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Plant diseases caused by pathogens and pests are a constant
threat to global food security. Direct crop losses and the meas-
ures used to control disease (e.g. application of pesticides) have
significant agricultural, economic, and societal impacts. There-
fore, it is essential that we understand the molecular mecha-
nisms of the plant immune system, a system that allows plants
to resist attack from a wide variety of organisms ranging from
viruses to insects. Here, we provide a roadmap to plant immu-
nity, with a focus on cell-surface and intracellular immune
receptors. We describe how these receptors perceive signatures
of pathogens and pests and initiate immune pathways. We
merge existing concepts with new insights gained from recent
breakthroughs on the structure and function of plant immune
receptors, which have generated a shift in our understanding of
cell-surface and intracellular immunity and the interplay
between the two. Finally, we use our current understanding of
plant immunity as context to discuss the potential of engineer-
ing the plant immune system with the aim of bolstering plant
defenses against disease.

Plants suffer from disease. Their ability to respond to infec-
tion by microbial pathogens and pests is essential for sur-
vival. In agriculture, plant disease leads to loss in crop yield
and can have devastating effects on both subsistence/small-
holder and industrialized farming (1–3), with subsequent
impact on food supply chains and prices. Plant diseases have
also shaped our world, with perhaps the best-known exam-
ple being the Irish potato famine in the mid-1800s, where
potato late blight disease (caused by the filamentous plant
pathogen Phytophthora infestans) contributed to mass emi-
gration from Ireland (4).
As a rich source of nutrients, plants are the target of micro-

bial pathogens and pests, including viruses, bacteria, filamen-
tous pathogens (fungi and oomycetes), nematodes, and insects
to complete their life cycle (5–8). Estimates of the impact of
pre-harvest yield loss in crops due to disease vary, but at least
30% of global agricultural production is claimed annually (1).
This can increase to 100% in localized outbreaks and represents
a major contributor to food insecurity. In agriculture, plant dis-
eases are largely controlled by chemicals, but this is unsustain-
able in the long-term due to environmental concerns and the
necessity to rethink agricultural practices more generally in

light of the climate emergency. Genetic forms of disease resist-
ance offer the potential for environmentally friendly, low-input,
sustainable agriculture (9). Over the last 25 years, remarkable
progress has been made in our understanding of the molecular
basis of plant disease resistance mechanisms. Plant immune
receptors, encoded by resistance or “R” genes have been cloned
and characterized and shown to be the genetic basis of disease
resistance phenotypes used by plant breeders for .100 years.
Recent studies have extended our knowledge to reveal our first
insights into the structural basis of plant immune receptor
function (10–19).
The immune system of plants shares similarities with the

innate immune system of animals (20–22). But as plants lack an
adaptive immune system, they rely solely on innate immunity
to recognize microbial pathogens and pests. Conceptually,
plant immunity can be divided into cell-surface and intracel-
lular immunity (23). A full list of the structurally character-
ized immune receptors and associated ligands can be found
in Table 1. Cell-surface immune receptors detect common
signatures of pathogens or pests outside the host cell via
extracellular domains (ECDs) and initiate cellular responses
to resist infection via their intracellular kinase domains
(KDs) (39). A subset of cell-surface immune receptors sense
damaged “self” as a surrogate for the presence of pathogens
or pests (15). Intracellular immune receptors detect signa-
tures of adapted pathogens or pests (40). Typically, these
signatures are translocated proteins known as “effectors,”
which are delivered inside cells to modulate host physiology
to promote colonization and proliferation (41, 42) (Fig. 1).
Activation of intracellular immunity is generally considered
a more robust response and can be associated with localized
cell death that constrains the spread of infection. Although
often presented as distinct signaling pathways, insights into
how cell-surface and intracellular immune pathways in
plants overlap and work synergistically to resist infection
have recently begun to emerge (43, 44).
There are many excellent reviews covering plant immunity

and its subversion by microbial pathogens and pests pub-
lished over the last ;15 years (21, 39, 45–53). Here, as part
of this JBC “Plants in the Real World” thematic series, we
provide an up-to-date overview of the general concepts of
plant disease resistance mechanisms, with a focus on plant
immune receptor function at the molecular level. We detail
how these receptors perceive pathogen signatures at the cell
surface and inside host cells and how this perception is
translated into an immune response. This review summa-
rizes the general concepts of plant immunity before
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providing in-depth analyses of the more recent break-
throughs that have greatly expanded our understanding of
plant immune receptor function. Finally, in the context of

current knowledge, we discuss how plant immune receptors
could be engineered to deliver novel disease resistance
properties to benefit global food security.

Table 1
Structures of plant immune receptors or their domains covered in this review

Receptor Type: Cell-surface Plant host Ligand Ligand type Co-receptor PDB code References

FLS2 LRR-RLK Arabidopsis thaliana flg22 MAMP BAK1 4MN8 12
PEPR1 LRR-RLK A. thaliana Atpep DAMP BAK1 5GR8 13
CERK1 LysM-RLK A. thaliana PGN MAMP LYM3/1 4EBY 10
SOBIR1 LRR-RLK A. thaliana NAa NA LRR-RLP, BAK1 6R1H 19
BIR3 Pseudokinase A. thaliana NA NA BRI1/S.E.RK1 6FG8 24
BIK1 RLCK A. thaliana NA NA BAK1, FLS2 5TOS 25
CEBiP LysM-RLP Oryza sativa Chitin MAMP OsCERK1 5JCD, 5JCE 26

Receptor Type: Intracellular Plant host Ligand(s) Ligand type Co-receptor PDB code References

MLA10 CC CC-NLR Hordeum vulgare NA NA NA 3QFL, 5T1Y 27, 28
Pikp-1 HMA CC-NLR O. sativa AVR-PikD, AVR-

PikE, AVR-PikA,
AVR-Pia

MAX effector Pikp-2 5A6W, 5A6P, 6G11,
6G10, 6Q76

11, 29, 30

Pikm-1 HMA CC-NLR O. sativa AVR-PikE, AVR-
PikA, AVR-PikD

MAX effector Pikm-2 6FUB, 6FUD, 6FU9 29

Pia HMA CC-NLR O. sativa Avr1-CO39 MAX effector RGA4 5ZNG, 5ZNE 31
RRS1WRKY TIR-NLR A. thaliana PopP2 T3SE RPS4 5W3X 17
ZAR1 CC-NLR A. thaliana Avr-AC T3SE RKS1 6J5T, 6J6I, 6J5W,

6J5V
14, 15

RPS4 TIR TIR-NLR A. thaliana NA NA RRS1 4C6T, 4C6R, 16
RRS1 TIR TIR-NLR A. thaliana NA NA RPS4 4C6T,4C6S 16
SNC1 TIR TIR-NLR A. thaliana NA NA NA 5TEC 32
SNC1 TIR TIR-NLR A. thaliana NA NA NA 5H3C 33
Sr33 CC CC-NLR Aegilops tauschii NA NA NA 2NCG 28
RPP1 TIR TIR-NLR A. thaliana NA NA NA 5TEB 32
NRC1 NB-ARC TIR-NLR Solanum

lycopersicum
NA NA NA 6S2P 34

RUN1 TIR TIR-NLR Vitis rotundifolia NA NA NA 60OW 35
Rx CC CC-NLR Solanum tuberosum NA NA RanGAP2 4M70 18
RPV1 TIR TIR-NLR Vitis rotundifolia NA NA NA 5KU7 36
L6 TIR TIR-NLR Linum

usitatissimumm
NA NA NA 3OZI 37

Pto Kinase Solanum
pimpinellifolium

AvrPtoB T3SE Prf 3HGK 38

aNA, not applicable.

Figure 1. Plant immunity at a glance. Left, plants are the target of a variety of pathogens and pests that cause disease, via both their above-ground and
underground structures. Right, pathogens/pests shed MAMPs or generate DAMPs that can be received by receptors to initiate cell-surface immunity. Patho-
gens/pests can deliver effectors to the outside (not shown here for simplicity) or inside of cells, where they can act on host systems to their benefit, including
the suppression of signaling pathways downstream of cell-surface receptors. Effectors or their activities can be sensed by intracellular immune receptors
(NLRs) to initiate intracellular immunity.
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Effectors: Master manipulators of plant cells to promote
infection

To best understand the interplay between the pathogens/
pests and the plant immune system, we must first understand
effectors and their role in promoting virulence. In the broadest
definition, effectors are molecules used by a diverse array of
organisms (including microbes, plants, and animals) to modu-
late the activity of another organism. In this review, we use the
term “effectors” to define protein molecules secreted by micro-
bial pathogens and pests to promote colonization of their plant
hosts (53). These effectors can be delivered to the extracellular
space or deployed to the inside of host cells.
Effector genes exist as large repertoires within pathogen

genomes. They are among the most rapidly evolving genes in
plant pathogens and can display high rates of nonsynonymous
over synonymous mutations (54, 55). Selection for evasion of
perception by the plant immune system is amajor driver for ad-
aptation, along with selection for favorable alleles that give a fit-
ness benefit (56). Due to their sequence diversity, it is fre-
quently challenging to identify effectors in pathogen/pest
genomes or proteomes, although many bioinformatic tools
exist to establish putative effector catalogues (57). Functional
annotation of effectors is equally challenging. Whereas some
effectors are enzymes, whose putative activity can be identified
from sequence or structural analysis, many do not show
sequence or structural homologies to help define function (49,
58). This often necessitates significant investment in research
of a single protein to establish the molecular basis of activity
(42). Such research will frequently address the host cell target
of an effector, as this is often key to understanding its role in
virulence. Some effectors converge on “hubs,” key components
of host cell pathways, to modulate their function (59, 60). Such
pathways include suppression of defense responses (Fig. 1) and
redirection of hostmetabolism.
Effectors are also an Achilles’ heel for the pathogen/pest. As

signatures of non-self, they can be perceived by plant immune
receptors at both the cell surface and inside cells. Intracellular
perception of effectors or their activities is mediated and trans-
duced by NLRs, as described elsewhere in this review.

Cell-surface immunity

Two major components of cell-surface immunity in plants
are membrane-localized receptor-like kinases (RLKs) and re-
ceptor-like proteins (RLPs) that detect signatures of non-self as
signs of infection (45). RLKs/RLPs also have other roles in
plants, regulating self-incompatibility, growth and develop-
ment, reproduction, response to abiotic stress, and symbiosis
(45, 61–63). Also known as pattern recognition receptors
(PRRs), cell-surface immune receptors monitor the extracellu-
lar environment for pathogen/pest invasion patterns (ligands
known as MAMPs (microbial-associated molecular patterns)
or DAMPs (damage-associated molecular patterns)) (64, 65).
Frequently, ligand-sensing cell-surface receptors require co-
receptors to transduce perception of non-self into a response
(66, 67). Although proteinaceous receptors represent the major
players in cell-surface immunity of plants, recent studies have

highlighted an emerging role of membrane lipids in sensing
infection (50).
Irrespective of their origin, invasion patterns recognized by

cell-surface immune receptors tend to be evolutionarily con-
strained ligands derived from components essential to the fit-
ness of the pathogen/pest. These essential components range
from cell wall constituents or subunits of bacterial flagellin, to
molecules secreted into the apoplast, to secreted proteins
intended for the host cytosol (39). These specific ligands are
perceived by cell-surface receptors at nanomolar concentra-
tions and initiate signaling cascades, including production of
reactive oxygen species (ROS), cytosolic Ca21 bursts, activation
of MAPKs, and changes in expression of various defense-
related genes (64, 67, 68). Generally, cell-surface immune
responses are considered less volatile when compared with in-
tracellular immunity and do not result in host cell death to
restrict infection. However, they constitute an effective host
strategy against infection, leading to broad-spectrum resistance
(69). This review focuses on themechanisms of immune activa-
tion rather than the downstream effects of extracellular and in-
tracellular immunity; for readers interested in the physiological
effects of immune activation, we recommend relevant reviews
(70–72).
Signaling cascades downstream of cell-surface immune

receptors are major targets of pathogen/pest effector proteins,
which interfere with these processes to benefit infection. It is
also worth noting that many MAMPs are shared between
pathogens and mutualistic microbes (62, 73), and as such it is
important to understand how plants use extracellular immune
receptors to distinguish between pathogens/pests and mutual-
ists. In this review, we cover MAMP recognition from a patho-
gen/pest-detection perspective and would direct readers inter-
ested in plant-mutualist interaction to relevant reviews (62, 73).

Structural and functional diversity of ligand recognition by
cell-surface receptors

RLKs contain a variable extracellular domain that mediates
ligand recognition, a single-pass transmembrane domain, and
an intracellular KD that transduces the signal to downstream
immune components (74) (Fig. 2). Most plant RLKs identified
belong to the family of non-RD kinases (defined by the absence
of conserved arginine in the catalytic loop) and often associate
in dynamic complexes with membrane-bound RLKs that are
functional RD kinases (such as BAK1 (BRASSINOSTEROID-
INSENSITIVE 1–associated receptor kinase 1) and SERKs),
which operate as co-receptors for perception to initiate
immune signaling (75–77). Whereas RLPs exhibit a similar
overall structure to RLKs, they only contain a short intracellular
tail, lacking a kinase domain, and require a partner co-receptor
to signal (63, 78).
Based on the type of ECD, RLKs and RLPs can be clustered

into distinct subfamilies, including leucine-rich repeat (LRR),
lysin motif (LysM), lectin, and epidermal growth factor (EGF)
domain–containing receptors (66, 79, 80) (Fig. 2). The type
of ECD mainly defines the nature of the ligand perceived by
the RLK/RLPs; however, a few anomalies persist. Among
the best-characterized cell-surface immune receptors are the

JBC REVIEWS:Molecular basis for pathogen detection by the plant immune system

14918 J. Biol. Chem. (2020) 295(44) 14916–14935



Arabidopsis LRR-type RLKs, FLS2 (flagellin-sensitive 2) and
EFR (elongation factor Tu (EF-Tu) receptor) (81, 82), and the
LysM-type RLKs LYK5 (lysin motif receptor kinase 5) and
CERK1 (chitin elicitor receptor kinase 1) (83, 84). FLS2 (Fig. 3)
and EFR recognize peptide epitopes from the N termini of bac-
terial flagellin (flg22) and bacterial EF-Tu (elf18), respectively
(90), whereas LYK5 and CERK1 bind fungal chitin oligomers
(84).

Recognition of peptide/protein ligands

LRR-RLKs are a large subfamily of cell-surface receptors that
preferentially bind peptides or proteins as ligands (91–93). In
addition to theArabidopsis FLS2 and EFR, LRR-RLKs from rice
and solanaceous plants have been characterized. The rice cell-
surface receptor Xa21 binds RaxX21-sY (a sulfated, 21-amino
acid synthetic RaxX peptide), a tyrosine-sulfated protein from
bacteria (94). Cell-surface receptors from tomato (CORE) and
tobacco (NbCSPR) bind to conserved epitopes derived from
bacterial cold shock protein (95–97). Likewise, Arabidopsis
RLP23 binds the epitope nlp-20, a conserved peptide derived
from ethylene-inducing peptide 1–like proteins of bacterial and
filamentous pathogens (98).
Although not an LRR-RLK, the Arabidopsis cell-surface re-

ceptor FERONIA (FER) uses a tandem malectin-like ECD to
perceive RALF1 (rapid alkalinization factor 1) peptides. RALF
peptides are cysteine-rich peptides prevalent in the plant king-
dom that regulate many aspects of plant life, such as reproduc-
tion, growth, responses to environment, and immunity (99,
100). Intriguingly, some functionally active RALF-like peptides
have been characterized from fungal pathogens; however, the
role of these RALF-like peptides in pathogenesis is unknown
(101). In addition to MAMP ligands, some LRR-RLKs perceive
proteinaceous DAMPs, such as Atpeps (plant elicitor peptides)
and PIPs (PAMP-induced secreted peptides), respectively
(102–105). Like LRR-RLKs, LRR-RLPs can also sense extracel-
lular short peptide ligands; however, they can also sense larger
extracellular proteinaceous ligands, such as apoplastic effec-
tors. In tomato, the LRR-RLPs Cf-2/4/9 perceive apoplastic

effectors Avr2, Avr4, and Avr9 from Cladosporium fulvum,
respectively (106–110).

Recognition of carbohydrate/non-proteinaceous ligands

There are several different classes of receptor that are capa-
ble of sensing different carbohydrate ligands. LysM-RLKs/
LysM-RLPs perceive carbohydrate MAMPs such as bacterial
peptidoglycan (PGN), lipopolysaccharide (LPS), and fungal chi-
tin (10, 83, 84, 111, 112). The ECD of the cell wall-associated ki-
nase family (WAKs) comprise repeated EGF-like domains
(113–116) that bind various types of pectins including patho-
gen/wound-induced short oligogalacturonic acid fragments
(OG) as well as cell wall- associated longer pectins (116, 117).
Intriguingly, lectin RLKs including structurally distinct lectin
receptors - LORE (G-type lectins) and DORN1 (L-type lectins)
senses non-carbohydrate ligands like low complexity bacterial
metabolites such as bacterial medium-chain 3-hydroxy fatty
acid (mc-3-OH-FA) (266) and extracellular ATP (e-ATP- as a
DAMP signal) (118, 119) respectively, to trigger immune
responses.

Ligand-induced homo/heterodimerization of cell-surface
receptors

Plant cell-surface immune receptors function in complex
with co-receptors and intracellular kinases to activate defense
(65, 66, 78). The LRR-RLK BAK1 is the best-characterized co-
receptor to date (13, 77, 120). BAK1 forms heterocomplexes
with peptide-binding immunity-related LRR-RLKs, including
FLS2 (Fig. 3), EFR, and PEPR1 (perception of the Arabidopsis
danger signal peptide), and is required for immune signaling
(12, 13, 85, 120, 121). Like BAK1, SOBIR1 (suppressor of Bir 1-
1) is a regulatory LRR-RLK that serves as an adaptor for certain
LRR-RLPs to trigger defense (122–124). Similar to LRR-RLKs,

Figure 2. Diversity of cell-surface immune receptors. A schematic repre-
sentation depicts the domain architecture of different classes of plant RLKs/
RLPs. Surface representations are shown for those ECDs for which crystal
structures are available. LRR, crystal structure of the ECD of Arabidopsis RLK
FLS2, PDB entry 4MNA (green); LysM, crystal structure of the ECD of Arabidop-
sis RLK–CERK1, PDB entry 4EBY (purple).

Figure 3. A mechanistic view of flg22 sensing by FLS2. flg22 (light green)
stabilizes the heterodimerization of FLS2 (dark green, PDB entries 4NMA and
4NM8) with BAK1 (purple, PDB entries 3ULZ and 4NM8) (82, 85, 86). Ligand
perception leads to activation and phosphorylation of BIK1 (orange, PDB
entry 5TOS) by BAK1 (87, 88). Following phosphorylation, BIK1 is monoubi-
quitinated (Ub) by the E3 ligases RHA3A/B. Monoubiquitinated BIK1 is then
released from the FLS2–BAK1 complex and initiates ROS production and
Ca21 signaling through phosphorylation of plasma membrane–localized
NADPH oxidases and cyclic nucleotide–gated channels (89). The bidirectional
arrow indicates that both BIK1 and BAK1 can trans-phosphorylate each other.

JBC REVIEWS:Molecular basis for pathogen detection by the plant immune system

J. Biol. Chem. (2020) 295(44) 14916–14935 14919



these RLP/adaptor complexes recruit BAK1 or other SERKs for
signal transduction (125–127).
By contrast, the Arabidopsis carbohydrate-binding LysM-

RLK CERK1 forms chitin-bridged homodimers (10). Homodi-
meric association has also been reported for the chitin-binding
rice LysM-RLP CEBiP (128, 129), but the rice CEBiP can also
form heterodimers with rice CERK1 (10, 130). Although oligo-
merization is important, the precise role of homo- or heteroin-
teractions of LysM-RLK/RLPs in signaling recognition of chitin
remains unclear (128).

RLCKs in downstream defense signaling

Ligand perception by plant cell-surface receptors typically
results in homo- or heterodimerization that stimulates cis-
and/or trans-phosphorylation of intracellular kinase domains
(128). In turn, the kinase domains of cell-surface immune
receptors activate receptor-like cytoplasmic kinases (RLCKs) to
transduce immune signals (87, 131, 132).
The Arabidopsis RLCKs BIK1 (botrytis-induced kinase 1)

and PBL (PBS1-like) proteins are substrates of distinct recep-
tor/BAK1/CERK1 complexes at the cell surface (87, 88, 133).
For example, in the absence of ligand, BIK1 interacts with
BAK1 and associated cell-surface receptor kinase domains (Fig.
3). On ligand binding, a series of cis/trans-phosphorylation
events promotes BIK1 dissociation from the complex (87, 88).
BIK1 then activates various downstream immune signaling
pathways, including ROS burst, Ca21 accumulation, and mito-
gen-activated protein kinase pathways (134–136). Multiple
RLCKs have been identified in plants that regulate a ROS burst
by phosphorylating distinct sites in RBOHD (respiratory burst
oxidase homolog protein D), a membrane-localized NADPH
oxidase critical for ROS formation post-MAMP detection (25,
135, 137, 138).

Regulation of cell-surface immune responses

To prevent inappropriate signaling, the activity of plant cell-
surface immune receptors is tightly controlled (139). Plants use
various strategies to help maintain cell-surface receptors in an
inactive state in the absence of ligand binding, including the
regulation of phosphorylation status and ubiquitination by E3
ligases (139–142).
Phosphorylation is central to cell-surface immunity signaling

cascades and is under tight regulation. Plants use phosphatases
to negatively regulate cell-surface receptors to prevent the
potentially harmful effects of autoinduction. For example, Ara-
bidopsis PP2A (protein phosphatase 2A), a serine/threonine
phosphatase, dephosphorylates BAK1/EFR to control defense
signaling (143, 144). Similarly, PP2C38 regulates ligand-
induced phosphorylation of BIK1, moderating signaling by this
key transducer of cell-surface immunity (139). A second strat-
egy to negatively regulate cell-surface immunity is the use of
pseudokinases, such as BIR1 and BIR2, that are catalytically
inactive but interact with BAK1 in its resting state, preventing
the association of LRR-RLKs (145–147). Ligand binding
relieves this inhibitory interaction, leading to the formation of
activated immune complexes.

Regulation of immunity can also come from controlled
degradation through ubiquitination. Two closely related E3-
ubiquitin ligases, PUB25 and PUB26, together with both a cal-
cium-dependent protein kinase CPK28 and a heterotrimeric G
protein, form a regulatory module and maintain BIK1 homeo-
stasis (148). Similarly, PUB12 and PUB13 polyubiquitinate and
mediate degradation of ligand-bound FLS2 (149–151). Intrigu-
ingly, a recent study showed that monoubiquitination of BIK1 is
necessary for its release from the FLS2/BAK1 complex and
immune system activation (89). This demonstrates that a variety
of post-translational modifications are important for both posi-
tive and negative regulation of cell-surface immune receptors.
In addition to regulating the pool of ligand-bound cell-sur-

face receptors at the plasma membrane, plants also ensure the
availability of ligand-free receptors for ongoing pathogen/pest
perception. Cell-trafficking components, including SCD1
(DENN domain protein) (152, 153) and ESCRT-I (an endoso-
mal sorting complex required for transport) (154, 155), are
involved in delivering these receptors to the cell surface. Finally,
it has been proposed that sets of cell-surface receptors may
gather at discrete locations on membranes, forming discrete
nano- ormicrodomains (156, 157). These nano-/microdomains
are proposed to use similar downstream signaling components;
however, different groupings of receptors would lead to differ-
ent specificity in signal perception, resulting in different
responses to stimuli. However, more work is needed to under-
stand the specificity of these nano-/microdomains and how
they are clustered into spatially distinct regions of the mem-
brane (156, 157).

Next steps in understanding cell-surface immunity

Although hundreds of RLKs and RLPs have been identified
in many plant species, only a subset have been characterized.
The biological significance of the vast majority of these recep-
tors remains elusive, and their underlying mechanism of ligand
perception remains poorly understood. Understanding how
cell-surface receptors with different ECDs perceive ligands will
provide a foundation for engineering broad-spectrum resist-
ance into crop plants (158, 159). Further, our understanding of
how RLCKs coordinate their association with different recep-
tors and facilitate distinct signaling outputs is a key challenge
for the future. We have yet to understand whether activated
cell-surface receptor complexes form higher-order supramo-
lecular signaling units at the plasma membrane, what the mo-
lecular identity of these activated immune complex might be,
and how they may differ across different ligand/cell-surface re-
ceptor pairs. Beyond this, we must endeavor to understand the
determinants of specificity of plant cell-surface receptors for
MAMPs, as this will provide insight into how plants distinguish
the MAMPs of pathogenic microbes from those of the benefi-
cial mutualistic microbes.

Case study 1: flg22 perception by the FLS2/BAK1
complex—an exemplar of ligand perception by cell-
surface receptors

Genetic screens in Arabidopsis identified FLS2 as the gene
that recognizes a conserved 22-amino acid N-terminal epitope
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(flg22) of bacterial flagellin to initiate cell-surface immunity
(81, 82, 160). FLS2 belongs to the LRR-RLK class XII subfamily
and shares homology with TLR5 (Toll-like receptor 5), an
LRR-containing receptor that perceives flagellin in mammals
(161, 162). Fig. 3 gives a detailed mechanistic view of how flg22
is perceived by FLS2.
Flagellin perception in Arabidopsis requires heterodimeriza-

tion of FLS2 with BAK1 (82, 85, 86). The crystal structure of the
ECDs of FLS2 and BAK1, in complex with flg22, revealed the
structural basis of flg22 perception (12). The flg22 peptide is
bound within the concave surface of the FLS2-ECD, via the leu-
cine-rich repeat subunits LRR3 to LRR16. flg22 interactions
with FLS2 are divided into two regions, separated by a kink in
the peptide. The N-terminal seven amino acids of flg22 interact
with LRRs 3–6, with the C-terminal 14 amino acids binding
LRRs 7–16. Numerous hydrogen-bonding, electrostatic, and
hydrophobic contacts are formed between flg22 and FLS2.
Interactions between the FLS2 and BAK1-ECDs are both re-
ceptor- and flg22-mediated, but the peptide acts as a “molecu-
lar glue,” stabilizing the heterodimer.
In the absence of flg22, theArabidopsis RLCK BIK1 can asso-

ciate with the FLS2 and BAK1 kinase domains. Ligand percep-
tion leads to activation and phosphorylation of BIK1 by BAK1
(87, 88). Following phosphorylation, BIK1 is monoubiquiti-
nated by the E3 ligases RHA3A/B (RING-H2 FINGER A3A/B).
BIK1 has an N-terminal myristoylation motif, and plasma
membrane localization of BIK1 is essential for ubiquitination.
Monoubiquitinated BIK1 is then released from the FLS2–
BAK1 complex and initiates ROS production and Ca21 signal-
ing through phosphorylation of plasma membrane-localized
NADPH oxidases and cyclic nucleotide–gated channels (89).

Intracellular immunity

Intracellular immunity in plants is conferred by nucleotide-
binding, leucine-rich repeat receptor proteins (NLRs). NLRs
perceive the presence and/or activities of host-translocated
effectors, leading to defense responses that may result in pro-
grammed cell death to limit the spread of infection (163). Prior
to the molecular identification of NLR receptors and effectors,
the genetic basis of what we now call intracellular immunity
was established as the “gene-for-gene” model. The gene-for-
gene model described a requirement for plants to utilize speci-
alized immune receptors encoded by R (resistance) genes to
counteract and respond to the effectors encoded by pathogen
AVR (avirulence) genes (164).

NLRs comprise multiple domains with distinct functions

NLRs belong to the AAA1 class of “signal-transducing
ATPases with numerous domains” (STAND) ATPases that
share a conserved central nucleotide-binding domain across
plant, animal, and fungal kingdoms (165). The STAND super-
family includes APAF1, the primary component of the mam-
malian apoptosome (166), and NLRC4 (NLR family CARD do-
main–containing protein 4) and NLRP3 (NLR family pyrin
domain–containing 3), which are the best-characterized NLRs
of themetazoan immune system (20, 167–171).

Classically, plant NLRs comprise a C-terminal LRR domain;
a central nucleotide-binding domain known as the NB-ARC
(nucleotide-binding domain shared with APAF1, R gene prod-
ucts and CED4 (172); and a variable N-terminal module, which
is typically either a TIR (Toll/interleukin-1 receptor/resist-
ance), CC (coiled-coil) domain, or an RPW8 (resistance to
powdery mildew 8)-like CC domain (CC-RPW8) (173). Inter-
estingly, LRR domains appear in both cell-surface and intracel-
lular immune receptors and are widely found to be ligand rec-
ognition motifs that mediate protein-protein interactions
across kingdoms of life. The LRR domain has been implicated
in effector recognition for some NLRs, although it is also likely
to be important for autoinhibition of the receptor (20, 174,
175). The NB-ARC domain functions as a molecular switch,
with effector perception relayed through this domain via nucle-
otide exchange (ADP for ATP) (48). The N-terminal domains
are required for immunity and divide the NLRs into three
major classes: TIR-NLRs, CC-NLRs, and RPW8-NLRs (21).
Transient expression assays in plants have shown that the N-
terminal domains can initiate cell death autonomously and in
the absence of an effector (176). Recently, some NLRs have
been shown to incorporate additional noncanonical domains
into their architecture (177). Known as integrated domains
(IDs), these domains can directly interact with effectors (11, 17,
178–180). Intriguingly, many NLR IDs share sequence/struc-
tural homology with established virulence-associated host tar-
gets of effectors, such as transcription factors or proteins im-
portant for cell homeostasis (181). Overall, the individual
domains of plant NLRs function together to deliver an effective
immune response against pathogen/pests.

Effector detection: Direct and indirect perception of effectors
by plant NLRs

Conceptually, how plant NLRs perceive effectors has been
grouped into three overarching models: the direct recognition
model (non-ID), indirect recognition model (via guardees or
decoys), and the integrated domain recognition model (via
integration of effector targets as IDs into the NLR architecture)
(Figs. 4A and 5).

Direct recognition

The LRR domain of NLR proteins has been implicated in
direct interaction with effectors, as well as having a role in auto-
inhibition of receptor activity. Best-characterized in flax, this
plant shows a variety of resistance phenotypes toward different
strains of the flax stem rust pathogen (Melampsora lini)
expressing different effector alleles (182). In particular, dissec-
tion of flax NLRs from the L resistance gene loci (encoding L5,
L6, and L7 NLRs among others) and how they perceive alleles
of the effector AVRL-567 revealed polymorphisms in the LRR
region that underpin specificity (174, 183). Similarly, polymor-
phisms between the flax NLR variants P and P2 within the LRR
domain determine different flax stem rust resistance specific-
ities (184). Although genetic and biochemical evidence for
effector perception by LRR domains is established, to date, the
structural basis of such interactions has yet to be determined.
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Indirect recognition

NLRs can act as “guards” for host proteins targeted by effec-
tors (known as guardees (181)). Guard/guardee interactions

can be divided into two models. In both models, the NLR
monitors the biochemical status of the guardee (e.g. detect-
ing post-translational modification or cleavage/degrada-
tion). In the guard model, the guardee is important for host
cell function, whereas in the decoy model, the guardee is a
mimic of an effector target but does not have a function out-
side of immunity.
RIN4 (RPM1 (resistance to Pseudomonas syringae pv.macu-

licola 1)-interacting protein 4) is a plasmamembrane–localized
negative regulator of plant immunity (185). This protein is a
classic example of an effector “hub,” a host protein that is tar-
geted by multiple effectors from different pathogens, and as a
consequence, it is guarded by multiple NLRs (60). The Arabi-
dopsisNLRs RPM1 and RPS2 (resistance to P. syringae 2)moni-
tor the biochemical status of RIN4, detecting modifications,
such as phosphorylation and degradation, that lead to activa-
tion of immunity (185, 186).
In tomato, Pto is a protein kinase that directly interacts with

the NLR Prf (187, 188). Pto is a decoy that mimics the intracel-
lular domains of cell-surface immune receptors (187, 188)
and acts as a trap for effectors that pathogens have delivered
to interfere with receptor signaling. Pto has no known func-
tion outside of this bait activity (189). Direct interactions
between effectors and Pto lead to oligomerization of Prf and
immune activation (188, 189).

Figure 4. NLRs perceive effectors via distinct mechanisms and induce immune responses through different mechanisms. A, effector (purple) percep-
tion induces activation of the NLR (orange) via direct binding. NLRs can indirectly perceive and respond to effectors by monitoring modifications of a physio-
logically relevant host target (Guardee, gray) or a molecular mimic that likely resulted via gene duplication and is now only involved in immune signaling
(Decoy, blue). NLRs can directly perceive and respond to effectors via NLR integrated domains (blue), which likely have their evolutionary origin in ancestral
host targets of effectors. B, NLR singletons are able to initiate immune responses upon effector perception. Several sensor NLRs require downstream helper
NLRs (green) to transduce effector perception into immune responses. NLRs can function in pairs or as part of interconnected networks.

Figure 5. Incorporation of host targets in NLRs leads to the evolution of
NLR with integrated domains. NLRs (orange) can sense changes in host
proteins (gray) that are targeted by pathogen effector molecules (purple) and
initiate defense signaling. Over time, some of these host proteins can be
found integrated into the NLR core structure (blue), acting as the effector rec-
ognition domains for the NLR. Binding of an effector to the integrated do-
main of an NLR leads to initiation of defense responses.
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Integrated domain model

The integrated domain model is an evolutionary innovation
in plant NLRs where a domain that mimics an effector target is
positioned in an NLR architecture, serving as a sensor domain
by directly interacting with effectors (Figs. 4A and 5). A well-
studied example of NLR IDs are the heavy metal–associated
(HMA) domains of rice receptor proteins Pik-1 (Pyricularia
oryzae resistance-k) and the Pia sensor NLR (RGA5; R-gene
analog 5), which directly bind effectors of the fungal pathogen
Magnaporthe oryzae (11, 178). Biochemical, structural, and in
planta studies have shown how these HMA domains interact
with pathogen effectors and demonstrate how different NLR
variants perceive different alleles of the effectors (11, 29, 31,
190). Interestingly, a single integrated domain in an NLR can
perceive multiple effectors. For example, the WRKY transcrip-
tion factor–like domain of the Arabidopsis NLR RRS1 (resist-
ance to Ralstonia solanacearum 1) interacts with two
sequence-divergent and structurally divergent effectors (191).
One of these effectors adopts a helix-loop-helix fold with an
unknown virulence function (AvrRps4 (resistance to P. syringae
4); presumed to be a protein-protein interaction module) (17,
192), whereas a second is an acetyltransferase (PopP2) that ace-
tylates both WRKY transcription factors and the RRS1-WRKY
(17, 192). The structural basis of interaction between the RRS1-
WRKY and PopP2 has been elucidated (17, 192), but the equiv-
alent structure with AvrRps4 remains to be determined. The
RRS1-WRKY case demonstrates the versatility of effector per-
ception that integrated domains deliver to NLRs and suggests
their utility for receptor engineering.

Case study 2: Integrated HMA domains—exemplars of
integrated domains in NLRs

Many different types of proteins have been found as IDs in
plant NLRs, and likely function in direct perception of effectors
(193–197). The integrated HMA domains of the sensor NLRs
of the rice Pik and Pia pairs are exemplars of IDs and serve as
model systems for understanding the principles of effector per-
ception by these domains (11, 29, 31, 178). Fig. 5 illustrates the
integration of atypical domains into NLRs to facilitate effector
perception.
The integrated HMA domains of Pik-1 and the Pia sensor

(also known as RGA5) are likely derived from an expanded fam-
ily of small plant proteins containing an HMA domain and,
sometimes, a C-terminal isoprenylation motif (heavy metal–
associated plant proteins (HPPs) or heavy metal-associated iso-
prenylated proteins (HIPPs) (198)). These proteins may have a
role in abiotic stress and detoxification of heavy metals, such as
copper or cadmium (198). Additionally, some of these proteins
act as susceptibility factors (host targets that can be exploited
to assist infection) for diverse pathogens (199–201). This sug-
gests that HPPs/HIPPs may be effector hubs, repeatedly tar-
geted by pathogens as part of infection strategies (59, 60). This
provides an evolutionary context for their integration into
NLRs as “baits” for triggering immunity (177).
In rice, integrated HMA domains can be found at the C ter-

minus of the sensor NLR of Pia (178) and also between the CC
and NB-ARC domain of the sensor NLR Pik-1 (11). Diversity in

the location of domain integration implies that these were sepa-
rate integration events.
The HMA domain of the Pia sensor binds two rice blast

effectors, AVR-Pia and AVR1-CO39, whereas the Pik-HMA
binds variants of the rice blast effector AVR-Pik (11, 29, 31,
190). Interestingly, these effectors bind to the Pia- and Pik-
HMA domains via different interfaces, suggesting that they
have independently evolved to target HMA domain–contain-
ing proteins, and rice has been able to use both of these interfa-
ces to bait effectors and trigger immunity (31).
As a consequence of arms-race co-evolution with AVR-Pik

effector variants (29, 202, 203), the HMA domain is the most
variable domain region of the Pik NLRs (204), and the rice Pik
receptors also exist as an allelic series with differential recogni-
tion specificity for effector variants (202). Biochemical and
structural studies of the interaction between different AVR-Pik
variants and two allelic HMA domains revealed how subtle
changes in the effector/HMA-binding interface underpin varia-
tion in recognition specificity (29). Recently, the observation
that subtle changes underpin specificity has been used in a
proof-of-concept study to show that NLR IDs can be engi-
neered to expand their recognition capacity to allelic effectors
(205).

NLR activation

A general principle of NLR biology is that perception of
effectors leads to conformational changes in the receptor.
These changes can include domain rearrangements and oligo-
merization.Whereas the details depend on themode of effector
perception, nucleotide exchange (ADP for ATP) in the NB-
ARC domain of NLRs is a factor for activation. Numerous stud-
ies have shown the importance of conserved sequences such as
the “P-loop” and “MHD-like” motifs (a consensus sequence
(methionine-histidine-aspartate) at the C terminus of ARC2) in
nucleotide binding/exchange and NLR activation (206, 207).
Conformational change and/or oligomerization of NLRs per-

turb the N-terminal CC or TIR domains to initiate immune
responses. Whereas recent studies have begun to shed light on
the molecular basis of how these domains trigger immunity,
whether these reflect general principles applicable for all NLRs
remains to be determined. For example, for CC domains, the
structure of the Arabidopsis NLR ZAR1 (HopZ-activated re-
sistance 1) revealed a mechanism whereby oligomerization
results in a “funnel” of the N-terminal helices, which then asso-
ciate with membranes and may perturb cellular integrity (14,
15) (Fig. 6). A sequence motif within the N-terminal helix of
some NLR CC domains has been associated with ZAR1-like
cell death immunity, known as the MADA motif (a consensus
MADAXVSFXVXKLXXLLXXEX sequence conserved at the N
termini of NRC (NLR required for cell death) family proteins)
(209). This suggests that a subset of NLRs may function in a
manner similar to ZAR1. However, how CC-NLRs that do not
contain this motif function to initiate immunity has yet to be
determined.
Many TIR domain structures from plant NLRs have been

determined (16, 32, 35–37) and revealed multiple mechanisms
of self-association to form scaffolds for protein-protein
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interactions that may be important for immune activation
(210). Recently, the TIR domains of several NLRs have been
shown to catalyze the hydrolysis of NAD1, suggesting a new
mechanism for TIR-NLR activity (35, 211). How NAD1 hydro-
lysis functions in plant immunity is currently unknown.
Recently, the structure of the N. benthamiana TIR-NLR Roq1
was determined, marking the first structure of a TIR-NLR resis-
tosome (212). The Roq1 structure provides insight into the
novel recognition of its cognate effector, XopQ, through inter-
action with a unique integrated-like domain deemed the post-
LRR domain. Furthermore, it verifies the importance of specific
TIR domain self-association interfaces, alluding to self-associa-
tion resulting in the opening of the TIR domain active site for
NAD1 binding and hydrolysis.

NLRs function as singletons, pairs, and networks

To compensate for the lack of an adaptive immune system,
plants have a diverse NLR repertoire, which has enabled func-
tional specialization. This has resulted in the evolution of NLRs
that function as singletons, in pairs, and as parts of intercon-
nected networks (213–215) (Fig. 4B).
To date, several NLRs have been identified that appear to

function autonomously, both sensing the presence of patho-
gens/pests and mounting a response. These are referred to as
NLR singletons. Examples include NLRs of the mildew resistance
locus A (MLA) in barley, Arabidopsis TIR-NLR RPP4 (recogni-
tion of Peronospora parasitica 4), and CC-NLRRPS2 (186, 216).
By contrast, other NLRs have specialized functions and can

be broadly divided into two groups, sensors and helpers, and
are generally referred to as NLR pairs (215). In these pairs, sen-
sor NLRs perceive effectors, via the mechanisms discussed
above, and helper NLRs are involved in converting effector per-
ception into immune activation (181). NLR pairs can be geneti-

cally linked, often encoded at the same locus under the control
of the same promoter. They are also always of the same class
(CC-NLR or TIR-NLR). The best-characterized genetically
linked sensor/helper paired NLRs are the Arabidopsis pair
RRS1/RPS4, the rice pair Pik, and the rice pair Pia (also known
as RGA5/RGA4). Intriguingly, each of the sensor NLRs of these
pairs contains an integrated domain. General mechanisms for
how paired NLRs function are based on models of suppression
or receptor cooperation (217). The Pia and RRS1/RPS4 NLR
pairs can be transiently expressed in tobacco leaves without
clear cell death phenotypes. However, cell death phenotypes
can be observed in tobacco leaves when RPS4 or the Pia helper
NLRs are expressed without their cognate sensors or effectors.
Co-expression of the RRS1 or Pia sensor NLRs suppresses the
autoactive cell death phenotype of the helpers (218). Co-
expression of the paired NLRs with their cognate effectors
relieves this suppression, resulting in cell death. By contrast,
expression of the Pik-2 helper NLR does not result in cell death,
and co-expression of the Pik-1 sensor NLR and the cognate
effector is required for cooperative cell death (11, 219).
However, a direct genetic link (head-to-head orientation or

belonging to the same genetic loci) is not essential for NLR
cooperation in immune activation, and some require complex
NLR networks for function. The NLR “N-requirement gene 1”
(NRG1), is required for the resistance to tobacco mosaic virus
provided by the TIR-NLR, N (220). NRG1 is a member of the
ADR1 (activated disease resistance 1) family of RPW8-NLRs,
and since the discovery of NRG1, the RPW8-NLRs have been
found to be important for the full function of many other CC-
NLRs and TIR-NLRs (221, 222). Another NLR network has
recently been uncovered in solanaceous plants. The NRCs are a
phylogenetically distinct class of helper CC-NLRs consisting of
functionally redundant paralogs (223). Sensor NLRs that
require NRCs provide resistance to diverse pathogens and
pests, including bacteria, oomycetes, nematodes, viruses, and
insects (223). They display distinct specificities for different
NRC helpers, with some sensors signaling through only one
and others showing functional redundancy. Diversification of
NLRs in the NRC network has allowed a varied arsenal of NLRs
against a broad range of pathogens to have evolved.
Intriguingly, a new body of work has emerged, which has

begun to uncover interplay between cell-surface and intracellu-
lar immunity (43, 44). These papers demonstrate that cell-sur-
face immunity is required to potentiate intracellular immunity,
enhancing NLR responses such as cell death. By contrast, NLR
activity was shown to be important for cell-surface immunity
receptor turnover, relieving attenuation of PRR signaling, and
replenishing signaling components at the cell surface. These
new findings open the door to further studies analyzing cross-
network communications between cell-surface and intracellu-
lar immunity.

Case study 3: The structure of ZAR1—the first plant
resistosome

Recently, cryo-EM structures of ZAR1 were solved in inac-
tive and active states. These are the first structures of full-
length plant NLRs to be determined, and they represent amajor

Figure 6. The activation of the ZAR1 immune receptor. ZAR1 (orange) is
an Arabidopsis CC-NLR that forms complexes with pseudokinases, including
ZED1 and RKS1 (green), to perceive effector activity (208). The ZAR1:RKS1 re-
ceptor complex guards the receptor-like cytoplasmic decoy kinase PBL2. Fol-
lowing uridylylation of PBL2 by the Xanthomonas campestris effector protein
AvrAC, PBL2UMP (purple) binds to RKS1, activating ZAR1. Activated ZAR1 is
then able to oligomerize into a pentameric wheel with the CC domains each
contributing their H1 helix (yellow) to form a funnel-like structure.
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advance in our understanding of NLR biology (14, 15). In the
inactive state, the LRR domain in the ZAR1:RKS1 (resistance-
related kinase 1) receptor complex makes autoinhibitory con-
tacts with both the NB-ARC and CC domains, and a molecule
of ADP is bound within the NB-ARC domain. PBL2UMP bind-
ing to RKS1 induces a disorder-to-order transition of the RKS1
activation loop and a steric clash with the NB-ARC of ZAR1,
which becomes displaced. This conformational change results
in nucleotide exchange from bound ADP to ATP and stabiliza-
tion of a structure primed for oligomerization with other acti-
vated RKS1:ZAR1 heterocomplexes. The pentamer that results
from the oligomerization events is known as the “resistosome.”
The conformational changes and oligomerization associated
with PBL2UMP binding promote unfolding of the ZAR1 CC do-
main, releasing the N-terminal helix (H1) from a four-helical
bundle. The released H1 helix then associates with the H1 heli-
ces of neighboring activated ZAR1 molecules, resulting in the
formation of a funnel-like structure with a striking hydrophobic
surface. There is evidence that the ZAR1 CC domain funnel is
required for membrane association and that this membrane
association is linked to induction of cell death, potentially
through ion efflux ormembrane perturbation (14, 15, 224).
As this review was being finalized, the structure of the Roq1

TIR-NLR from N. benthamiana was determined by cryo-EM
(212). This structure provides a significant advance in our
understanding of plant NLR immunity as it represents the first
structure of a TIR-NLR resistosome and, as such, should be
considered alongside this ZAR1 case study.

Next steps in understanding intracellular immunity

Despite recent advances, key questions on NLR function
remain to be addressed. The ZAR1 and Roq1 structures have
provided a wealth of information that has significantly
expanded our understanding of plant NLR biology. However, it
is as yet unclear how oligomerization of CC-NLRs into a resis-
tosomemediates cell death. Furthermore, we lack structural in-
formation and evidence of resistosome formation for RPW8-
NLRs. Even more perplexing is the role of TIR domain NADase
activity and how it leads to the activation of RPW8-NLRs.
Where we are beginning to generate a picture of the complex
interactions between NLRs in plants, it is still unclear how one
of the most primary interactions, effector detection, is mecha-
nistically relayed from sensor NLRs to helper NLRs in pairs and
networks. Each of these areas, among many others, requires
further research to fully understand how NLRs provide resist-
ance to pathogens/pests.

Engineering plant immunity

Since their discovery, cell-surface and intracellular immune
receptors have been targets of biotechnological approaches to
improve disease resistance in plants. These approaches have
included different scales, from transferring genes encoding
plant receptors between species to specific amino acid muta-
tions to modulate effector binding or receptor activity (52,
225). Engineering requires a holistic view, incorporating a
range of methods to deliver both broad and robust resistance.
Broad low-level resistance is regularly found in nature; how-

ever, due to monoculture reducing natural diversity, bespoke
resistance to specific pathogens is often more desirable.
Whereas the GMO debate remains a focus of public discussion
and governmental policy decisions, engineering and editing
crop genomes offers potential solutions to food insecurity.

Engineering resistance by transferring genes

The transfer of traits conferring pathogen resistance is con-
ceptually the most straightforward strategy to engineer disease
immunity in plants. This method is used in classical plant
breeding by selecting resistant phenotypes and crossing into
desired cultivars. However, this approach is time-consuming
and technically challenging (226). The recent development of
new sequencing, phenotyping, and plant growth technologies
has allowed researchers to overcome the limitations of this pro-
cess (159, 227–229).
As plant cell-surface immune receptors tend to perceive

common signatures of pathogens/pests and activate conserved
signaling pathways in plants, they offer opportunities to trans-
fer resistance between plant species. For example, the Arabi-
dopsis EFR receptor is restricted to Brassicaceae species in na-
ture but delivered novel resistance specificity against bacterial
pathogens when it was transferred to tomato and rice (230–
232). Similarly, transfer of the rice cell-surface receptor Xa21
to banana, sweet orange, or tomato increased resistance to
Xanthomonas sp. (233–235). Further, an allelic FLS2 receptor
from wild grape has been demonstrated to confer resistance to
the crown-gall pathogen Agrobacterium tumefaciens when
expressed in tobacco (236). Building on these advances, mining
the diversity of cell-surface immune receptors with expanded
recognition specificities from diverse plant species and their
subsequent transfer to other plants, holds promise for engi-
neering broad-spectrum disease resistance (230, 237, 238).
Recent advances in mining the genomes of wild plant spe-

cies using new genomics technologies (228, 239–242) have
allowed the rapid identification of candidate immune recep-
tors for deployment in crops. Using such approaches, resis-
tance to Asian soybean rust in soybean has been established
by transferring an NLR from pigeon pea (243). Further, re-
sistance has been shown against the potato late blight patho-
gen by introducing resistance genes from wild potato spe-
cies (244, 245).
Plant intracellular NLR receptors are highly diverse (246–

248) and often work together with other NLRs in pairs or net-
works. Therefore, NLRs frequently require a specific genetic
background to provide effective disease resistance. As a conse-
quence, the functional transfer of NLR receptors between spe-
cies, or even cultivars of the same species, has proven challeng-
ing (249, 250).

Bespoke engineering of NLR responses

Based on recent advances in our understanding of the mech-
anisms of NLR function, a number of new approaches are being
explored to enable more effective engineering of NLRs to help
deliver disease resistance in target plants.
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Domain exchange and mutagenesis

Domain exchange approaches between related NLRs have
been explored for their potential to engineer disease resistance
(251). Domain exchanges between the potato NLRs Rx and
Gpa enabled the partial exchange of immune recognition from
viruses to nematodes and vice versa (251). Autoactive and loss-
of-function phenotypes were also observed in the chimeras and
suggested that more subtle variationsmay havemore potential.
High-throughput random mutagenesis of NLRs has been

used to explore whether these receptors can be improved by
enhancing their activation sensitivity or by expanding their rec-
ognition specificity. Following such approaches allowed
expanded recognition of viruses by the NLR Rx (252, 253). This
has been also applied to identify mutations that expanded the
response of the potato NLR R3a and its tomato ortholog I-2
(254) to effectors from Phytophthora species (255). However,
the translation of these expanded recognition phenotypes to
disease resistance has remained limited (252–255). Recently,
improved knowledge of how effectors, or effector activities, are
directly perceived has inspired newmethods of engineering.

Decoy engineering

Understanding how NLRs that guard host targets are acti-
vated can allow engineering of recognition specificity. TheAra-
bidopsisNLR RPS5 perceives cleavage of the decoy kinase PBS1

by the P. syringae effector AvrPphB at a specific recognition
sequence (256). Mutation of the recognition site in PBS1 to
cleavage sequences recognized by other translocated pathogen
proteases, including a second P. syringae effector, AvrRpt2, and
the Nla protease from tobacco etch virus, switched the RPS5
recognition specificity (257). It is of special note that the latter
switched RPS5 perception from bacteria to viruses. Although
this approach is limited to pathogens that translocate proteases
into the host, the widespread conservation of this protease rec-
ognition systems in crop plants (258, 259) has recently allowed
engineering of disease resistance in soybean (256).

Integrated domains: New possibilities to engineer disease
resistance

The discovery of integrated domains in plant NLRs opened
new opportunities to understand and manipulate mechanisms of
pathogen perception by intracellular immune receptors (177,
218, 260, 261) (Fig. 6). These domains have become a promising
avenue for engineering disease resistance conferred by NLRs
(205, 260, 261). As previously introduced, the allelic rice NLRs
Pik perceive variants of the rice blast pathogen effector AVR-Pik
by direct binding via an HMA domain (11, 29). Some natural
effector variants are able to escape recognition by certain Pik
NLR alleles, whereas other variants completely evade detection
(29, 202, 262). Further, the binding of AVR-Pik effectors to the
HMA is not in itself sufficient to activate immune signaling, and a

Figure 7. Alternative strategies for immune receptor engineering. A, plant immune receptors (orange/gray) bind natural variants of effector and ligands
(purple/cyan/yellow) with different binding affinities (schematically depicted by the height of the colored bars). Only some binding events are of sufficient level
to reach an activation threshold (represented by the dashed line), triggering immune responses. B, mutations in the receptor (gray to blue) can extend pathogen
recognition by gaining or increasing binding to effectors and ligands, leading to immune responses to pathogens previously undetected. C, mutations in the
immune receptors (orange to green) can lower the activation threshold, allowing for increased intensity of immune signaling. D, the combination of bothmuta-
tions (green/blue receptor) that enhance recognition and immune responses can lead towider and increased immune responses to effectors and ligands.
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threshold of binding needs to be reached to trigger immune
responses (29) (Fig. 7A). An understanding of the biochemical
and structural basis of different AVR-Pik/HMA interactions (29)
has allowed the design of specific mutations that increase the
binding affinity to effector alleles, expanding the recognition
capability of the Pikp NLR (205) (Fig. 7B). This proof of concept
demonstrated that NLR binding to effectors and the subsequent
responses can be manipulated by rational design. Additional
HMAdomain engineering could now focus on extending percep-
tion of sequence-divergent rice blast effectors that also interact
with HMAs, but at a different interface (30, 31, 190). Looking to
the future, combining mutations in NLRs to both sensitize and
lower the threshold to trigger immune responses, as discussed
above (Fig. 7C), and directly increase binding affinity to effectors
(Fig. 7D) is an exciting long-term goal for the field.

Other approaches: Controlled expression of autoactive NLRs

A further possibility for engineering disease resistance is to
manipulate expression of NLRs. For example, the discovery of a
mechanism controlling defense responses at transcriptional and
translational level allowed the design of a pathogen-responsive
expression cassette (263). Placing an autoactive NLR under con-
trol of this cassette generated an NLR-mediated plant defense
system that does not rely on effector recognition. This conferred
broad-spectrum resistance without a fitness cost (264), a defense-
yield trade-off that can occur when engineering immunity (265).

Conclusion

Plant disease has shaped the natural and agricultural world.
Crop losses due to disease and the emergence of resistant culti-
vars have been key events that have facilitated the way we breed
and farm our food. Consequently, an understanding of the plant
immune system is essential, as we attempt to develop new meth-
ods for disease control against a background of the climate emer-
gency. Despite extensive studies, which we have reviewed here,
further research is required to fully understand how the plant sys-
tem works holistically to deliver disease resistance. Of the hun-
dreds of cell-surface RLKs and RLPs identified, many of the bio-
logical functions and ligands of these receptors remain unknown.
Furthermore, it is important to understand how plants distin-
guish the MAMPs of pathogens/pests from the MAMPs of the
beneficial mutualist microbes. Determining the function of more
of these cell-surface receptors will lead to new avenues for engi-
neering resistance in crops. Similarly, advances in understanding
NLR biology will help to better arm plants against pathogens and
pests that evolve to circumvent cell-surface immunity. Aswe gen-
erate a better understanding of the complex interactions between
plants and pathogens and pests, we can assemble the pieces to
inform engineering of disease resistance, to produce more dura-
ble crops and help battle the food security problems of the future.
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