attacker will need to go through pn elements. One of the terms can be derived as a ration between E and 
the remaining terms of the form gR0Rn(

∑
hieφj−fieψj ) . The complexity of generating all the tuples is, therefore, 

O(pn+8) for this example. However, there is no efficient way to determine which five tuples, one for each of 
A, B, C, D and E, are the correct ones used by the signing party. For that one might try to create A, B, C, D and E 
for different x0 and verify that AQ = BPCN0DNn for different P,Q,N0 and Nn. In the case that the attacker finds 
the correct tuples associated with A, B, C, D, and E, since the tuples are independent of x0 , the attacker can use 
them to forge a signature for any x0. 	�  �

There are other ways to carry out a spoofing attack. However, we claim that the following approach is the 
most efficient.

Proposition 4.15  Search for the values A, B, C, D, E, such that AQ̄ = BP̄CN̄0DN̄nE holds for any P̄, Q̄, N̄0, and N̄n , 
has time complexity O(p4+m) using a classical computer, and O(

√

p4+m) using a quantum computer, where m is 
the number of noise variables.

Proof  For each given x0 begin by fixing a choice of values r1, . . . , rm for variables x1, . . . , xm . Use such choice of noise 
values to calculate values of the polynomials P̄ = P(x0, r1, . . . , rm), Q̄ = Q(x0, r1, . . . , rm), N̄0 = N0(r1, . . . , rm), 
and N̄n = Nn(x0, r1, . . . , rm). Recall, that AQ = BPCN0DNnE for any P,Q,N0,Nn computed using publicly avail-
able coefficients provided by the signer. Thus, given P̄, Q̄, N̄0, and N̄n the attacker should look for values A, B, C, D 

A = gR0f (x0) = (gR0f0)× (gR0f1)x0 × (gR0f2)x
2
0 (mod p) and

B = gRnh(x0) = (gRnh0)× (gRnh1)x0 × (gRnh2)x
2
0 (mod p).

(gR0f1)x0 × (gR0f2)x
2
0 = A

gR0f0
(mod p)

(gRnh0 , gRnh1 , gRnh2)

ax0bx
2
0 = B

gRnh0
(mod p).

C = gRnf0h0−Rnf0h0 × (gRnf0h1)x0 × (gRnf0h2)x
2
0 × (g−Rnh0f1)x0 × (g−Rnh0f2)x

2
0 (mod p)

= (gRnf0h1)x0 × (gRnf0h2)x
2
0 × (g−Rnh0f1)x0 × (g−Rnh0f2)x

2
0 (mod p)

= (gRnf0h1−Rnh0f1)x0 × (gRnf0h2−Rnh0f2)x
2
0 (mod p).

D = (gR0[h2f2−f2h2])x
2
0 × (gR0h0f2)× (gR0h1f2)x0 × (g−R0f0h2)× (g−R0f1h2)x0 (mod p)

= (gR0h0f2)× (gR0h1f2)x0 × (g−R0f0h2)× (g−R0f1h2)x0 (mod p)

= gR0h0f2−R0f0h2 × (gR0h1f2−R0f1h2)x0 (mod p).

E = g [R0Rn(h0eφ1−f0eψ1 )]x0 × g [R0Rn(h0eφ2+h1eφ1−f0eψ2−f1eψ1 )]x
2
0

× · · · × g [R0Rn(h0eφn−1+...+h2eφn−3−f0eψn−1−...−f2eψn−3 )]x
n+1
0
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and compute E = AQ̄B−P̄C−N̄0D−N̄n . To check if the choice of A, B, C,  and D is correct, the attacker can use 
these values and new values P̄, Q̄, N̄0, N̄n to check if E = AQB−P̄C−N̄0D−N̄n remains true. If not, discard of the 
value A, B, C, D and look for new ones. There are in total p4 tuples of the form (A, B, C, D). Thus, the attacker 
in the worst case will have to go through all p4 such sets for two fixed P̄, Q̄, N̄0, and N̄n until the equality of the 
form E = AQB−P̄C−N̄0D−N̄n is achieved for at least two distinct choices of values P̄, Q̄, N̄0, N̄n . Once the attacker 
finds values A, B, C, D, E such the equality holds for two values of public polynomials P̄, Q̄, N̄0, N̄n , they will have 
to check whether the equality holds for all the other choices of r1, . . . , rm . If so, then the values A, B, C, D, E can 
be used by the attacker as the signature, and will result in the universal forgery. The overall complexity of this 
attack is O(p4+m) using a classical computer.

Corollary 4.16  The most efficient spoofing attack has classical complexity O(p4+m) and quantum complexity 
O(

√

p4+m) , where m is the number of noise variables.

Security conclusion.  The best classical complexities of universal forgery of the signature are as follows. 
[Attack 1] The attacker can use public key to crack for the private key and create signature {A,B,C,D,E} for any 
message or document. The classical complexity of this attack is C1 = O(ϕ(p)n+1 + 2× 2x(�+1)) . [Attack  2] 

Another attack on the public key that we have discovered has classical complexity of C2 = O(q�+2
[2

⌈
n+1

�+2

⌉

2
x(�+2)

]) . [Attack 3] A different attack the malicious party can undertake is to gain enough information from a 
genuine signature obtained from a communication interception between the signer and verifier as well as the 
public key and use that information to recreate a full signature for any message or document x0 . The classical 
complexity of this attack is C3 = O([2(2�+ 1) log p]q 3

2 2x(n+1)+x/2 + 2(�+ 1)× 2x) . [Attack 4] A similar attack 
that only uses a genuine signature has classical complexity of C4 = O(4(�+ 1)p�+1[√p log p]2x(2�+4)) . 
[Attack  5] And lastly, the attacker can directly spoof the signature. The complexity of direct spoofing is 
C5 = O(p4+m). Of these five attacks, the attack that use genuine signatures is in favor of the attacker with classi-
cal complexity C2 = O([2(2�+ 1) log p]q 3

2 2x(n+1)+x/2 + 2(�+ 1)× 2x).
For complexities of cracking MPPK/DS using a quantum computer, the adversary can use public key only 

attack that has quantum complexity of C1 = O(
√

ϕ(p)n+1 + 2×
√
2x(�+1)). Another attack that uses public keys 

has quantum complexity of C2 = O(

√

q�+2[2
⌈
n+1
�+2

⌉

2x(�+2)]) . The adversary can also use honest signatures 

obtained from communication records. The attack that uses honest signatures in conjunction with public keys 
has quantum complexity of C3 = O(

√
q
√
2x(n+1) + 2(�+ 1)×

√
2x) . The attack that uses signatures only has 

quantum complexity C4 = O(
√

4(�+ 1)p�+12x(2�+4)). Lastly, the attacker can directly spoof the signature. 
Quantum complexity of this case is C4 = O(

√

p4+m).

Brief benchmarking results and optimal parameters of MPPK/DS
We now introduce optimal parameters and report benchmarking results for MPPK/DS. For benchmark-
ing. we used the NIST recognized SUPERCOP benchmarking tool. The SUPERCOP was run on a 16-core 
Intel®Core™i7-10700 CPU at 2.90 GHz system.

Configuration.  We begin by requiring that the prime p is a generalized safe prime (or a special Cullen 
prime) such that p = 2xq+ 1 , where q is a prime number. We will further discuss x and q with respect to the 
desirable security level. We require that noise coefficients R0 and Rn are even non-zero numbers in the ring 
Z/ϕ(p)Z. We require that A, B, C, D,  and E are all integers in the field Fp not equal to 0 or 1. We require that 
neither N0 nor Nn are equal to zero modulo ϕ(p).

Table 2.   Proposed MPPK/DS configurations to meet corresponding NIST Security level and avert 
corresponding attack, with values given as (log2 q, x, log2 p, n, �,m). a All the classical complexity estimations 
considered together.

Attack Complexity

Security level

Level I Level III Level V

1 C1 = O(ϕ(p)n+1 + 2× 2x(�+1)) (32, 32, 64, 2, 2, 1) (32, 32, 64, 3, 2, 1) (32, 32, 64, 4, 2, 1)

2 C2 = O(q�+2[2⌈ n+1
�+2 ⌉2x(�+2)]) (32, 32, 64, 2, 1, 1) (32, 32, 64, 2, 2, 1) (32, 32, 64, 2, 3, 1)

3 C3 = O([2(2�+ 1) log p]q 3
2 2x(n+1)+x/2 + 2(�+ 1)× 2x) (32, 32, 64, 2, 2, 1) (32, 32, 64, 4, 2, 1) (32, 32, 64, 6, 2, 1)

4 C4 = O(4(�+ 1)p�+1[√p log p]2x(2�+4)) (32, 32, 64, 2, 2, 1) (32, 32, 64, 2, 2, 1) (32, 32, 64, 2, 3, 1)

5 C5 = O(p4+m) (32, 32, 64, 2, 2, 1) (32, 32, 64, 2, 2, 1) (32, 32, 64, 2, 2, 1)

1–5 C1,C2,C3,C4,C5
a (32, 32, 64, 2, 2, 3) (32, 32, 64, 4, 2, 3) (32, 32, 64, 6, 3, 2)
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Note that the  smallest classical  complexity  is C3 = O([2(2�+ 1) log p]q 3
2 2x(n+1)+x/2 + 2(�+ 1)× 2x) , 

which depends majorly on x. Thus, when making decisions about x and q, it is important to make x and q suf-
ficiently large to guarantee the security of the DS scheme. We also suggest to set m ≥ 1, n ≥ 2, and � ≥ 2 for 
optimal performance of key generation, signing, and verification to achieve the NIST security three levels.

We provide optimal parameters for each security level, considering classical complexity of each attack we 
have discovered in Table 2. That is, the parameters given in Table 2 are sufficient to meet corresponding NIST 
security level and avert the corresponding attack.

Benchmarking results.  Assuming the parameters shown in Table 2 for each corresponding security level 
and complexity of all attacks considered together, that is the last row of Table 2, we report benchmarking results 
about MPPK/DS. We used the NIST accepted SUPERCOP benchmarking tool. All the NIST third round final-
ists’ SUPERCOP measurement data was contributed to SUPERCOP. Thus, we take advantage of the common 
performance measurement platform and report on the benchmarking results of MPPK/DS alongside the NIST 
third-round DS finalists, namely Crystals-Dilithium, Falcon, and Rainbow algorithms. The system used for all 
primitives is a 16-core Intel®Core™i7-10700 CPU at 2.90 GHz.

For this paper, we use a snapshot of detailed data reported separately62. Performance measurements presented 
in this section are median values. The average values, quartile values, as well as standard deviation, and error 
rates are available separately62.

We first present the reader with Table 3, illustrating public key sizes and signature sizes of the MPPK/
DS scheme and the NIST third round finalists in bytes, for NIST security levels I, III, and V. Public key 
sizes of the MPPK/DS algorithm are calculated using the formula m[2(n+ �− 1)+ 2] = 2m(n+ �) over 
GF(p), since public key consists of the coefficients of polynomials P(x0, x1, . . . , xm) and Q(x0, x1, . . . , xm) , 

Table 3.   Public Key and Signature sizes of the the MPPK/DS scheme as well as the NIST PQC 
Round 3 Finalists, with values given in Bytes corresponding to various NIST Security Levels. a The 
rainbow1aclassic363232 primitive was measured for Level I, rainbow3cclassic683248 for Level III, and 
rainbow5cclassic963664 for Level V. b Dilithium does not provide primitive for NIST Level I, dilithium3 was 
used for Level III, and dilithium5 for Level V. c For Falcon, falcon512dyn was measured for Level I, no primitive 
was measured for Level III, falcon1024dyn was measured for Level V.

Signature Public key size (B) Signature size (B)

Scheme I III V I III V

MPPK/DS 192 288 288 80 120 160

Rainbowa 161,600 882,080 1,930,600 66 164 212

Dilithiumb – 1952 2592 – 3293 4,595

Falconc 897 – 1793 690 – 1330

Table 4.   Median values given in clock cycles, corresponding to the Performance measurement of the 
MPPK/DS scheme as well as the NIST PQC Round 3 Finalists for various NIST Security Levels. a The 
rainbow1aclassic363232 primitive was measured for Level I, rainbow3cclassic683248 for Level III, and 
rainbow5cclassic963664 for Level V. b Dilithium does not provide primitive for NIST Level I, dilithium3 was 
used for Level III, and dilithium5 for Level V. c For Falcon, falcon512dyn was measured for Level I, no primitive 
was measured for Level III, falcon1024dyn was measured for Level V.

Security level Level I Level III Level V

Key generation

MPPK/DS 22,437 36,700 47,668

Rainbowa 20,788,655 123,007,216 263,207,040

Dilithiumb – 322,993 454,373

Falconc 32,557,525 – 91,533,955

Signing procedure

MPPK/DS 42,286 57,223 63,534

Rainbowa 180,675 898,223 1,491,838

Dilithiumb – 1,163,882 1,041,113

Falconc 10,268,556 – 22,499,756

Signature verification procedure

MPPK/DS 48,965 75,980 87,567

Rainbowa 21,258 177,094 332,196

Dilithiumb – 313,009 482,670

Falconc 68,858 – 138,492
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each having n+ �− 1 coefficients for each choice of noise variables, and coefficients of the noise functions 
N0(x1, . . . , xm),Nn(x0, x1, . . . , xm) with one coefficient each, for every choice of noise variables. Finite field 
being 64 bits for all three security levels, result in public key sizes of 192, 288,  and 288 bytes for levels I, III and 
V respectively. Considering together with the NIST third round finalists, MPPK/DS offers rather small public 
key sizes.

Recall, that there are five components in the signature, namely (A, B, C, D, E). Each such signature ele-
ment should be of sufficient size to prevent brute force attacks, leading to spoofing. For level I, therefore, each 
component of the signature element is 128 bits. The entire signature is 5× 128 = 640 bits, which is 80 bytes. 
Similarly, the signature size for level III is 120 bytes, and 160 bytes for level V. Based on values in Table 3, sizes 
of the MPPK/DS are comparable and some cases noticeably smaller than the corresponding signature sizes of 
the three NIST finalists.

Key generation performance comparison between the MPPK/DS scheme and the NIST finalists is given in 
Table 4. From the data shown in the table, MPPK/DS offers efficient key generation, outperforming the NIST 
Round 3 finalists. A similar account is observed for the signing procedure. Note that the values given in both 
tables are median values of the SUPERCOP measurement.

Table 4 also depicts the median values of MPPK/DS and NIST Round 3 finalists’ signature verification per-
formance in clock cycles. The data in the table demonstrates that the signature verification performance of the 
MPPK/DS primitive is comparable to the Rainbow signature scheme and faster than the Crystals-Dilithium as 
well as the Falcon algorithms.

The reader will notice that the overall performance of the MPPK/DS scheme is more comparable to the 
Rainbow scheme than other NIST Round 3 finalists. To explore this a little further, we include Tables 5 and 6 to 
compare the public key and signature sizes, as well as the performance of the MPPK/DS algorithm and the NIST 
Round 3 multivariate finalist and alternative algorithms, Rainbow and GeMSS17,31.

Table 5 shows that public key sizes of the MPPK/DS are noticeably smaller than public key sizes of other mul-
tivariate primitives considered. However, signature sizes of the MPPK/DS are greater than those of the GeMSS 
algorithm and comparable to the Rainbow algorithm.

Table 6 provides comparison of the performance measurements between MPPK/DS, and Rainbow and 
GeMSS signature schemes. All the values are given in clock cycles. Note, however, that the values for MPPK/
DS and Rainbow are taken from our own benchmarking work, using SUPERCOP and only the median value 

Table 5.   Public Key Sizes of the the MPPK/DS scheme as well as the NIST PQC Round 3 multivariate 
DS schemes, with values given in Bytes. a The rainbow1aclassic363232 primitive was measured for Level 
I, rainbow3cclassic683248 for Level III, and rainbow5cclassic963664 for Level V. b GeMSS128 primitive 
corresponds to values for level I, GeMSS192 corresponds to values for level III, and GeMSS256 corresponds to 
values for level V.

Signature Public key size (B) Signature size (B)

Scheme I III V I III V

MPPK/DS 192 288 288 80 120 160

Rainbowa 161, 600 882, 080 1, 930, 600 66 164 212

GeMSSb 352, 188 1, 237, 964 3, 040, 700 32.25 51.375 72

Table 6.   Performance of the the MPPK/DS scheme as well as the NIST PQC Round 3 multivariate DS 
schemes, with values given in clock cycles. a The rainbow1aclassic363232 primitive was measured for Level 
I, rainbow3cclassic683248 for Level III, and rainbow5cclassic963664 for Level V. b GeMSS128 primitive 
corresponds to values for level I, GeMSS192 corresponds to values for level III, and GeMSS256 corresponds to 
values for level V.

Primitive Level I Level III Level V

Key generation

MPPK/DS 22,437 36,700 47, 668

Rainbowa 20,788,655 123,007,216 263,207,040

GeMSSb 36,800,000 167,000,000 508,000,000

Signing procedure

MPPK/DS 42,286 57,223 63,534

Rainbowa 180,675 898,223 1,491,838

GeMSSb 529,000,000 1720,000,000 2830,000,000

Signature Verification procedure

MPPK/DS 48,965 75,980 87,567

Rainbowa 21,258 177,094 332,196

GeMSSb 84,600 233,000 550,000
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are provided in the table. The system that was used to measure the performance of MPPK/DS and Rainbow is a 
16-core Intel®Core™i7-10700 CPU at 2.90 GHz. On the other hand, the values for GeMSS were taken from their 
official online page, The performance was measured using MQsoft using Skylake processor Intel®Core™i7-6600U 
CPU at 2.60GHz.

Table 6 values show that MPPK/DS achieve more efficient key generation and signature creation procedures 
compared to the Rainbow and GeMSS signature schemes. However, the signature verification performance of 
MPPK/DS is not as efficient as the Rainbow algorithm for level I security. For level III, MPPK/DS performance 
is comparable with Rainbow and GeMSS. For level V, a noticeable difference between values is observed, with 
MPPK/DS outperforming both the Rainbow and GeMSS signature schemes.

Overall, MPPK/DS achieves rather small public key and signature sizes and offers efficient key generation, 
signature creation, and signature verification procedures compared to other PQC signature schemes.

Conclusion
We presented a new quantum-safe digital signature algorithm called MPPK/DS. It is based on the Kuang et al.’s 
MPPK KEM algorithm. MPPK/DS is a multivariate, quantum-safe and falls into the category of probabilistic DS 
algorithms. Indeed, verifying the same signature multiple times with different noise variable values meets the 
same verification relationship. The core of the signing-verifying relationship is a modular arithmetic property that 
given x co-prime to n and two integers a and b such that a ≡ b (mod ϕ(n)), then xa = xb (mod n), where ϕ(n) 
is the Euler’s totient function evaluated at n. Using a generalized safe prime p = 2xq+ 1 , discussed in "MPPK 
digital signature and verification", we performed security analysis for the MPPK/DS algorithm to conclude that 
the complexity of the best possible attack on the MPPK/DS is O([2(2�+ 1) log p]q 3

2 2x(n+1)+x/2 + 2(�+ 1)× 2x) 
using classical computing, and O(√q

√
2x(n+1) + 2(�+ 1)×

√
2x) and for quantum computing.

We also report briefly on the performance of MPPK/DS measured using the NIST recognized benchmarking 
toolkit SUPERCOP. The overall performance for key generation, signing, and verifying, is very efficient, outper-
forming the NIST 3rd round finalists. We provide a detailed performance analysis of the MPPK/DS algorithm 
in a companion paper62. A MPPK/DS implementation is available online63.

Data availibility
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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