

Received 18 December 2014 Accepted 23 January 2015

Edited by M. Gdaniec, Adam Mickiewicz University, Poland

Keywords: crystal structure; heterobimetallics; phosphido bridges; iron complexes; platinum complexes; diphenylmethylsilyl ligand; metalmetal bond

CCDC reference: 1045140 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of tricarbonyl(μ -diphenylphosphido- $\kappa^2 P:P$)(methyldiphenylsilyl- κSi)bis-(triphenylphosphane- κP)iron(II)platinum(0)(Fe—Pt)

Ahmed Said Mohamed,^a Isabelle Jourdain,^a Michael Knorr,^a Yoann Rousselin^b and Marek M. Kubicki^b*

^aInstitut UTINAM UMR CNRS 6213, University of Franche-Comté, 16 route de Gray, Besançon 25030, France, and ^bICMUB UMR CNRS 6302, University of Burgundy, 9 avenue Alain Savary, Dijon 21078, France. *Correspondence e-mail: marek.kubicki@u-bourgogne.fr

The title compound, $[FePt(C_{12}H_{10}P)(C_{13}H_{13}Si)(C_{18}H_{15}P)_2(CO)_3]\cdot 0.5CH_2Cl_2$, represents an example of a phosphido-bridged heterobimetallic silyl complex; these are interesting precursors for the coordination and activation of small unsaturated organic molecules. The μ_2 -PPh₂ ligand spans the iron and platinum atoms, which are connected *via* a metal–metal bond of 2.7738 (4) Å. In contrast to most other complexes of the $[(OC)_3Fe(SiR_3)(\mu-PR_2)PtL_2]$ family, where the iron-bound SiR₃ group is *trans*-arranged with respect to the μ_2 -PPh₂ ligand, the SiPh₂Me ligand is roughly collinear with the Fe–Pt vector [Si–Fe–Pt =169.07 (3)°].

1. Chemical context

bridging of metal-metal-bonded heterodinuclear The complexes with μ_2 -PR₂ phosphido bridges allows both the stabilization of the metal-metal bond and permits a finetuning of the reactivity of heterodinuclear systems by steric and electronic variation of the R substituents. In addition to the numerous examples of homodinuclear complexes, many μ -phosphido heterobimetallic complexes (with and without a metal-metal bond) are nowadays well documented and both their structural and reactivity features have been investigated (Stephan, 1989; He et al., 1992; Comte et al., 1997; Lavastre et al., 1997). These compounds are usually prepared by the reaction of anionic $[L_n MPR_2]^-$ salts with a transition metalhalide complex (Jenkins & Loeb, 1989) or by oxidative addition of the P-H bond of an $[L_n MPR_2H]$ complex across a second low-valent metal atom (Powell et al., 1987). This latter route has been used to prepare the title complex [FePt(C₁₂H₁₀P)(C₁₃H₁₃Si)(C₁₈H₁₅P)₂(CO)₃]·0.5CH₂Cl₂ (I)and related complexes by oxidative addition of [(OC)₃Fe(H)- $(SiR_3)(PPh_2H)$] across $[Pt(CH_2=CH_2)(PPh_3)_2]$ (Fig. 1). These heterodinuclear systems display an interesting reactivity such as ligand-induced SiR_3 migration from iron to platinum, which

The reaction scheme for the synthesis of (I).

research communications

has been studied both experimentally (Braunstein *et al.*, 1992) and theoretically (Messaoudi *et al.*, 2007). Another reactivity pattern of these electron-rich $[(OC)_3Fe(SiR_3)(\mu_2-PR_2)-Pt(PPh_3)_2]$ compounds is their conversion to hydride-bridged μ_2 -phospido-complexes by means of protonation with HBF₄, with concomitant cleavage of the Fe–SiR₃ bond (Knorr *et al.*, 1994).

2. Structural commentary

Compound (I) crystallized from CH₂Cl₂/heptane as a dichloromethane solvate in the triclinic space group $P\overline{1}$. The molecular structure of the organometallic molecule is depicted in Fig. 2. The iron and platinum atoms are linked by a phosphide bridge and a formal metal-metal bond, whose Fe-Pt separation of 2.7738 (4) Å is somewhat longer, probably because of steric hindrance between the Ph groups of the PPh₃

Figure 2

The molecular structure of the title compound (I), with displacement ellipsoids shown at the 50% probabily level. H atoms have been omitted for clarity.

and PPh₂ ligands, than those reported for $[(OC)_3Fe(SiPh_3)(\mu PPh_2$)Pt(PMe_3)₂] [Fe-Pt = 2.701 (2) Å; Knorr *et al.*, 1994], $[(OC)_{3}Fe(SiPh_{3})(\mu-PPh_{2})Pt\{Ph_{2}C(=CH_{2})PPh_{2}\}] [Fe-Pt =$ 2.659 (2) Å; Knorr et al., 1994], [(OC)₃Fe(SiPh₃)(μ- PPh_2)Pt(C=N-Xylyl)(PPh_3)] [Fe-Pt = 2.631 (1) Å; Braunstein et al., 2000] and [(OC)₃Fe(SiPh₃)(µ-PPh₂)Pt(CO)(PPh₃)] [Fe-Pt = 2.620 (2) Å; Reinhard *et al.*, 1993]. The Fe-Si bond length of 2.3497 (9) Å is quite comparable with the Fe-Sibond lengths in the latter four compounds, which range from 2.330 (1) to 2.356 (3) Å. However, a striking difference concerns the relative position of the SiR_3 substituent with respect to the bridging PPh₂ group. Whereas in all four SiPh₃bearing complexes the silvl group is in a trans-position with respect to the PPh₂ bridge, the SiPh₂Me ligand of (I) is roughly colinear with the Fe-Pt vector, the Si-Fe-Pt angle being 169.07 (3)°. The P–Fe–Si angle in (I) amounts to 119.32 (3)°, whilst that of $[(OC)_3Fe(SiPh_3)(\mu-PPh_2)Pt(C=N-Xylyl) (PPh_3)$ [175.1 (1)°; Braunstein *et al.*, 2000] is close to a theoretical linear trans-arrangement.

3. Supramolecular features

The crystal structure of (I) is built of discrete dimetallic molecules without significant specific intermolecular interactions.

4. Database survey

Other examples of crystallographically characterized μ -PPh₂ Fe–Pt complexes featuring a metal–metal bond are $[(OC)_3(H)Fe(\mu$ -PPh₂)Pt(PPh₃)₂] (Powell *et al.*, 1987), $[(OC)_3Fe(SiPh_3)(\mu$ -PPh₂)Pt(1,5-COD)] (COD = cyclooctadiene) (Braunstein *et al.*, 1995) and $[NMe_4][(OC)_3\{(MeO)_3Si\}-Fe(\mu$ -PPh₂)Pt{Ph₂PCH=C(O)Ph}] (Braunstein *et al.*, 1999). There is also one example of a heterodinuclear μ -PCy₂ complex, namely $[(OC)_3(Cl)Fe(\mu$ -PCy₂)Pt(PEt₃)₂] (Jenkins *et al.*, 1990).

5. Synthesis and crystallization

The synthesis of (I) has been already published (Reinhard *et al.*, 1993). We synthesized (I) in a somewhat improved manner by reaction of $[(OC)_3Fe(H)(SiMePh_2)(PPh_2H)]$ (462 mg, 1 mmol) with $[Pt(CH_2=CH_2)(PPh_3)_2]$ (749 mg, 1 mmol) in toluene (Fig. 1). The solution was stirred at 298 K for 1h and then concentrated until precipitation started. The precipitation of product (I) was completed by addition of hexane. The resulting yellow powder was filtered off, rinsed with hexane and dried under vacuum (969 mg, 78% yield). Suitable crystals were obtained by layering a CH₂Cl₂ solution with heptane and storing at 278 K in a refrigerator.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were placed in calculated positions and allowed to ride on their parent atoms. Table 1Experimental details.

Crystal data	
Chemical formula	$[FePt(C_{12}H_{10}P)(C_{13}H_{13}Si)-$
	$(C_{18}H_{15}P)_2(CO)_3] \cdot 0.5CH_2Cl_2$
M _r	1284.47
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	115
a, b, c (Å)	10.3522 (6), 13.0010 (8), 21.9803 (14)
α, β, γ (°)	99.823 (2), 99.061 (2), 102.677 (2)
$V(Å^3)$	2784.8 (3)
Z	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	2.97
Crystal size (mm)	$0.15 \times 0.05 \times 0.02$
Data collection	
Diffractometer	Nonius Kappa APEXII
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2008)
T_{\min}, T_{\max}	0.64, 0.74
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	89421, 12883, 11264
R _{int}	0.053
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.653
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.027, 0.063, 1.06
No. of reflections	12883
No. of parameters	671
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.13, -1.29

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and OLEX2 (Dolomanov et al., 2009).

C-H distances were set to 0.95 Å (aromatic) and 0.98 Å (methyl) with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl and 1.2 for aromatic H atoms. The CH₂Cl₂ solvent molecule has half occupancy and is disordered over two sites related by an inversion centre. Similar U_{ij} constraints were applied within the disordered parts of dichloromethane solvent by using an EADP constraint to maintain a reasonable model.

Acknowledgements

We are grateful to the Universities of Franche-Comté and Bourgogne (BQR PRES 2012–22) and the CNRS for financial support.

References

- Braunstein, P., Faure, T., Knorr, M., Stährfeldt, T., DeCian, A. & Fischer, J. (1995). *Gazz. Chim. Ital.* **125**, 35–50.
- Braunstein, P., Knorr, M., Hirle, B., Reinhard, G. & Schubert, U. (1992). Angew. Chem. Int. Ed. Engl. 31, 1583–1585.
- Braunstein, P., Knorr, M., Reinhard, G., Schubert, U. & Stährfeldt, T. (2000). *Chem. Eur. J.* 6, 4265–4278.
- Braunstein, P., Stährfeldt, T. & Fischer, J. (1999). C. R. Acad. Sci. Ser. IIc, pp. 273–292.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Comte, V., Blacque, O., Kubicki, M. M. & Moïse, C. (1997). Organometallics, 16, 5763–5769.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- He, Z., Lugan, P., Neibecker, D., Mathieu, R. & Bonnet, J.-J. (1992). J. Organomet. Chem. 426, 247–259.
- Jenkins, H. A. & Loeb, S. J. (1989). Can. J. Chem. 67, 1230-1235.
- Jenkins, H. A., Loeb, S. J., Dick, D. G. & Stephan, D. W. (1990). Can. J. Chem. 68, 869–874.
- Knorr, M., Stährfeldt, T., Braunstein, P., Reinhard, G., Hauenstein, P., Mayer, B., Schubert, U., Khan, S. & Kaesz, H. D. (1994). *Chem. Ber.* 127, 295–304.
- Lavastre, O., Bonnet, G., Boni, G., Kubicki, M. M. & Moïse, C. (1997). J. Organomet. Chem. 547, 141–147.
- Messaoudi, A., Deglmann, P., Braunstein, P. & Hofmann, P. (2007). Inorg. Chem. 46, 7899–7909.
- Powell, J., Gregg, M. R. & Sawyer, J. F. (1987). J. Chem. Soc. Chem. Commun. pp. 1029–1031.
- Reinhard, G., Knorr, M., Braunstein, P., Schubert, U., Khan, S., Strouse, C. E., Kaesz, H. D. & Zinn, A. (1993). *Chem. Ber.* **126**, 17–21.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Stephan, D. W. (1989). Coord. Chem. Rev. 95, 41-107.

supporting information

Acta Cryst. (2015). E71, 241-243 [doi:10.1107/S2056989015001565]

Crystal structure of tricarbonyl(μ -diphenylphosphido- $\kappa^2 P:P$)(methyldiphenyl-silyl- κSi)bis(triphenylphosphane- κP)iron(II)platinum(0)(Fe—Pt)

Ahmed Said Mohamed, Isabelle Jourdain, Michael Knorr, Yoann Rousselin and Marek M. Kubicki

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

Tricarbonyl(μ -diphenylphosphido- $\kappa^2 P:P$)(methyldiphenylsilyl- κSi)bis(triphenylphosphane- κP)iron(II)platinum(0) (Fe—Pt) dichloromethane hemisolvate

Crystal data	
$[FePt(C_{12}H_{10}P)(C_{13}H_{13}Si) (C_{18}H_{15}P)_{2}(CO)_{3}] \cdot 0.5CH_{2}Cl_{2} M_{r} = 1284.47 Triclinic, P\overline{1}a = 10.3522$ (6) Å b = 13.0010 (8) Å c = 21.9803 (14) Å a = 99.823 (2)° $\beta = 99.061$ (2)° $\gamma = 102.677$ (2)° V = 2784.8 (3) Å ³	Z = 2 F(000) = 1290 $D_x = 1.532 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9768 reflections $\theta = 2.4-27.2^{\circ}$ $\mu = 2.97 \text{ mm}^{-1}$ T = 115 K Prism, clear dark red $0.15 \times 0.05 \times 0.02 \text{ mm}$
Data collection Nonius Kappa APEXII diffractometer Radiation source: X-ray tube, Siemens KFF Mo 2K-180 Graphite monochromator Detector resolution: 9 pixels mm ⁻¹	$T_{\min} = 0.64, T_{\max} = 0.74$ 89421 measured reflections 12883 independent reflections 11264 reflections with $I > 2\sigma(I)$ $R_{int} = 0.053$ $\theta_{\max} = 27.6^{\circ}, \theta_{\min} = 2.8^{\circ}$
φ and ω scans' Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008)	$h = -13 \rightarrow 13$ $k = -16 \rightarrow 16$ $l = -28 \rightarrow 28$
Refinement Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.063$	S = 1.06 12883 reflections 671 parameters 0 restraints

3 constraints	$w = 1/[\sigma^2(F_o^2) + (0.0278P)^2 + 3.2483P]$
Hydrogen site location: inferred from	where $P = (F_o^2 + 2F_c^2)/3$
neighbouring sites	$(\Delta/\sigma)_{\rm max} = 0.001$
H-atom parameters constrained	$\Delta \rho_{\rm max} = 1.13 \text{ e } \text{\AA}^{-3}$
-	$\Delta \rho_{\rm min} = -1.29 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	V	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.1586 (3)	0.6037 (2)	0.37770 (14)	0.0155 (6)	
C2	0.0216 (3)	0.5753 (2)	0.35048 (15)	0.0178 (6)	
H2	-0.0073	0.5477	0.3063	0.021*	
C3	-0.0736(3)	0.5873 (3)	0.38767 (16)	0.0250 (7)	
H3	-0.1670	0.5686	0.3689	0.030*	
C4	-0.0317 (4)	0.6265 (3)	0.45199 (17)	0.0307 (8)	
H4	-0.0964	0.6337	0.4776	0.037*	
C5	0.1042 (4)	0.6550 (3)	0.47889 (16)	0.0318 (8)	
Н5	0.1326	0.6816	0.5231	0.038*	
C6	0.1997 (3)	0.6455 (3)	0.44221 (15)	0.0245 (7)	
H6	0.2932	0.6674	0.4611	0.029*	
C7	0.3470 (3)	0.7318 (2)	0.32479 (14)	0.0166 (6)	
C8	0.4762 (3)	0.7690 (3)	0.31449 (15)	0.0235 (7)	
H8	0.5343	0.7219	0.3110	0.028*	
C9	0.5205 (4)	0.8755 (3)	0.30925 (19)	0.0328 (9)	
H9	0.6089	0.9007	0.3019	0.039*	
C10	0.4375 (4)	0.9447 (3)	0.31459 (19)	0.0344 (9)	
H10	0.4684	1.0171	0.3105	0.041*	
C11	0.3098 (4)	0.9093 (3)	0.32577 (17)	0.0293 (8)	
H11	0.2530	0.9572	0.3300	0.035*	
C12	0.2646 (3)	0.8032 (3)	0.33081 (15)	0.0221 (7)	
H12	0.1764	0.7788	0.3385	0.027*	
C13	0.4226 (3)	0.5582 (3)	0.37477 (14)	0.0178 (6)	
C14	0.5117 (3)	0.6346 (3)	0.42404 (15)	0.0234 (7)	
H14	0.5029	0.7066	0.4322	0.028*	
C15	0.6140 (3)	0.6062 (3)	0.46162 (16)	0.0294 (8)	
H15	0.6736	0.6586	0.4957	0.035*	
C16	0.6291 (3)	0.5025 (3)	0.44955 (18)	0.0323 (9)	
H16	0.6985	0.4834	0.4756	0.039*	
C17	0.5430 (3)	0.4256 (3)	0.39946 (18)	0.0290 (8)	
H17	0.5545	0.3544	0.3906	0.035*	
C18	0.4396 (3)	0.4537 (3)	0.36219 (16)	0.0215 (7)	
H18	0.3804	0.4013	0.3280	0.026*	
C19	0.2220 (3)	0.6610(2)	0.14442 (14)	0.0141 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C20	0.2587 (3)	0.7106 (2)	0.09621 (15)	0.0171 (6)
H20	0.3094	0.6801	0.0689	0.020*
C21	0.2218 (3)	0.8040 (3)	0.08772 (15)	0.0204 (7)
H21	0.2481	0.8377	0.0549	0.025*
C22	0.1463 (3)	0.8487 (3)	0.12713 (16)	0.0233 (7)
H22	0.1233	0.9140	0.1222	0.028*
C23	0.1050 (3)	0.7973 (3)	0.17353 (16)	0.0231 (7)
H23	0.0510	0.8263	0.1996	0.028*
C24	0.1420 (3)	0.7037 (2)	0.18217 (14)	0.0175 (6)
H24	0.1127	0.6685	0.2139	0.021*
C25	0.4622 (3)	0.5889 (2)	0.18633 (13)	0.0124 (6)
C26	0.5396 (3)	0.6848 (2)	0.17855 (15)	0.0184 (6)
H26	0.4973	0.7310	0.1580	0.022*
C27	0.6792 (3)	0.7145 (3)	0.20055 (15)	0.0210(7)
H27	0.7312	0.7815	0.1958	0.025*
C28	0.7418(3)	0.6471 (3)	0 22915 (16)	0.0235(7)
H28	0.8371	0.6673	0.2438	0.028*
C29	0.6571	0.5501 (3)	0 23649 (16)	0.028 (7)
H29	0 7098	0.5032	0.2558	0.030*
C30	0.5266 (3)	0.5052 0.5205(2)	0.2550 0.21581(15)	0.0183 (6)
H30	0.4748	0.4542	0.2216	0.022*
C31	0.2576(3)	0.1512 0.4652(2)	0.08079(13)	0.0130 (6)
C32	0.2570(3) 0.3652(3)	0.1032(2) 0.4374(3)	0.05658(15)	0.0198 (6)
H32	0.4525	0.4552	0.0829	0.024*
C33	0.4525 0.3446 (3)	0.3835 (3)	-0.00619(15)	0.024 0.0238 (7)
Н33	0.4185	0.3659	-0.0226	0.0298 (7)
C34	0.7182(3)	0.3557(2)	-0.04440(15)	0.029
H34	0.2102 (3)	0.3184	-0.0869	0.025*
C35	0.2049	0.3104	-0.02095(15)	0.025
H35	0.0220	0.3627	-0.0473	0.0218 (7)
C36	0.0229 0.1304 (3)	0.3027 0.4362(3)	0.0473	0.020
C30 H36	0.1304 (3)	0.4502 (5)	0.04104 (14)	0.0184 (0)
C37	0.0500	0.4340 0.2170 (2)	0.0308 0.13155 (14)	0.022
C38	0.1317(3) 0.2858(3)	0.2170(2) 0.2223(3)	0.13133(14) 0.15870(15)	0.0135(0)
C38	0.2858 (5)	0.2223 (3)	0.13870 (13)	0.0190(0)
П30 С30	0.3237 0.3610 (2)	0.2070 0.1620 (2)	0.1990 0.12701 (16)	0.024°
U30	0.3010 (3)	0.1030 (3)	0.12791 (10)	0.0228 (7)
П39	0.4310 0.2022 (2)	0.1070	0.1409	0.027
C40	0.3032 (3)	0.0908 (3)	0.00910 (10)	0.0247 (7)
П 4 0 С41	0.5556	0.0347	0.0481	0.030°
C41	0.1728 (3)	0.0918 (3)	0.04094 (10)	0.0243 (7)
П41	0.1343	0.0470	0.0005	0.029
C42	0.0900 (3)	0.1521 (5)	0.07165 (15)	0.0198 (6)
П42 С42	0.00/1	0.1490	0.031/	0.024*
C43	-0.09/5(3)	0.2911(2)	0.12001 (14)	0.0148 (6)
C44	-0.1362 (3)	0.3862 (2)	0.12109 (15)	0.0184 (6)
H44	-0.0/38	0.4540	0.1394	0.022*
C45	-0.2639 (3)	0.3830 (3)	0.08942 (16)	0.0239 (7)
H45	-0.2887	0.4482	0.0859	0.029*

C46	-0.3560 (3)	0.2844 (3)	0.06278 (16)	0.0242 (7)
H46	-0.4437	0.2822	0.0409	0.029*
C47	-0.3202 (3)	0.1894 (3)	0.06799 (15)	0.0216 (7)
H47	-0.3833	0.1219	0.0498	0.026*
C48	-0.1916 (3)	0.1929 (3)	0.09989 (14)	0.0177 (6)
H48	-0.1676	0.1274	0.1036	0.021*
C49	-0.1895 (3)	0.0392 (2)	0.21876 (15)	0.0177 (6)
C50	-0.1184 (3)	-0.0128(2)	0.17901 (15)	0.0207 (7)
H50	-0.0236	-0.0019	0.1923	0.025*
C51	-0.1827 (4)	-0.0793(3)	0.12126 (16)	0.0253 (7)
H51	-0.1321	-0.1138	0.0956	0.030*
C52	-0.3210(4)	-0.0958(3)	0.10066 (16)	0.0272 (8)
H52	-0.3653	-0.1412	0.0609	0.033*
C53	-0.3936(3)	-0.0457(3)	0.13849 (17)	0.0262 (7)
Н53	-0.4882	-0.0565	0.1246	0.031*
C54	-0.3284(3)	0.0206 (3)	0 19708 (16)	0.0227(7)
H54	-0.3799	0.0540	0.2228	0.022*
C55	-0.2275(3)	0.0510 0.1690(3)	0.2220 0.34062 (17)	0.027 0.0267 (7)
U55 Н55А	-0.2952	0.1918	0.3132	0.0207 (7)
H55R	-0.1838	0.2277	0.3773	0.040*
H55C	-0.2717	0.1052	0.3548	0.040*
C56	-0.0169(3)	0.1032 0.0523(3)	0.34648(15)	0.0214(7)
C57	0.0796(4)	0.0525(3)	0.34040(13) 0.40177(17)	0.0214(7) 0.0322(8)
H57	0.1178	0.1758	0.4106	0.0322 (0)
C58	0.1178 0.1216 (4)	0.1758 0.0408 (3)	0.4400 0.44428(19)	0.039 0.0412 (10)
U58	0.1210 (4)	0.0757	0.44428 (19)	0.0412 (10)
C50	0.1879	-0.0680(3)	0.4813 0.43261(10)	0.049
U59	0.0008 (4)	-0.1000	0.45201 (19)	0.0374 (9)
П 39	0.0942	-0.1099	0.4019 0.2781 (2)	0.043°
	-0.0282 (4)	-0.1191 (3)	0.3781(2)	0.0303 (9)
HOU C(1	-0.0039	-0.1949	0.3097	0.044°
	-0.0084 (4)	-0.0392(3)	0.33373 (17)	0.0274(7)
Hol	-0.1330	-0.0951	0.2982	0.033*
C62	-0.1061(3)	0.3215(2)	0.26394 (15)	0.0188 (6)
C63	0.1099 (3)	0.3508 (2)	0.35684 (15)	0.0190 (6)
C64	0.1618 (3)	0.1991 (3)	0.27758 (15)	0.0196 (6)
01	-0.2091 (2)	0.3414 (2)	0.25651 (12)	0.0302 (6)
02	0.1469 (3)	0.38590 (19)	0.41022 (11)	0.0283 (5)
03	0.2311 (3)	0.1409 (2)	0.27948 (13)	0.0334 (6)
S11	-0.09598 (8)	0.13518 (7)	0.29544 (4)	0.01607 (17)
P1	0.28062 (7)	0.58904 (6)	0.32670 (4)	0.01326 (15)
P2	0.27801 (7)	0.54250 (6)	0.16115 (3)	0.01088 (14)
P3	0.06216 (7)	0.29705 (6)	0.17794 (4)	0.01213 (14)
Fel	0.05124 (4)	0.28585 (3)	0.27603 (2)	0.01319 (9)
Pt1	0.18625 (2)	0.45986 (2)	0.23346 (2)	0.01069 (4)
Cl1	0.4990 (4)	0.8723 (3)	0.5382 (2)	0.1272 (12)
C12	0.5633 (5)	1.0759 (3)	0.4954 (2)	0.1272 (12)
C65	0.4441 (7)	0.9859 (6)	0.5229 (7)	0.1272 (12)
H65A	0.3586	0.9616	0.4910	0.153*

0.5 0.5 0.5 0.5

					supporting	g information
H65B	0.4251	1.0245	0.	5620	0.153*	0.5
Atomic	displacement par	ameters $(Å^2)$				
		1 122	1 /33	T 112	1713	1/23
<u></u>	0.0107.(15)	0 0127 (14)		0	0,0000 (10)	0.004((10))
CI	0.0187 (15)	0.0137 (14)	0.0161 (15)	0.0036 (12)	0.0080 (12)	0.0046 (12)
C2	0.0209 (15)	0.0157(15)	0.01/5(15)	0.0036(12)	0.0057 (12)	0.0049 (12)
C3	0.0195 (16)	0.0279 (18)	0.0266 (18)	0.0046 (14)	0.0055 (14)	0.0045 (15)
C4	0.0296 (19)	0.039 (2)	0.0279 (19)	0.0094 (16)	0.0179 (16)	0.0061 (16)
C5	0.035 (2)	0.044 (2)	0.0156 (17)	0.0088 (17)	0.0092 (15)	0.0015 (16)
C6	0.0209 (16)	0.0294 (18)	0.0202 (17)	0.0024 (14)	0.0037 (13)	0.0025 (14)
C7	0.0201 (15)	0.0143 (14)	0.0123 (14)	0.0005 (12)	0.0022 (12)	0.0007 (12)
C8	0.0257 (17)	0.0190 (16)	0.0227 (17)	0.0024 (13)	0.0084 (14)	-0.0032 (13)
C9	0.034 (2)	0.0201 (17)	0.046 (2)	0.0012 (15)	0.0241 (18)	0.0046 (16)
C10	0.044 (2)	0.0149 (17)	0.044 (2)	0.0004 (15)	0.0202 (19)	0.0047 (16)
C11	0.040 (2)	0.0166 (16)	0.035 (2)	0.0086 (15)	0.0153 (17)	0.0046 (15)
C12	0.0245 (17)	0.0171 (16)	0.0241 (17)	0.0023 (13)	0.0067 (14)	0.0045 (13)
C13	0.0148 (14)	0.0232 (16)	0.0160 (15)	0.0029 (12)	0.0047 (12)	0.0067 (13)
C14	0.0203 (16)	0.0260 (17)	0.0215 (17)	0.0045 (14)	0.0030 (13)	0.0018 (14)
C15	0.0187 (16)	0.044 (2)	0.0217 (18)	0.0036 (15)	-0.0013 (14)	0.0068 (16)
C16	0.0186 (17)	0.047 (2)	0.036 (2)	0.0093 (16)	0.0037 (15)	0.0240 (18)
C17	0.0214 (17)	0.0305 (19)	0.040 (2)	0.0076 (15)	0.0076 (16)	0.0183 (17)
C18	0.0178 (15)	0.0222 (17)	0.0247 (17)	0.0025 (13)	0.0033 (13)	0.0100 (14)
C19	0.0118 (13)	0.0122 (14)	0.0170 (15)	0.0016 (11)	0.0000 (11)	0.0041 (12)
C20	0.0119 (14)	0.0189 (15)	0.0208 (16)	0.0031 (12)	0.0029 (12)	0.0067 (13)
C21	0.0171 (15)	0.0209 (16)	0.0243 (17)	0.0028 (13)	0.0017 (13)	0.0121 (13)
C22	0.0260 (17)	0.0161 (16)	0.0292 (18)	0.0086 (13)	0.0006 (14)	0.0091 (14)
C23	0.0270 (17)	0.0193 (16)	0.0264 (18)	0.0119 (14)	0.0070 (14)	0.0048 (14)
C24	0.0187 (15)	0.0181 (15)	0.0164 (15)	0.0058 (12)	0.0028 (12)	0.0049 (12)
C25	0.0111 (13)	0.0148 (14)	0.0107 (14)	0.0033 (11)	0.0016 (11)	0.0015 (11)
C26	0.0169 (15)	0.0189 (16)	0.0193 (16)	0.0031 (12)	0.0016 (12)	0.0078 (13)
C27	0.0147 (15)	0.0238 (17)	0.0210 (17)	-0.0021 (13)	0.0027 (13)	0.0052 (13)
C28	0.0130 (15)	0.0269 (18)	0.0262 (18)	0.0031 (13)	-0.0003(13)	0.0002 (14)
C29	0.0201 (16)	0.0218 (17)	0.0303 (19)	0.0095 (13)	-0.0034 (14)	0.0025 (14)
C30	0.0185 (15)	0.0142 (15)	0.0207 (16)	0.0040 (12)	0.0005 (13)	0.0035 (12)
C31	0.0179 (14)	0.0099 (13)	0.0114 (14)	0.0031 (11)	0.0022 (11)	0.0039 (11)
C32	0.0169 (15)	0.0258 (17)	0.0163 (16)	0.0087 (13)	-0.0001(12)	0.0027 (13)
C33	0.0271 (17)	0.0270 (18)	0.0195 (17)	0.0138 (14)	0.0069 (14)	0.0000 (14)
C34	0.0317 (18)	0.0159 (15)	0.0139 (15)	0.0060 (13)	0.0033 (13)	0.0008 (12)
C35	0.0187 (16)	0.0228 (17)	0.0177 (16)	-0.0009(13)	-0.0032(13)	0.0020 (13)
C36	0.0148 (14)	0.0218 (16)	0.0172 (15)	0.0019 (12)	0.0036 (12)	0.0031 (13)
C37	0.0176 (15)	0.0109 (14)	0.0185 (15)	0.0025 (11)	0.0057 (12)	0.0039 (12)
C38	0.0184 (15)	0.0202 (16)	0.0188 (16)	0.0027(13)	0.0035(13)	0.0034 (13)
C39	0.0187 (16)	0.0225(17)	0.0311 (19)	0.0078 (13)	0.0088 (14)	0.0098 (14)
C40	0.0297 (18)	0.0199 (16)	0.0305 (19)	0.0104 (14)	0.0174 (15)	0.0056 (14)
C41	0.0313 (18)	0.0171 (16)	0.0219 (17)	0.0023(14)	0.0103(14)	-0.0026(13)
C42	0.0174 (15)	0.0198 (16)	0.0205 (16)	0.0026(12)	0.0037 (13)	0.0028 (13)
C43	0.0143 (14)	0.0155 (14)	0.0147 (15)	0.0014 (11)	0.0043 (12)	0.0056 (12)
	· /	× /		× /	× /	× /

C44	0.0174 (15)	0.0152 (15)	0.0237 (17)	0.0027 (12)	0.0067 (13)	0.0062 (13)
C45	0.0214 (16)	0.0238 (17)	0.0331 (19)	0.0122 (14)	0.0085 (14)	0.0128 (15)
C46	0.0154 (15)	0.0343 (19)	0.0262 (18)	0.0087 (14)	0.0021 (13)	0.0139 (15)
C47	0.0161 (15)	0.0241 (17)	0.0211 (17)	-0.0010 (13)	0.0019 (13)	0.0048 (13)
C48	0.0176 (15)	0.0190 (15)	0.0175 (15)	0.0045 (12)	0.0045 (12)	0.0057 (12)
C49	0.0191 (15)	0.0109 (14)	0.0226 (16)	0.0000 (12)	0.0050 (13)	0.0064 (12)
C50	0.0255 (17)	0.0138 (15)	0.0237 (17)	0.0043 (13)	0.0061 (14)	0.0062 (13)
C51	0.037 (2)	0.0150 (16)	0.0245 (18)	0.0070 (14)	0.0067 (15)	0.0048 (13)
C52	0.039 (2)	0.0135 (15)	0.0216 (17)	-0.0004 (14)	-0.0046 (15)	0.0027 (13)
C53	0.0227 (17)	0.0192 (17)	0.0321 (19)	-0.0035 (13)	-0.0016 (14)	0.0112 (15)
C54	0.0211 (16)	0.0185 (16)	0.0282 (18)	0.0019 (13)	0.0051 (14)	0.0080 (14)
C55	0.0261 (18)	0.0254 (18)	0.0284 (19)	0.0028 (14)	0.0136 (15)	0.0025 (15)
C56	0.0253 (17)	0.0191 (16)	0.0231 (17)	0.0052 (13)	0.0102 (14)	0.0091 (13)
C57	0.046 (2)	0.0251 (19)	0.0237 (19)	0.0060 (16)	0.0019 (16)	0.0095 (15)
C58	0.050 (3)	0.045 (2)	0.027 (2)	0.012 (2)	-0.0002 (18)	0.0129 (18)
C59	0.050 (2)	0.040 (2)	0.039 (2)	0.024 (2)	0.0167 (19)	0.0267 (19)
C60	0.046 (2)	0.0249 (19)	0.047 (2)	0.0133 (17)	0.018 (2)	0.0179 (18)
C61	0.0331 (19)	0.0206 (17)	0.0300 (19)	0.0062 (15)	0.0092 (15)	0.0079 (15)
C62	0.0239 (17)	0.0151 (15)	0.0198 (16)	0.0057 (13)	0.0073 (13)	0.0062 (12)
C63	0.0251 (16)	0.0131 (15)	0.0190 (17)	0.0025 (12)	0.0057 (13)	0.0059 (13)
C64	0.0197 (16)	0.0199 (16)	0.0208 (16)	0.0022 (13)	0.0072 (13)	0.0097 (13)
01	0.0258 (13)	0.0354 (14)	0.0414 (15)	0.0174 (11)	0.0157 (11)	0.0191 (12)
O2	0.0410 (14)	0.0226 (12)	0.0169 (12)	0.0016 (11)	0.0022 (11)	0.0039 (10)
O3	0.0351 (14)	0.0374 (15)	0.0449 (16)	0.0244 (12)	0.0188 (12)	0.0256 (13)
Si1	0.0184 (4)	0.0127 (4)	0.0164 (4)	0.0012 (3)	0.0053 (3)	0.0035 (3)
P1	0.0136 (4)	0.0120 (4)	0.0127 (4)	0.0010 (3)	0.0027 (3)	0.0016 (3)
P2	0.0104 (3)	0.0100 (3)	0.0117 (3)	0.0017 (3)	0.0018 (3)	0.0023 (3)
P3	0.0118 (3)	0.0101 (3)	0.0139 (4)	0.0019 (3)	0.0020 (3)	0.0025 (3)
Fe1	0.0145 (2)	0.0110 (2)	0.0140 (2)	0.00205 (16)	0.00347 (16)	0.00358 (16)
Pt1	0.01105 (5)	0.00869 (5)	0.01160 (6)	0.00084 (4)	0.00250 (4)	0.00217 (4)
C11	0.107 (2)	0.101 (3)	0.124 (3)	0.0166 (17)	-0.0281 (18)	-0.050 (2)
Cl2	0.107 (2)	0.101 (3)	0.124 (3)	0.0166 (17)	-0.0281 (18)	-0.050 (2)
C65	0.107 (2)	0.101 (3)	0.124 (3)	0.0166 (17)	-0.0281 (18)	-0.050 (2)

Geometric parameters (Å, °)

C1—C2	1.391 (4)	C35—C36	1.384 (4)	
C1—C6	1.390 (4)	C36—H36	0.9500	
C1—P1	1.835 (3)	C37—C38	1.404 (4)	
С2—Н2	0.9500	C37—C42	1.394 (4)	
C2—C3	1.393 (4)	C37—P3	1.828 (3)	
С3—Н3	0.9500	C38—H38	0.9500	
C3—C4	1.382 (5)	C38—C39	1.381 (4)	
C4—H4	0.9500	С39—Н39	0.9500	
C4—C5	1.379 (5)	C39—C40	1.386 (5)	
С5—Н5	0.9500	C40—H40	0.9500	
C5—C6	1.384 (5)	C40—C41	1.376 (5)	
С6—Н6	0.9500	C41—H41	0.9500	

C7—C8	1.387 (4)	C41—C42	1.397 (4)
C7—C12	1.396 (4)	C42—H42	0.9500
C7—P1	1.842 (3)	C43—C44	1.400 (4)
С8—Н8	0.9500	C43—C48	1.393 (4)
C8—C9	1.390 (5)	C43—P3	1.827 (3)
С9—Н9	0.9500	C44—H44	0.9500
C9—C10	1.378 (5)	C44—C45	1.382 (4)
C10—H10	0.9500	C45—H45	0.9500
C10-C11	1 376 (5)	C45-C46	1.387(5)
C11 H11	0.9500	C46 H46	0.9500
	1 384 (5)	C46 C47	1.383(5)
C12 H12	0.0500	$C_{40} = C_{47}$	1.383(3)
C12—H12	0.9300	C47 - H47	0.9300
C13 - C14	1.388 (4)	$C_{4} = C_{48}$	1.391 (4)
	1.394 (4)	C48—H48	0.9500
C13—P1	1.831 (3)	C49—C50	1.408 (4)
C14—H14	0.9500	C49—C54	1.396 (4)
C14—C15	1.393 (5)	C49—Si1	1.890 (3)
C15—H15	0.9500	С50—Н50	0.9500
C15—C16	1.377 (5)	C50—C51	1.381 (5)
C16—H16	0.9500	C51—H51	0.9500
C16—C17	1.389 (5)	C51—C52	1.389 (5)
C17—H17	0.9500	С52—Н52	0.9500
C17—C18	1.396 (5)	C52—C53	1.381 (5)
C18—H18	0.9500	С53—Н53	0.9500
C19—C20	1.391 (4)	C53—C54	1.396 (5)
C19—C24	1.394 (4)	С54—Н54	0.9500
C19—P2	1.834 (3)	С55—Н55А	0.9800
С20—Н20	0.9500	С55—Н55В	0.9800
C20—C21	1.383 (4)	С55—Н55С	0.9800
C21—H21	0.9500	C55—Si1	1.890 (3)
$C_{21} - C_{22}$	1 393 (5)	C56—C57	1 396 (5)
C22—H22	0.9500	C56—C61	1 395 (5)
C^{22} C^{23}	1 383 (5)	C_{56}	1.897 (3)
C23_H23	0.9500	C57_H57	0.9500
$\begin{array}{c} C23 \\ C23 \\ C23 \\ C24 \\$	1 388 (4)	C57 C58	1 386 (5)
$C_{23} = C_{24}$	0.0500	$C_{58} = U_{58}$	1.580 (5)
$C_{24} = 1124$	0.9500	C58 C50	1.377(6)
$C_{23} = C_{20}$	1.379 (4)	C_{50} U_{50}	1.377(0)
$C_{23} = C_{30}$	1.403 (4)	C59—H39	0.9300
C25—P2	1.832 (3)	C59—C60	1.381 (6)
C26—H26	0.9500	C60—H60	0.9500
C26—C27	1.394 (4)	C60—C61	1.384 (5)
С27—Н27	0.9500	С61—Н61	0.9500
C27—C28	1.376 (5)	C62—O1	1.145 (4)
C28—H28	0.9500	C62—Fe1	1.782 (3)
C28—C29	1.380 (5)	C63—O2	1.153 (4)
С29—Н29	0.9500	C63—Fe1	1.778 (3)
C29—C30	1.390 (4)	C64—O3	1.152 (4)
С30—Н30	0.9500	C64—Fe1	1.776 (3)

C31—C32	1.397 (4)	Si1—Fe1	2.3497 (9)
C31—C36	1.395 (4)	P1—Pt1	2.3346 (8)
C31—P2	1.832 (3)	P2—Pt1	2.2787 (7)
С32—Н32	0.9500	P3—Fe1	2.2045 (9)
C32—C33	1.398 (4)	P3—Pt1	2.2475 (7)
С33—Н33	0.9500	Fe1—Pt1	2.7738 (4)
C33—C34	1.375 (5)	Cl1—C65	1.7602
C34—H34	0.9500	Cl2—C65	1.7600
C34—C35	1.385 (4)	C65—H65A	0.9900
C35—H35	0.9500	C65—H65B	0.9900
	0.0000		0.000
C2-C1-P1	118.8 (2)	C40—C41—H41	119.8
C6-C1-C2	110.0(2) 119.4(3)	C40-C41-C42	1204(3)
C6-C1-P1	121.8(2)	C42 - C41 - H41	119.8
C1 - C2 - H2	119.9	C_{37} C_{42} C_{41}	1201(3)
C1 - C2 - C3	120.3 (3)	C37 - C42 - H42	120.0
C_{3} C_{2} H_{2}	110.9	C41 - C42 - H42	120.0
$C_{2} = C_{2} = H_{2}$	119.9	C41 - C42 - 1142	120.0 120.0(2)
$C_2 = C_3 = H_3$	120.1 110.0(3)	$C_{44} = C_{43} = C_{43}$	120.0(2) 118.3(3)
$C_{4} = C_{5} = C_{2}$	119.9 (3)	$C_{40} = C_{43} = C_{44}$	110.3(3)
$C_4 - C_5 - H_5$	120.1	$C_{40} - C_{43} - F_{5}$	121.0 (2)
C_{3} C_{4} C_{1} C_{2}	120.1	C43 - C44 - H44	119.0
C_{3}	119.8 (3)	C45 - C44 - C43	120.9 (3)
C3-C4-H4	120.1	C45—C44—H44	119.6
С4—С5—Н5	119.6	C44—C45—H45	120.0
C4—C5—C6	120.8 (3)	C44—C45—C46	120.0 (3)
С6—С5—Н5	119.6	C46—C45—H45	120.0
С1—С6—Н6	120.1	C45—C46—H46	120.0
C5—C6—C1	119.9 (3)	C47—C46—C45	120.1 (3)
С5—С6—Н6	120.1	C47—C46—H46	120.0
C8—C7—C12	118.9 (3)	C46—C47—H47	120.1
C8—C7—P1	121.1 (2)	C46—C47—C48	119.8 (3)
C12—C7—P1	120.0 (2)	C48—C47—H47	120.1
С7—С8—Н8	120.1	C43—C48—H48	119.5
С7—С8—С9	119.8 (3)	C47—C48—C43	120.9 (3)
С9—С8—Н8	120.1	C47—C48—H48	119.5
С8—С9—Н9	119.7	C50—C49—Si1	120.3 (2)
С10—С9—С8	120.6 (3)	C54—C49—C50	116.9 (3)
С10—С9—Н9	119.7	C54—C49—Si1	122.7 (2)
C9—C10—H10	119.9	C49—C50—H50	119.1
C11—C10—C9	120.2 (3)	C51—C50—C49	121.8 (3)
C11—C10—H10	119.9	C51—C50—H50	119.1
C10—C11—H11	120.2	C50—C51—H51	119.9
C10-C11-C12	119.6 (3)	C50—C51—C52	120.1 (3)
C12—C11—H11	120.2	C52—C51—H51	119.9
C7—C12—H12	119.6	C51—C52—H52	120.3
C11—C12—C7	120.9 (3)	C53—C52—C51	119.5 (3)
С11—С12—Н12	119.6	C53—C52—H52	120.3
C14—C13—C18	119.1 (3)	С52—С53—Н53	119.9
-	(-)		

C14—C13—P1	122.2 (2)	C52—C53—C54	120.2 (3)
C18—C13—P1	118.7 (2)	С54—С53—Н53	119.9
C13—C14—H14	119.8	C49—C54—C53	121.5 (3)
C13—C14—C15	120.3 (3)	С49—С54—Н54	119.2
C15—C14—H14	119.8	С53—С54—Н54	119.2
C14—C15—H15	119.9	H55A—C55—H55B	109.5
C16—C15—C14	120.3 (3)	Н55А—С55—Н55С	109.5
C16—C15—H15	119.9	H55B—C55—H55C	109.5
C15-C16-H16	119.9	Si1-C55-H55A	109.5
C_{15} C_{16} C_{17}	120.2 (3)	Si1-C55-H55B	109.5
C17 - C16 - H16	110.0	Si1_C55_H55C	109.5
$C_{16} = C_{17} = H_{17}$	120.2	C57 C56 Sil	107.3 122.1(3)
$C_{10} - C_{17} - C_{18}$	120.2	$C_{57} = C_{50} = S_{11}$	122.1(3)
C10 - C17 - C18	119.5 (5)	$C_{01} = C_{00} = C_{00} = C_{00}$	110.4(3)
C12 - C12 - C12	120.2	$C_{5}(-C_{5}) = 0.000$	120.8 (5)
	120.5 (3)	C56—C57—H57	118.9
С13—С18—Н18	119.7	C58—C57—C56	122.2 (4)
С17—С18—Н18	119.7	С58—С57—Н57	118.9
C20—C19—C24	119.2 (3)	С57—С58—Н58	120.1
C20—C19—P2	122.2 (2)	C59—C58—C57	119.8 (4)
C24—C19—P2	118.6 (2)	С59—С58—Н58	120.1
C19—C20—H20	119.8	С58—С59—Н59	120.2
C21—C20—C19	120.5 (3)	C58—C59—C60	119.6 (3)
C21—C20—H20	119.8	С60—С59—Н59	120.2
C20—C21—H21	119.9	С59—С60—Н60	120.0
C20—C21—C22	120.2 (3)	C59—C60—C61	120.1 (4)
C22—C21—H21	119.9	С61—С60—Н60	120.0
C21—C22—H22	120.2	С56—С61—Н61	119.0
C23—C22—C21	119.6 (3)	C60—C61—C56	121.9 (4)
С23—С22—Н22	120.2	С60—С61—Н61	119.0
С22—С23—Н23	119.8	O1—C62—Fe1	177.9 (3)
C22—C23—C24	120.3 (3)	O2—C63—Fe1	175.2 (3)
C24—C23—H23	119.8	O3—C64—Fe1	178.0 (3)
C19 - C24 - H24	119.0	C49 = Si1 = C55	107.20(15)
C_{23} C_{24} C_{19}	120.2 (3)	C49 = Si1 = C56	106.61 (14)
C_{23} C_{24} H_{24}	110.0	C49—Si1—Fel	110.49(10)
$C_{25} = C_{25} = C_{30}$	119.0 (3)	C_{5}	110.49(10) 100.70(15)
$C_{20} = C_{23} = C_{30}$	117.0(3) 124.7(2)	C_{55} Sil Eal	100.70(13) 114.30(11)
$C_{20} = C_{23} = 12$	124.7(2)	C_{55}	114.30(11)
$C_{30} = C_{23} = F_{2}$	110.5 (2)		110.00(11)
$C_{25} = C_{20} = H_{20}$	119.7	CI = PI = C/	99.55 (15)
$C_{25} = C_{26} = C_{27}$	120.6 (3)	CI-PI-Pti	112.73 (10)
C27—C26—H26	119.7	C/—PI—PtI	120.74 (10)
C26—C27—H27	119.9	C13 - P1 - C1	106.03 (14)
C28—C27—C26	120.2 (3)	C13—P1—C7	103.00 (14)
С28—С27—Н27	119.9	C13—P1—Pt1	113.04 (10)
C27—C28—H28	120.0	C19—P2—Pt1	117.03 (10)
C27—C28—C29	120.0 (3)	C25—P2—C19	105.47 (13)
C29—C28—H28	120.0	C25—P2—C31	102.26 (13)
С28—С29—Н29	119.8	C25—P2—Pt1	110.48 (9)

C28—C29—C30	120.4 (3)	C31—P2—C19	100.35 (13)
С30—С29—Н29	119.8	C31—P2—Pt1	119.39 (9)
С25—С30—Н30	120.1	C37—P3—Fe1	121.78 (10)
C29—C30—C25	119.9 (3)	C37—P3—Pt1	115.69 (10)
С29—С30—Н30	120.1	C43—P3—C37	106.97 (14)
C32—C31—P2	122.8 (2)	C43—P3—Fe1	115.79 (9)
C36—C31—C32	118.2 (3)	C43—P3—Pt1	117.66 (10)
C36—C31—P2	118.9 (2)	Fe1—P3—Pt1	77.07 (3)
С31—С32—Н32	119.9	C62—Fe1—Si1	78.43 (10)
C31—C32—C33	120.2 (3)	C62—Fe1—P3	88.17 (10)
С33—С32—Н32	119.9	C62—Fe1—Pt1	93.70 (10)
С32—С33—Н33	119.8	C63—Fe1—C62	98.17 (14)
C34—C33—C32	120.5 (3)	C63—Fe1—Si1	94.95 (10)
С34—С33—Н33	119.8	C63—Fe1—P3	145.70 (10)
С33—С34—Н34	120.0	C63—Fe1—Pt1	93.67 (10)
C33—C34—C35	120.1 (3)	C64—Fe1—C62	157.04 (15)
C35—C34—H34	120.0	C64—Fe1—C63	94.48 (15)
C34—C35—H35	120.2	C64—Fe1—Si1	81.46 (10)
C36—C35—C34	119.7 (3)	C64—Fe1—P3	92.12 (10)
С36—С35—Н35	120.2	C64—Fe1—Pt1	104.57 (10)
C31—C36—H36	119.3	Si1—Fe1—Pt1	169.06 (3)
C_{35} — C_{36} — C_{31}	121.4 (3)	P3—Fe1—Si1	119.32 (3)
С35—С36—Н36	119.3	P3—Fe1—Pt1	52.16(2)
C38—C37—P3	117.0 (2)	P1—Pt1—Fe1	102.64(2)
C42-C37-C38	118.3 (3)	P2—Pt1—P1	101.80(3)
C42—C37—P3	124.7(2)	P2— $Pt1$ — $Fe1$	154.80 (2)
C37—C38—H38	119.4	P3P1P1	15340(3)
C_{39} C_{38} C_{37}	121 3 (3)	P3Pt1P2	103.10(3) 104 70(3)
C39—C38—H38	119.4	P3—Pt1—Fe1	50.77 (2)
C38—C39—H39	120.2	Cl1—C65—H65A	109.0
C_{38} C_{39} C_{40}	119.5 (3)	Cl1—C65—H65B	109.0
C40—C39—H39	120.2	C12 - C65 - C11	112.9
C39—C40—H40	119.9	Cl2—C65—H65A	109.0
C41 - C40 - C39	120 3 (3)	Cl2—C65—H65B	109.0
C41 - C40 - H40	119.9	H65A - C65 - H65B	107.8
	117.7		107.0
C1—C2—C3—C4	-0.7(5)	$C_{36} - C_{31} - P_{2} - C_{25}$	-166.4(2)
$C_2 - C_1 - C_6 - C_5$	21(5)	$C_{36} - C_{31} - P_{2} - P_{11}$	71 4 (2)
$C_2 - C_1 - P_1 - C_7$	1045(2)	C_{37} C_{38} C_{39} C_{40}	0.0(5)
$C_2 - C_1 - P_1 - C_{13}$	-148.9(2)	C_{38} C_{37} C_{42} C_{41}	2.1(4)
$C_2 - C_1 - P_1 - P_1$	-247(3)	$C_{38} - C_{37} - P_{3} - C_{43}$	1713(2)
$C_2 - C_3 - C_4 - C_5$	10(5)	C_{38} C_{37} P_{3} F_{e1}	-52.3(3)
C_{3} C_{4} C_{5} C_{6}	0.3(6)	C_{38} C_{37} P_{3} P_{t1}	380(3)
C4-C5-C6-C1	-1.9 (6)	C_{38} C_{39} C_{40} C_{41}	1.3 (5)
C6-C1-C2-C3	-0.9(5)	C_{39} C_{40} C_{41} C_{42}	-0.9(5)
C6-C1-P1-C7	-734(3)	C40-C41-C42-C37	-0.8(5)
C6-C1-P1-C13	33.2 (3)	C42-C37-C38-C39	-1.6(5)
C6-C1-P1-Pt1	157 4 (2)	$C_{42} = C_{37} = P_{3} = C_{43}$	-84(3)
	137.7 (2)	$C_{72} = C_{37} = 1_{3} = C_{73}$	(J) T.O

C7—C8—C9—C10	0.4 (6)	C42—C37—P3—Fe1	128.0 (2)
C8—C7—C12—C11	0.9 (5)	C42—C37—P3—Pt1	-141.7 (2)
C8—C7—P1—C1	153.4 (3)	C43—C44—C45—C46	0.3 (5)
C8—C7—P1—C13	44.3 (3)	C44—C43—C48—C47	0.8 (4)
C8—C7—P1—Pt1	-82.9 (3)	C44—C43—P3—C37	-130.0(2)
C8—C9—C10—C11	0.6 (6)	C44—C43—P3—Fe1	90.7 (2)
C9—C10—C11—C12	-0.8 (6)	C44—C43—P3—Pt1	2.2 (3)
C10-C11-C12-C7	0.1 (5)	C44—C45—C46—C47	0.2 (5)
C12—C7—C8—C9	-1.1 (5)	C45—C46—C47—C48	-0.2(5)
C12—C7—P1—C1	-29.7(3)	C46—C47—C48—C43	-0.4 (5)
C12—C7—P1—C13	-138.7 (3)	C48—C43—C44—C45	-0.8(4)
C12—C7—P1—Pt1	94.1 (3)	C48—C43—P3—C37	60.0 (3)
C13—C14—C15—C16	1.1 (5)	C48—C43—P3—Fe1	-79.4 (3)
C14—C13—C18—C17	1.4 (5)	C48—C43—P3—Pt1	-167.8(2)
C14—C13—P1—C1	-71.0(3)	C49—C50—C51—C52	0.5 (5)
C14—C13—P1—C7	33.1 (3)	C50—C49—C54—C53	-0.5 (4)
C14—C13—P1—Pt1	165.0 (2)	C50—C49—Si1—C55	-170.7(2)
C14—C15—C16—C17	0.5 (5)	C50—C49—Si1—C56	-63.6 (3)
C15—C16—C17—C18	-1.2 (5)	C50—C49—Si1—Fe1	64.1 (3)
C16—C17—C18—C13	0.2 (5)	C50—C51—C52—C53	-0.3 (5)
C18—C13—C14—C15	-2.1 (5)	C51—C52—C53—C54	-0.3 (5)
C18—C13—P1—C1	107.6 (3)	C52—C53—C54—C49	0.7 (5)
C18—C13—P1—C7	-148.3 (2)	C54—C49—C50—C51	-0.1 (4)
C18—C13—P1—Pt1	-16.3 (3)	C54—C49—Si1—C55	12.8 (3)
C19—C20—C21—C22	-0.6 (5)	C54—C49—Si1—C56	120.0 (3)
C20—C19—C24—C23	-3.0 (5)	C54—C49—Si1—Fe1	-112.3 (2)
C20-C19-P2-C25	64.3 (3)	C56—C57—C58—C59	-0.4 (6)
C20-C19-P2-C31	-41.7 (3)	C57—C56—C61—C60	1.3 (5)
C20-C19-P2-Pt1	-172.5 (2)	C57—C56—Si1—C49	168.1 (3)
C20—C21—C22—C23	-1.9 (5)	C57—C56—Si1—C55	-80.1 (3)
C21—C22—C23—C24	2.0 (5)	C57—C56—Si1—Fe1	44.2 (3)
C22—C23—C24—C19	0.5 (5)	C57—C58—C59—C60	0.9 (6)
C24—C19—C20—C21	3.1 (4)	C58—C59—C60—C61	-0.3 (6)
C24—C19—P2—C25	-114.5 (2)	C59—C60—C61—C56	-0.8 (6)
C24—C19—P2—C31	139.5 (2)	C61—C56—C57—C58	-0.7 (5)
C24—C19—P2—Pt1	8.8 (3)	C61—C56—Si1—C49	-22.2 (3)
C25—C26—C27—C28	1.4 (5)	C61—C56—Si1—C55	89.5 (3)
C26—C25—C30—C29	-0.1 (4)	C61—C56—Si1—Fe1	-146.2 (2)
C26—C25—P2—C19	-14.1 (3)	Si1—C49—C50—C51	-176.8 (2)
C26—C25—P2—C31	90.5 (3)	Si1—C49—C54—C53	176.1 (2)
C26-C25-P2-Pt1	-141.4 (2)	Si1—C56—C57—C58	169.4 (3)
C26—C27—C28—C29	-0.5 (5)	Si1—C56—C61—C60	-169.0 (3)
C27—C28—C29—C30	-0.8 (5)	P1—C1—C2—C3	-178.8 (2)
C28—C29—C30—C25	1.0 (5)	P1—C1—C6—C5	-180.0 (3)
C30—C25—C26—C27	-1.1 (4)	P1—C7—C8—C9	175.9 (3)
C30—C25—P2—C19	165.6 (2)	P1-C7-C12-C11	-176.1 (3)
C30—C25—P2—C31	-89.9 (2)	P1-C13-C14-C15	176.5 (2)
C30-C25-P2-Pt1	38.3 (2)	P1-C13-C18-C17	-177.2 (2)

C31—C32—C33—C34	-1.1 (5)	P2-C19-C20-C21	-175.7 (2)
C32—C31—C36—C35	-0.5 (4)	P2-C19-C24-C23	175.8 (2)
C32—C31—P2—C19	119.6 (3)	P2-C25-C26-C27	178.5 (2)
C32—C31—P2—C25	11.1 (3)	P2-C25-C30-C29	-179.8 (2)
C32—C31—P2—Pt1	-111.1 (2)	P2—C31—C32—C33	-176.5 (2)
C32—C33—C34—C35	0.5 (5)	P2-C31-C36-C35	177.2 (2)
C33—C34—C35—C36	0.0 (5)	P3—C37—C38—C39	178.6 (2)
C34—C35—C36—C31	-0.1 (5)	P3—C37—C42—C41	-178.3 (2)
C36—C31—C32—C33	1.0 (5)	P3—C43—C44—C45	-171.2 (2)
C36—C31—P2—C19	-57.9 (3)	P3—C43—C48—C47	171.1 (2)