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Given the limitation of technologies, the subcellular localizations of proteins are difficult to
identify. Predicting the subcellular localization and the intercellular distribution patterns of
proteins in accordance with their specific biological roles, including validated functions,
relationships with other proteins, and even their specific sequence characteristics, is
necessary. The computational prediction of protein subcellular localizations can be
performed on the basis of the sequence and the functional characteristics. In this
study, the protein–protein interaction network, functional annotation of proteins and a
group of direct proteins with known subcellular localization were used to construct models.
To build efficient models, several powerful machine learning algorithms, including two
feature selection methods, four classification algorithms, were employed. Some key
proteins and functional terms were discovered, which may provide important
contributions for determining protein subcellular locations. Furthermore, some
quantitative rules were established to identify the potential subcellular localizations of
proteins. As the first prediction model that uses direct protein annotation information
(i.e., functional features) and STRING-based protein–protein interaction network
(i.e., network features), our computational model can help promote the development of
predictive technologies on subcellular localizations and provide a new approach for
exploring the protein subcellular localization patterns and their potential biological
importance.

Keywords: protein subcellular location, protein-protein interaction network, GO enrichment, KEGG enrichment,
feature selection, classification algorithm

1 INTRODUCTION

Eukaryotic organisms, such as human beings, have complicated cell structures with delicate
functional membrane structures surrounded by effective compartments (Thul et al., 2017;
Tjondro et al., 2019). The complicated membrane structures in eukaryotic cells have generally
divided the intercellular space into the cytoplasm and the nucleus through the nuclear membrane
(Yeagle, 1989; Mangeat et al., 1999). Specific organelles, such as the mitochondria, have a specific and
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independent membrane system (Set et al., 2019). The major
components of these structures divide the intercellular space
into different isolated rooms for independent biological
reactions and interactions and restrict the intercellular
localizations of proteins (Thul et al., 2017). For instance, the
replication of DNA depends on various effective proteins and
enzymes. However, some proteins, such as DNA polymerase and
DNA ligase, are not synthesized in the nucleus, in which they
function (Ganai and Johansson, 2016). Some proteins play a
specific role in biological processes in the nucleus (Ganai and
Johansson, 2016). Therefore, the subcellular localization controls
the protein to some extent to act at the proper localization.

Given the limitation of technologies, the subcellular
localizations of proteins are difficult to identify. Therefore,
predicting the subcellular localization and the intercellular
distribution patterns of proteins in accordance with their
specific biological roles, including validated functions,
relationships with other proteins, and even their specific
sequence characteristics, is necessary. The computational
prediction of protein subcellular localizations can be
performed on the basis of the sequence and the functional
characteristics. Sequence characteristics-based methods can be
further divided into three kinds, namely, the N-terminal sorting
method, amino acid composition-based prediction, and
homology. The N-terminal sorting method is based on
subcellular localization prediction. In 2006, researchers from
Greece reported a subcellular localization predictor by using
the N-terminal signaling sequence of the protein, resulting in
a cross-validated accuracy of 87.1% in animals (Petsalaki et al.,
2006). The amino acid composition of proteins is easy to
determine and describe, but the models that use amino acid
composition do not have good prediction performance.
Therefore, amino acid compositions are generally used to
accompany other characteristics, such as N-terminal sorting
and homology. The homology considers another important
feature subgroups of sequence characteristics. Predictors, such
as the Proteome Analyst (Szafron et al., 2004) and the
PairProSVM (Mak et al., 2008), have been validated to have a
good performance for protein subcellular localization prediction.
Recently, some advanced computational methods, such as deep
learning, multiple kernel learning, etc. are adopted to learn
features derived from protein sequence and set up prediction
models (Wei et al., 2018; Ding et al., 2020).

Apart from the above sequence-based prediction methods,
predicting the subcellular localization of proteins by using the
functional annotation and correlations between proteins has
attracted attention due to the accomplishment of human
protein function annotation and the establishment of the
protein–protein interaction (PPI) network. However, the
extraction of protein functional features is quite difficult
compared with extracting protein sequencing features. With
the development of bioinformatics, the most widely used
approaches have been established on the annotation and
clustering of the gene ontology (GO) (Consortium, 2015) and
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways (Zhang and Wiemann, 2009). In these methods, the
GO and the KEGG pathway terms are applied to describe and

cluster proteins as optimal protein characteristics. GO has terms
on cellular components that describe the general subcellular
localization. Some predictors, such as the ProLoc-GO (Huang
et al., 2008), the ILoc-Virus (Xiao et al., 2011), and the Cell-PLoc
(Chou and Shen, 2008), combine the general description with the
sequence characteristics, thereby establishing a novel and
effective prediction method on subcellular localization.
However, the functional annotation of proteins remains
imperfect, and potentially new functions of proteins emerge.
Therefore, additional methods should be presented to
supplement current research.

In this study, the comprehensive PPI network provided by
STRING (Szklarczyk et al., 2016) and GO/KEGG pathway
annotations on proteins were employed to analyze the current
proteins with known subcellular localizations. Qualitative and
quantitative predictive models were established to identify the
potential subcellular localizations of proteins on the basis of
several machine learning algorithms, such as feature selection
methods, classification algorithms. In addition to models, we also
obtained some key proteins and functional terms that may
provide important contributions for determining protein
subcellular locations. As the first prediction model that used
direct protein annotation information (i.e., functional features)
and the STRING-based PPI network (i.e., network features), our
computational model can help promote the development of
predictive technologies on subcellular localizations and provide
a new approach for exploring the protein subcellular localization
patterns and their potential biological importance.

2 MATERIALS AND METHODS

2.1 Data
The data used in this study were extracted from the Swiss-Prot
(http://cn.expasy.org/, release 54.0) by searching the proteins
annotated with “subcellular location”. Initially, 53,427 protein
sequences were downloaded. Proteins with length shorter than 50
amino acids (e.g., protein fragments) and those with length longer

TABLE 1 | Number of proteins in each category.

Index Category Number of proteins

Class 1 Biological membrane 1,487
Class 2 Cell periphery 35
Class 3 Cytoplasm 506
Class 4 Cytoplasmic vesicle 70
Class 5 Endoplasmic reticulum 190
Class 6 Endosome 25
Class 7 Extracellular space or cell surface 649
Class 8 Flagellum or cilium 3
Class 9 Golgi apparatus 98
Class 10 Microtubule cytoskeleton 48
Class 11 Mitochondrion 345
Class 12 Nuclear periphery 33
Class 13 Nucleolus 112
Class 14 Nucleus 1,285
Class 15 Peroxisome 46
Class 16 Vacuole 54
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than 5,000 amino acids (e.g., protein complexes) were excluded.
Proteins containing unknown amino acid abbreviation, such as X,
were also excluded. Protein sequences with high degree of
similarity were also removed using the program CD-HIT (Li
and Godzik, 2006) and a cutoff value of 0.7. Finally, only human
proteins were studied. Thus, 4,986 protein sequences remained
after these exclusions and were classified into 16 categories
(Table 1).

2.2 Feature Representation
Good representation of proteins is very important to build
efficient models for identification of human protein subcellular
locations. In this study, each protein was represented by three
groups of features, where one group was derived from PPI
network, two groups were extracted from functional terms
(GO and KEGG pathway). Their descriptions are as follows.

2.2.1 Network Features Derived From PPI Network
The initial PPI network was downloaded from STRING (version
9.0) (Szklarczyk et al., 2011) (http://string.embl.de/), which
contained known and predicted protein interaction. The
interaction network considers proteins as its nodes and has an
edge between two proteins if they can interact with each other.
Furthermore, each edge was assigned a weight, which was defined
as the confidence score of the corresponding interaction. As such
score was obtained by considering several aspects of proteins, it
can widely measure the associations of proteins. Given a protein,
a feature vector was constructed, where each component
indicated a protein in the PPI network. Each component was
defined as the confidence score of the interaction between the
protein and the corresponding protein of such component. If
such interaction did not exist, the component was set to zero. For
an easy description, these features were called network features.
As there were 20,770 proteins in the PPI network, 20,770 network
features were generated for each protein.

2.2.2 Functional Features Derived From KEGG
Pathway
The immediate neighborhood method is usually used for
predicting the function of a query protein on the basis of the
other proteins with known functions (Sharan et al., 2007). A
query protein interacts with many neighboring proteins in the
STRING network (Szklarczyk et al., 2011). With these
neighboring proteins, we can assess the relationship between
the query protein and one KEGG pathway. Let the neighboring
proteins and the query protein constitute a protein set PS. For a
KEGG pathway, proteins in such pathway comprised another
protein set, denoted by KP. The relationship between the query
protein and the KEGG pathway, called KEGG enrichment score,
was defined as the −log10 of the hypergeometric test p value
(Carmona-Saez et al., 2007; Cai et al., 2010) on above-constructed
protein sets. All obtained enrichment scores on all KEGG
pathways were collected in a vector, comprising the functional
KEGG features of the protein. 297 KEGG pathways were
considered, inducing 297 functional KEGG features.

2.2.3 Functional Features Derived From GO
Similarly, the relationship between the query protein and one GO
term can be obtained. For a GO term, let GP be a protein set
consisting of proteins annotated by such GO term. The
relationship was defined as the −log10 of the hypergeometric
test p value (Cai et al., 2010; Li et al., 2012) on PS and GP. The
obtained value was called GO enrichment score. Likewise, GO
enrichment scores on all GO terms were collected in a vector,
constituting the functional GO features of the query protein.
20,681 GO terms were involved, generating 20,681 functional GO
features.

2.3 Boruta Feature Filtering
The Boruta feature filtering (Kursa and Rudnicki, 2010) can
screen features that are relevant to target sample labels on the
basis of the random forest (RF) in a wrapper manner. The
Boruta feature filtering iteratively identifies key features by
comparing the importance scores that correspond to the real
and the shuffled features. The Boruta approach has three
steps: 1) copying the training data and shuffling the feature
values for new shuffled data to be produced; 2) training the
RF classifier on the produced shuffled data and calculating
the importance score for each feature; and 3) evaluating the
importance score of each feature in the original training data
and removing the real features with remarkably lower
importance scores than the shuffled features. By executing
the above steps with a few iterations, Boruta approach selects
the relevant features.

This study adopted the Boruta program retrieved from https://
github.com/scikitlearn-contrib/boruta_py. For convenience, it
was performed with its default parameters.

2.4 Minimum Redundancy Maximum
Relevance
The mRMR (Peng et al., 2005) can select and rank informative
features in accordance with the following assumptions. On the
one hand, the mRMR selects features with minimum
redundancy among themselves. On the other hand, the
mRMR selects features with maximum relevance with class
labels. Therefore, the mRMR only selects the features that
satisfy minimum redundancy and maximum relevance
simultaneously by using mutual information. These features
are important in distinguishing the class labels for follow-up
classification modeling. In fact, two feature lists can be obtained
through the mRMR method. The MaxRel feature list ranks
features based on their relevance to class labels, whereas the
mRMR feature list sorts features by further considering the
redundancies among features. Evidently, from the mRMR
feature list, we can obtain a compact feature subspace for a
given classification algorithm. Thus, this study only adopted the
mRMR feature list.

The present study used the mRMR program downloaded from
http://home.penglab.com/proj/mRMR/. Likewise, default
parameters were adopted to execute such program.
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2.5 Incremental Feature Selection
IFS, an ordered feature selection approach (Liu and Setiono,
1998), can determine the best number of selected features in an
iteration manner. The IFS first constructs a series of feature
subsets from the ranked features supplied by a feature ranking
(e.g., mRMR feature list). For instance, the first feature subset
consists of the top 10 features, and the second feature subset
consists of the top 20 features, and so on. Next, the IFS trains a
model on the training samples, which consist of features from
each feature subset, based on a given classification algorithm.
Such classification model performance is evaluated by 10-fold
cross-validation (Kohavi, 1995). Finally, the model with the
highest performance is found out, which was called the
optimum model. The feature subset used in this model was
called the optimum feature subset.

2.6 Classification Algorithm
To execute the IFS method, one classification algorithm is necessary.
This study tried four classification algorithms: 1) RF (Breiman, 2001),
2) Support vector machine (SVM) (Cortes and Vapnik, 1995), 3)
k-nearest neighbor (kNN) (Cover and Hart, 1967), 4) Decision tree
(DT) (Swain and Hauska, 1977). These algorithms have been widely
used to tackle various biological problems (Jia et al., 2020; Zhou et al.,
2020; Chen et al., 2021; Pan et al., 2021; Yang and Chen, 2021; Zhang
et al., 2021a; Zhang et al., 2021b; c).

2.6.1 Random Forest
RF builds an assemble classification algorithm depending on
many tree classifiers. The predicted sample label/category of
RF is determined using multiple tree classifiers by an
aggregating vote. Notably, RF usually adopts the final
consensus results in accordance with the average of all
decision trees’ predictions, aiming to avoid overfitting and
improve the performance robustness of learned models
because a subtle difference among decision trees exists in RF.
To quickly implement RF, the tool “RandomForest” in Weka
(https://www.cs.waikato.ac.nz/ml/weka/) (Hall et al., 2009) was
employed. Default parameters were used.

2.6.2 Support Vector Machine
As a classification algorithm based on statistical learning theory,
the SVM can map samples to a given category. The SVM
transforms samples from a low-dimensional space to a high-
dimensional space by using a kernel function (e.g., Gaussian
kernel) and can divide samples of each label/category by
maximizing the data interval in high-dimensional space. The
SVM can further predict the test samples’ label/category in
accordance with the interval to which this new sample
belongs. In this study, we used the SVM optimized by the
sequence minimization optimization (SMO) (Platt, 1998a;
Platt, 1998b) algorithm. This type of SVM is implemented by
the tool “SMO” in the Weka (https://www.cs.waikato.ac.nz/ml/
weka/) (Hall et al., 2009).

2.6.3 k-Nearest Neighbor
The kNN builds a classification model by using a voting scheme
(Theilhaber et al., 2002; Zhang and Srihari, 2004; Yu et al., 2016).

In the sample space, the class labels of the kNNs of a given sample
were used to produce a predicted class label for a new sample. In
the learning of kNN classification model, the nearest neighbors
are selected from the training data, where k is a given parameter
that usually ranges from 1 to 10. Briefly, the kNN includes several
calculation steps: 1) calculating the distance between the test
sample and all the training samples in the feature space; 2)
ranking the training samples in accordance with their distance
with the test sample; 3) selecting the k training samples with least
distance to the test sample (i.e., kNNs); 4) determining the
distribution of class labels of the k nearest training samples;
and 5) using the class label with highest distribution frequency as
the predicted class label for the test sample. The tool “IBK” in
Weka (https://www.cs.waikato.ac.nz/ml/weka/) (Hall et al., 2009)
implements the kNN algorithm, which was directly employed in
this study.

2.6.4 Decision Tree
The DT can produce interpretative rules that easily explain
the classification and the regression models for wide
applications in many research fields. In brief, DT is a
nonparametric supervised learning method and uses a
white box model with the IF-TEHN format to provide
definite indications of individual features for classification
and regression. A common construction strategy of DT is
greedy algorithm, which achieves satisfactory performance
with reasonable computational cost. The corresponding pack
collected in Scikit-learn (https://scikit-learn.org/stable/)
(Pedregosa et al., 2011), which implements an optimized
version of the CART algorithm with the Gini index, was
used to build DT model in this study.

2.7 Synthetic Minority Oversampling
Technique
Table 1 shows that the analyzed data were unbalanced numbers
of samples with different labels (i.e., different classified
categories). Thus, the SMOTE (Chawla et al., 2002) was
applied. It can produce new samples for the minor sample
classes iteratively until the sample numbers of these minor
sample classes are equivalent to that of the major sample class.
The balanced data can improve the construction of the
classification models. In this study, we used the tool “SMOTE”
in the Weka (https://www.cs.waikato.ac.nz/ml/weka/) (Hall et al.,
2009), which implements SMOTE method. Samples generated by
SMOTE were not used in the methods of Boruta and mRMR
because these newly added samples may influence the results of
these two methods, which cannot fully reflect actual distribution
of subcellular locations of proteins.

2.8 Performance Evaluation
In this study, the Matthew correlation coefficients (MCC)
(Matthews, 1975) within 10-fold cross-validation (Kohavi,
1995) was used to evaluate the prediction performance of each
classification model. MCC is a commonly used measurement and
ranges between −1 and +1, achieving +1 when the classification
model has the best performance. The multiclass version of MCC
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is proposed by Gorodkin (Gorodkin, 2004). Our analyzed data
contained 16 categories, and MCC was calculated as follows:

MCC � cov(X,Y)
�����������������
cov(X,X)cov(Y, Y)√ (1)

where cov(·, ·) represents the covariance of two matrices, X is
a 0–1 matrix that indicates the predicted class of each sample,
and Y is a 0–1 matrix that represents the actual classes of all
samples.

Besides, the performance of each constructed model was also
evaluated by other measurements, including individual accuracy
on each category and overall accuracy.

3 RESULTS

In this study, we conducted a computational investigation on
identification of human protein subcellular locations. The entire
procedures are illustrated in Figure 1. Detailed results were
described in this section.

3.1 Results of Boruta and Minimum
Redundancy Maximum Relevance Methods
As described in Feature Representation, each protein was
represented by lots of network, functional KEGG and
functional GO features. The Boruta method was first applied
to analyze all features. Irrelevant features were discarded. 4,773
features remained, which are provided in Supplementary Table
S1. Among these features, 399 were network features, 151 were
functional KEGG features, and 4,223 were functional GO
features, which are shown in Figure 2A. Evidently, functional
GO features occupied most features (∼88%).

For these 4,773 features, the mRMR method followed to
analyze their importance. An mRMR feature list was
generated, as listed in Supplementary Table S1. We counted
ranks of features in each feature group and plotted a boxplot in
Figure 2B. It can be observed that network features received
many high ranks in the mRMR feature list although their quantity
was not most. This suggested that network features can provide
key contributions for determination of protein subcellular
locations.

FIGURE 1 | Entire procedures for constructing and evaluating protein subcellular location prediction models. Human proteins and their subcellular location
information are retrieved from Swiss-Prot. Each protein is represented by three feature groups: network features, functional KEGG features, and functional GO features.
All features are analyzed by Boruta and minimum redundancy maximum relevance one by one, resulting in an mRMR feature list. Such list is fed into the incremental
feature selection method, incorporating four classification algorithms, synthetic minority oversampling technique and 10-fold cross-validation, to build efficient
models, extract essential features and access quantitative rules.
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3.2 Results of IFS Method
Based on the mRMR feature list, the IFS method was executed.
477 feature subsets were constructed with step 10. On each
feature subset, a model was built based on each of the four
classification algorithms (RF, kNN, SVM, and DT). The model
was further evaluated by 10-fold cross-validation. The evaluation
results, including MCC, overall accuracy and individual
accuracies on 16 categories, for RF, kNN and SVM are listed
in Supplementary Table S2. For an easy observation, an IFS
curve was plotted for each classification algorithm, which is
shown in Figure 3. For kNN, the highest MCC was 0.802,
which was obtained by using top 3,000 features in the mRMR
feature list. Thus, we can construct an optimum kNNmodel with
these features. The overall accuracy of such model was 0.830

(Table 2). For RF, it produced the highest MCC of 0.823 when top
3,040 features were adopted, thereby building the optimum RF
model with these features. The overall accuracy of such model
was 0.852 (Table 2). As for SVM, the highest MCC was 0.854.
This performance was obtained by using top 4,760 features in the
list. Accordingly, an optimum SVM model was set up with these
features. Its overall accuracy was 0.879 (Table 2). Evidently, each
optimum model provided good performance with MCC higher
than 0.800, suggesting combination of network and functional
features can really capture the essential properties of proteins.

Although three optimum models were set up as mentioned
above, their efficiencies were not very high because lots of features
were used. To build models with high efficiency, we carefully
checked the performance of three classification algorithms on
different feature subsets. Other three models using much less
features were constructed, where the kNNmodel used the top 130
features, RF model adopted the top 150 features and SVM model
used the top 1,530 features (Figure 3). Although these models
adopted much less features, their performance was only a little
lower than those of the optimum models. This fact can be
concluded from Table 2 and Figure 4. Thus, these models can
be efficient tools for identification of protein subcellular locations.

For DT, we conducted the same IFS procedure. The IFS results
are provided in Supplementary Table S3, which induced a curve,
as shown in Figure 3. It can be observed that the highest MCC
was 0.662 when top 2,500 features were adopted. Accordingly, we

FIGURE 2 | Analysis of features selected by Boruta. (A) Distribution of features selected by Boruta on three feature groups; (B) Violin plot to show ranks of features
in three feature groups which are obtained by mRMR method.

FIGURE 3 | IFS with four classification algorithms onmRMR feature list of network and functional features. The highest MCC values obtained by four classifications
are 0.802, 0.823, 0.854, and 0.662, respectively. kNN, RF, and SVM can yield quite good performance when much less features are adopted.

TABLE 2 | Performance of key models for identification of human protein
subcellular locations.

Classification algorithm Number of features Overall accuracy MCC

k-nearest neighbor 3,000 0.830 0.802
130 0.805 0.772

Random forest 3,040 0.852 0.823
150 0.833 0.800

Support vector machine 4,760 0.879 0.854
1,530 0.833 0.800

Decision tree 2,500 0.716 0.662
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can set up an optimum DT model using these features. The
overall accuracy was 0.716, as listed in Table 2. Evidently, such
performance was much lower than that of the optimum kNN/RF/
SVM model. It was also lower than those of the models with
higher efficiency mentioned in the above paragraph. The
individual accuracies on 16 categories yielded by this DT
model were also obviously lower than those of other models,
as shown in Figure 4. However, the utility of DTmodel was not to
identify protein subcellular locations. Different from kNN, RF,
and SVM, which were complete black-box algorithms, the
classification procedures of DT were open. Thus, it can
provide much more biological insights than other three
classification algorithms.

3.3 Results of Quantitative Rules
The optimum DT model adopted the top 2,500 features in the
mRMR feature list. Accordingly, DT was executed on the
dataset containing all 4,986 proteins, thereby constructing a
big tree. From this tree, 760 quantitative rules were extracted,
which are provided in Supplementary Table S4. Each of 16
categories was assigned some rules. Figure 5 shows the
number of rules for each of 16 categories. Some categories
(e.g., Class 1: Biological membrane, Class 3: Cytoplasm)
received more than 100 rules, whereas there were only
three rules for Class 8: Flagellum or cilium. In
Quantitative Rules That Contribute to Subcellular
Localization Prediction, several rules would be analyzed.

FIGURE 4 | Box plot to show performance of some models on 16 categories. For three classification algorithms (kNN, RF, and SVM), models with much less
features can provide similar performance to the optimum models. Optimum DT model yields much lower performance.

FIGURE 5 | Number of quantitative rules for each of 16 categories.
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3.4 Comparison of the Classic Model
The pseudo-amino acid composition (PseAAC) (Chou, 2001) is a
classic protein encoding scheme and has been widely adopted to
build models for identification of protein subcellular locations
(Cai and Chou, 2003; Pan et al., 2003; Lin et al., 2008; Shi et al.,
2008; Liu et al., 2010). Here, we used such scheme to encode each
protein mentioned in Data and further build models for the
comparison of models proposed in this study.

Five physicochemical and biochemical properties of amino
acids were employed to generate features, including codon
diversity, electrostatic charge, molecular volume, polarity and
secondary structure. The weight factor was set to 0.15 and
Lambda parameter was set to 50. From each physicochemical
and biochemical property, 50 features were extracted. Thus, 250
(50✕5) features were obtained for each protein. Furthermore, 20
amino acid composition features were also employed.
Accordingly, each protein was represented by 270 (250 + 20)
features. These features were directly analyzed by mRMR
method, resulting in a feature list. Such list was fed into the
IFS method. Likewise, four classification algorithms: kNN, RF,
SVM, and DT, were also tried in the IFS method. For each
classification algorithm, MCC values obtained on all possible
feature subsets are illustrated in Figure 6. It can be observed that
the highest MCC values for four classification algorithms were
0.724, 0.764, 0.755, and 0.494, respectively, which are also listed in
Table 3. The corresponding ACC values are also listed in this
table. Compared with ACC and MCC values obtained by models
using network and functional features (Table 2), with the same
classification algorithm, our models were superior to models with

PseAAC features. It was suggested that network and functional
features were more efficient than PseAAC features for
identification of protein subcellular locations. These features
provided new directions for building more efficient protein
subcellular location prediction models.

4 DISCUSSION

A group of effective proteins that may directly contribute to the
identification and clustering of different subcellular localizations
is screened by using somemachine learning models. According to
recent publications, the top optimal features have already been
validated to contribute to the subcellular localization, validating
the efficacy and the accuracy of our predictions. The detailed
analyses and discussion can be seen below.

4.1 Features From Proteins That Contribute
to Subcellular Localization Prediction
The first feature protein is SUMO2 (ENSP00000405965).
According to recent publications, this protein is a member of
the small ubiquitin-like modifier family and contributes to
ubiquitin-mediated post-translational modification system by
acting as a signal for proteasomal degradation (Hecker et al.,
2006; Tammsalu et al., 2014). In 2013, a research on testis
functions confirmed that SUMO2 is specifically located in the
nucleus region of the cell and is mediated by retinoic acid (Zhu
et al., 2010). Therefore, this protein is a potential feature for
specific subcellular regions.

The following feature protein is NDUFS3
(ENSP00000263774). As a specific iron–sulfur protein
component of the mitochondrial NADH, this protein
participates in the electron transport in the mitochondrion
and contributes to energy-associated metabolisms in living
cells (Benit et al., 2004). This protein is located in the
mitochondrial and the nucleus regions (Vogel et al., 2007b;
Taurino et al., 2012). Specifically, most of this protein is

FIGURE 6 | IFS with four classification algorithms on mRMR feature list of PseAAC features. The highest MCC values obtained by four classification algorithms are
0.724, 0.764, 0.755, and 0.494, respectively.

TABLE 3 | Performance of the optimum models using PseAAC features.

Classification algorithm Number of features Overall accuracy MCC

k-nearest neighbor 143 0.757 0.724
Random forest 108 0.803 0.764
Support vector machine 259 0.794 0.755
Decision tree 16 0.559 0.494
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directly located and functions in the inner mitochondrion
membrane (Benit et al., 2004; Vogel et al., 2007a).

GRK3, the next predicted feature protein
(ENSP00000317578), acts as a beta-adrenergic receptor kinase,
contributes to the GPCR signaling pathway (Antony et al., 2009;
Kumari et al., 2016), and participates in the CCR5 pathway in
macrophages (Vroon et al., 2004; Balabanian et al., 2008). In
general cells, GRK3 does not have a specific localization pattern.
However, in macrophages, this protein merges with CXCR4 to
form specific complexes in the cellular membrane system
(Wang et al., 2001). Therefore, in these functional cells, our
candidate protein GRK3 has a specific spatial distribution
pattern and may contribute to the identification of the
biological membrane region, validating the efficacy and the
accuracy of our prediction.

BRIX1 (ENSP00000338862) is the specific regulator in the
biogenesis of the 60S ribosomal subunit and is predicted to
contribute to subcellular localization (Fromont-Racine et al.,
2003; Strunk and Karbstein, 2009). According to recent
publications, this protein is mostly located inside the nucleus
and regulates ribosome biosynthesis (Zieve and Penman, 1976;
Nguyen et al., 1998). According to the Human Protein Atlas
(HPA), this protein is identified in the cytoplasm, but most of the
protein is still located and functions in the nucleus, validating that
the specific subcellular localization subgrouping is dependent on
this protein (Pontén et al., 2008).

MDH2 (ENSP00000327070) contributes to the catalyzation of
the reversible oxidation of malate to oxaloacetate and is predicted
to help in the identification of a certain subcellular region (Pines
et al., 1997; Shi and Gibson, 2011). According to HPA (Pontén
et al., 2008), like NDUFS3, this protein is mostly identified in the
mitochondrion. Recent publications also confirm that this
protein can be identified in multiple intracellular organelles
but is actually enriched in the mitochondria system (Lo et al.,
2015) especially the mitochondria-associated ER membranes
(Guardia-Laguarta et al., 2014; Lo et al., 2015). Moreover, this
protein acts as a potential subcellular signature and corresponds
with our prediction.

The H3-3B (ENSP00000254810) in our prediction list is the
basic nuclear protein that contributes to the maintenance of the
chromosomal fiber in eukaryotes (Frey et al., 2014). Therefore,
this protein is definitely located in the nucleus region, thereby
indicating subcellular localization. Similar with BRIX1, the
protein NHP2 (ENSP00000274606) is a specific protein
required for ribosome biogenesis (Vulliamy et al., 2008;
Fumagalli et al., 2009) and telomere maintenance (Wong and
Collins, 2003; Vulliamy et al., 2008). Therefore, this protein is also
identified in the cytoplasm and the nucleus. This protein has
potential to act as a subcellular localization signature because
most of it is located in the nucleus (Pontén et al., 2008). Other
feature proteins, e.g., CYC1 (ENSP00000317159) (Chen et al.,
1994) and H2AZ2 (ENSP00000308405) (Eskandarian, 2013),
have specific distribution patterns inside the cell, cytoplasm,
and nucleus according to recent publications.

Overall, the feature proteins we analyzed have already been
validated to contribute to the subcellular localization, validating
the efficacy and the accuracy of our prediction. Thus, our newly

presented computational method may be an effective tool for the
prediction of subcellular localizations.

4.2 Features From Functions That
Contribute to Subcellular Localization
Prediction
The functional enrichment analysis is performed, and a group of
effective GO (Consortium, 2015) and KEGG terms (Kanehisa,
2002) is screened to describe the core biological functions related
to subcellular localization and further show the functional
distribution pattern of feature proteins.

The top four GO terms in our prediction list describe specific
subcellular localization or effective structures contributing to the
distinction of different subcellular localization. These terms
include GO:0070013 (describes the intracellular organelle
lumen), GO:0031975 (describes the specific envelope structures
in cells), GO:0031090 (describes the organelle membrane), and
GO:0005887 (describes the integral component of the plasma
membrane).

For example, the intracellular organelle lumen is a specific part
of effective organelles, such as mitochondrion, peroxisomes, and
Golgi apparatus (Lorenz et al., 2006a; Lorenz et al., 2006b;
Masyuk et al., 2006), distinguishing perticular subcellular
localization from the other ones. Therefore, GO:0070013 can
contribute to subcellular localization. For GO:0031975, the
envelope is a multilayered structure connected to the cell
membrane or other membrane systems (Peabody et al., 2016).
Therefore, this GO term is functionally correlated with the cell
membrane and with various organelles with membrane-like
mitochondrion and Golgi apparatus (Graham et al., 1991;
Finnegan et al., 2001; Peabody et al., 2016). Other subcellular
localization prediction algorithms also consider this term as a
specific parameter for classification (Peabody et al., 2016).
Similarly, GO:0031090 and GO:0005887 describe a part of the
membrane system in cells.

4.3 Quantitative Rules That Contribute to
Subcellular Localization Prediction
Apart from the qualitative analysis on specific GO or KEGG
terms, a group of quantitative rules are established for the
identification of different subcellular localizations. According
to recent publications, these rules contribute to subcellular
localization, thereby validating the efficacy and the accuracy of
our prediction. Here, 16 typical rules referring to 16 clusters are
chosen for detailed analyses.

The first rule is to identify the biological membrane subcellular
localization (Class 1). According to the quantitative rules, the first
parameter is GO:0031224. According to our prediction, the
proteins enriched in this cellular component positively
contribute to the biological membrane. Considering that GO:
0031224 describes the intrinsic component of membrane, this
GO term is the first parameter to identify the proteins associated
with the biological membrane, validating our prediction.
Similarly, GO:0005886 describes the plasma membrane and
may positively contribute to the identification of such
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subcellular localization. Some terms negatively participate in this
identification. For instance, the nuclear lumen described by GO:
0031981 located inside the nucleus is in our prediction list.

For the rules that contribute to the identification of cell
periphery subcellular localization (Class 2), GO:0031224 is in
this predictive parameter list. The specific GO term GO:0007043
highly enriches proteins associated with the identification of cell
periphery subcellular localization. According to the GO
annotation, this GO term describes the cell–cell junction
assembly, which definitely occurs in the periphery subcellular
regions (Setzer et al., 2004; Dawson et al., 2012), validating the
efficacy and the accuracy of our prediction.

The third rule focuses on the identification of cytoplasm (Class
3). Specifically, wound healing (GO:0042060) is identified as a
specific positive enrichment marker for this rule. The cytoplasm
plays an essential role for wound healing (Jeon and Jeon, 1975).
Therefore, the proteins that are located at the cytoplasm can be
identified by a specific biological process (Jeon and Jeon, 1975;
Gabbiani et al., 1978), such as wound healing.

Similar with that of the cytoplasm, a group of rules for the
identification of cytoplasmic vesicle (Class 4) are identified.
Among the rule parameters, the specific GO term GO:0070727
that describes the cellular macromolecule localization (Franklin
and Baltimore, 1962) is a key feature that contributes to the
identification of the cytoplasmic vesicle. According to recent
publications, the cytoplasmic vesicle is a major transporter of
macromolecules during synthesis and functioning (Franklin and
Baltimore, 1962). Therefore, this GO term is a distinctive
parameter for the sublocation of the cytoplasmic vesicle.

Furthermore, some specific rules are identified for endosome
(Class 6), extracellular space or cell surface (Class 7), and
flagellum or cilium (Class 8). Apart from some general GO
terms, such as GO:0031224, the GO:1902115 is a specific
parameter for the identification of endosome. Describing the
assembly of effective intracellular organelles, this GO term
contributes to the identification of endosome subcellular
localization due to the tight correlation between endosome
and organelle assembly (Kjeken et al., 2004; Kloer et al., 2010).
For the identification of the extracellular space or the cell surface,
apart from a series of GO terms like other predictive rules, the
specific protein SDAD1 is obtained for the prediction of
subcellular localization on the extracellular space or the cell
surface. According to recent publications, this protein is
located mostly inside the nucleus (Zeng et al., 2017) but not
outside or on the biomembrane system. As for flagellum or cilium
(Class 8), a specific parameter called GO:2000816 is positively
correlated with the identification of this subcellular localization.
This GO term describes the negative regulation of mitotic sister
chromatid separation. Considering that mitotic separation is one
of the major biological functions of the centriole–flagellum
system (Wilson, 1969; Bettencourt-Dias et al., 2005), this
parameter (biological process) is correlated with our predicted
subcellular localization to a certain extent and definitely
contributes to the identification of this cellular structure,
thereby validating our predictions.

In addition, specific organelles, such as endoplasmic reticulum
localization (Class 5), Golgi apparatus (Class 9), and

mitochondrion (Class 11), can be identified and located by
specific quantitative rules. The specific parameter GO:0005789
contributes to the localization of the endoplasmic reticulum. The
GO:0005789 describes the endoplasmic reticulum membrane,
validating the efficacy and the accuracy of our prediction. For
the localization of Golgi apparatus, the specific parameter
has00601 describing the glycosphingolipid biosynthesis is
identified. Considering that glycosphingolipid biosynthesis is a
typical biological process happening in the Golgi apparatus
(Burger et al., 1996; Butters et al., 2000), this function is
predicted as a quantitative parameter for the identification of
Golgi apparatus subcellular localization. The mitochondrion is
the next predicted subcellular localization with typical predictive
parameters (such as GO:0031975), and the envelope is analyzed
above (Peabody et al., 2016). This GO term is functionally
correlated with the mitochondrion (Graham et al., 1991;
Finnegan et al., 2001; Peabody et al., 2016), confirming our
prediction.

Furthermore, the cell nucleus-associated locations, such as
nuclear periphery (Class 12), nucleolus (Class 13), and nucleus
(Class 14), can be quantitatively identified by our rules. For class
11, nuclear periphery regions are identified. Apart from the
typical parameters, such as GO:0031981 and GO:0005654, the
typical protein ENSP00000345895 or NUP50 is identified.
According to recent publications, this protein is enriched in
the periphery regions of the nucleus (Hajeri et al., 2010;
Vaquerizas et al., 2010), thereby positively corresponding with
our prediction. For the nucleolus, the specific biological process
RNA surveillance (GO:0071025) is enriched in such rules as an
effective parameter. Considering that RNA surveillance does
occur in this region (Hernandez-Verdun et al., 2010), this GO
term is a functional predictive parameter, validating the efficacy
and the accuracy of our prediction. Similar with the nucleolus, the
nucleus has its specific “biomarkers” in these quantitative rules.
GO:0045596 describes the negative regulation of cell
differentiation and is positively enriched in these rules.
Considering that the physical plasticity of nucleus is quite
important for cell differentiation (Pajerowski et al., 2007), this
GO term is a positive parameter for subcellular localization,
validating the efficacy and the accuracy of our prediction.

Three effective subcellular regions, namely, microtubule
cytoskeleton (Class 10), peroxisome (Class 15), and vacuole
(Class 16) remain. For the identification of microtubule
cytoskeleton, the typical GO term GO:0044450 describes the
obsolete microtubule organizing center part and is functionally
and positively correlated with the microtubule system. Therefore,
the predicted quantitative rules may be effective for the
identification of the microtubule cytoskeleton’s subcellular
localization. Peroxisome identification requires the specific
quantitative parameter GO:0031903, which describes the
microbody membrane. According to recent publications,
peroxisomes are major functional components of the
microbody. Thus, this GO term is an effective parameter
(Fahimi, 1969; Tolbert and Essner, 1981). The last subcellular
localization is the vacuole. Similar with the peroxisomes’ rules, a
specific GO term describing only the vacuolar lumen, a part of the
vacuole, is identified, thereby validating our prediction.
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5 CONCLUSION

We identified a group of feature proteins that effectively
contributes to intracellular subcellular localization and
screened a series of qualitative functional enrichment patterns
(i.e., GO and KEGG terms), revealing the functional distribution
patterns of these proteins that contribute to subcellular
localization identification. Combining proteins and functional
annotations, a series of quantitative prediction rules was built for
further analysis. Several screened feature proteins, functional
annotation terms (i.e., GO or KEGG terms), and parameters
of quantitative rules have been validated by recent publications.
This study can provide a computational model for effective
subcellular localization prediction and lay a solid foundation
for further experimental research in such fields. The data as
well as the information of used programs and software are
available at https://github.com/chenlei1982/subc_prediction.
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