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SUMMARY

Proteins of all living cells undergo a myriad of post-translational modifications
(PTMs) that are critical to multifarious life processes. In this study, we describe
the first comprehensive multiple PTM-omics atlas in parallel with quantitative
proteome analyses of two representative species of African trypanosomes, Try-
panosoma brucei and Trypanosoma evansi. Ten PTM types with approximately
40,000 modified sites and 150 histone marks with a fine map on each protein of
the two African trypanosomes were accomplished. The two biologically different
trypanosomal species displayed distinct PTM-omic features, regulation path-
ways, and networks. Modifications in the proteins involved in the redox system
were mainly upregulated in T. brucei, whereas proteins associated with motility
were predominantly modified in T. evansi. The establishment of a database of
multiple PTMs in the two parasites provides uswith a deep insight into the biolog-
ical mechanisms that underpin life processes in trypanosomes with different life
cycles.

INTRODUCTION

Trypanosomes are vector-borne protozoan parasites that cause substantial mortality and morbidity in

mammalian hosts worldwide, and there is no vaccine available for trypanosomiasis (Buscher et al., 2017;

Cayla et al., 2019). A subspecies of Trypanosoma brucei, T. b. brucei, is responsible for the domestic animal

disease known as nagana and has been used as a model for various studies due to its close resemblance

with the etiologic agents of human sleeping sickness, T. b. rhodesiense and T. b. gambiense. Trypanosoma

evansi, the causative agent of the disease surra, is thought to be a mutant of T. brucei that has adapted to

the gradual loss of kinetoplast DNA and is normally sensitive to human serum (Lai et al., 2008). However, it is

now known to be capable of causing infections in humans (Uzureau et al., 2013; Van Vinh Chau et al., 2016;

Vanhollebeke et al., 2006), and T. evansi-infected monkeys exhibit symptoms similar to those associated

with sleeping sickness (Misra et al., 2016), further highlighting its zoonotic potential. Both T. brucei and

T. evansi proliferate predominantly extracellularly within mammalian hosts as bloodstream form (BSF) par-

asites. Periodic switching of the variant surface glycoprotein coat and concomitant immune evasion results

in the generation of waves of parasitemia and long-term survival (Mugnier et al., 2015). However, for poly-

morphic T. brucei, this phenomenon is accompanied by a developmental switch from a slender to a stumpy

form; this switch is regulated by quorum sensing (QS) signaling pathways (Mony et al., 2014; Rojas et al.,

2019). When the stumpy form parasites are ingested by tsetse flies, the parasites initiate development

into the procyclic form (PCF). In contrast, T. evansi, which is normally monomorphic, is locked in the slender

BSF and incapable of cycling through the insect due to dyskinetoplasty (Carnes et al., 2015; Lai et al., 2008).

The mechanical transmission of T. evansi, however, enables its infection of a variety of mammalian hosts

and transmission beyond Africa, where the obligatory vector of T. brucei resides (Jensen et al., 2008).

These two African trypanosomes harbor very similar genomes RNA polymerase II (RNAP II) promoters, and

genes are present in polycistronic units (Berriman et al., 2005; Carnes et al., 2015; Zheng et al., 2019). Try-

panosomes, therefore, rely almost exclusively on post-transcriptional mechanisms to regulate the output of

gene products, highlighting the critical function of RNA-binding proteins (RBPs) (Kolev et al., 2012).

Furthermore, the major differences between these two closely related parasites are ultimately caused by

dynamic changes in protein homeostasis and post-translational modifications (PTMs). Epigenetic regula-

tion, predominantly through histonemodification, is considered as a secondary vehicle for the transmission

of heritable messages (Figueiredo et al., 2009). The PTM status of histones and associated variants
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Figure 1. Proteomic Profiling and Targeted Verification Reveal Significant Differences of T. brucei and T. evansi

(A) Flowchart illustrating the proteomic procedures for proteins and modified site identification. Parasite proteins were extracted (step 1) and trypsinized

(step 2). One aliquot of peptides was separated by high-performance liquid chromatography (HPLC) (step 3) and analyzed by tandem mass spectrometry

(MS/MS) (step 4). A separate aliquot was subjected to affinity enrichment (step 4*) and PTM identification (steps 5* and 6*). The steps marked with asterisks

are for PTM analysis. Phosphopeptides were identified by immobilized metal-affinity chromatography (IMAC) (Ficarro et al., 2002), and N-glycopeptides
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Figure 1. Continued

were enriched using a hydrophilic interaction liquid chromatography (HILIC) strategy (Zhang et al., 2016). The other peptides were all enriched using

appropriate monoclonal pan-antibodies. Finally, data from all omics sources were combined for bioinformatic analysis (steps 6 and 7*). Parallel reaction

monitoring was used to quantify individual unique peptides for targeted validation of the differentially expressed proteins in the two parasites (step 7).

(B) Principal-component analysis (PCA) of the proteome resulted in a clear separation of two groups, representing T. evansi and T. brucei. The three

replicates of the same species clustered tightly.

(C) The quantitative ratio distributions of homologous proteins between T. brucei and T. evansi.

(D) Venn diagrams illustrating homologous proteins between T. brucei (red circle) and T. evansi (blue circle). Volcano plot shows the distributions of

quantified proteins commonly identified in the two parasites. Highly expressed proteins in T. brucei and T. evansi are shown in red and blue, respectively,

whereas proteins whose expressions were unchanged are shown in pink. Zinc finger proteins (ZFPs) and proteins associated with cell motility, the redox

system, and tricarboxylic acid (TCA) cycles are represented by dots of different colors.

(E) Prediction of subcellular localization and classification statistics of the four protein groups.

(F) KEGG pathway-based enrichment of proteins with different expression intensities in T. brucei and T. evansi. Heatmap colors represent log2-fold changes

in expression levels.

See also Figure S1 and Tables S1, S2, and S3.
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determines whether chromatin is repressed or activated in relation to transcription and, concomitantly,

antigenic variation (Martinez-Calvillo et al., 2018; Muller et al., 2018). Proteomic analyses have already

been performed on trypanosomes (Dejung et al., 2016; Roy et al., 2010), and advances in phosphopro-

teome and acetylome analyses of T. brucei have highlighted the role of PTMs in trypanosomes (Moretti

et al., 2018; Nett et al., 2009a, 2009b; Urbaniak et al., 2013). However, our knowledge of the molecular

biology of T. evansi lags way behind that of T. brucei. In addition, a global quantitative understanding

of associated proteomes and PTM networks is still lacking, and the overall dynamic regulatory mechanisms

that facilitate PTMs in trypanosomes remain to be elucidated.

In an effort to better understand the biology of African trypanosomes and unravel the molecular mech-

anisms that drive developmental differences, we report the first global analysis of multiproteomics for

T. brucei and T. evansi using label-free quantitative techniques. The study also resulted in the generation

of a modification-specific proteomic profile that contains the most PTM types in all organisms to date.

We further analyzed acylations (acetylation, crotonylation, 2-hydroxyisobutyrylation, malonylation, and

succinylation), phosphorylation, trimethylation, ubiquitination, N-glycosylation, and O-GlcNAcylation

on each protein identified, including functional and pathway enrichment and interactive networks. Pro-

teins that are species-specifically expressed and modified were deeply investigated. This study provides

a proteome and PTM-ome resource for Trypanosoma parasites, which serves as a valuable model to

study evolutionarily distinct eukaryotes (Cayla et al., 2019), laying a foundation for the development of

new drugs.
RESULTS

Proteomic Profiling and Targeted Verification Reveal Significant Differences of T. brucei and

T. evansi

The proteins of BSF T. brucei and T. evansi were identified using sophisticated mass spectrometry-based

quantitative analysis in three eligible biological replicates; the replicates of the same species cluster tightly

in principal-component analysis (PCA) (Figures 1A and 1B). The density distribution of the quantitative

values after logarithmic transformation showed a significant normal distribution between �10 and 10,

which is in line with the expectation of the whole protein quantitative theory (Figure 1C). In this scenario,

3,957 and 3,450 proteins were identified, respectively, in T. brucei and T. evansi, and 2,123 proteins

were shared between the two species (Figure 1D and Table S1). Differentially expressed proteins were

further categorized into groups presented by Tb-exclusive, Te-exclusive, Common and Tb-high, and Com-

mon and Te-high (corresponding to Tb-e, Te-e, Tb-h, and Te-h in the figures and figure legends, respec-

tively). Species-exclusive proteins were identified in three replicates of one species and in none in the other

species; the latter two groups were defined by fold change >2 and p value <0.05 (Table S2). The numbers of

the proteins categorized in the four groups were 555, 272, 516, and 369 (Table S2), respectively. These four

groups of proteins were consistently the most abundant in the nucleus; the next most prevalent localization

for these proteins was the cytoplasm (Figure 1E). More than 80% of the differentially expressed proteins

that regulate cell motility such as the dynein complexes and that are associated with flagellum (synonymous

to cilium) organization and movement (Langousis and Hill, 2014) were up-regulated in T. evansi, whereas

proteins with oxidoreductase activity and the zinc finger-type RBPs were more prevalent in T. brucei
iScience 23, 101074, May 22, 2020 3



Figure 2. In-Depth Global Identification Highlights Species-Specific PTMs

(A) Summary of the identified proteins and PTM sites.

(B) Analysis of the modified sites in T. brucei and T. evansi with their respective orthologs in Homo sapiens, S. cerevisiae,

Toxoplasma gondii, Plasmodium falciparum, and other species of trypanosomatid parasites. Sites were deemed to be

phylogenetically conserved when the amino acids of the homologous proteins were identical following alignment.

Percentages of conserved modified and unmodified sites are shown in red and blue, respectively.
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Figure 2. Continued

(C) Immunofluorescent staining of methanol-fixed T. brucei and T. evansi with the anti-succinyl lysine antibody (green).

Nuclei are stained with DAPI (blue). Pan anti-succinyl lysine antibody (positive) and normal mouse IgG (negative control)

were added as the primary antibody. Scale bar, 10 mm.

(D) Coomassie blue staining of 20 mg BSF trypanosome lysates showed equal loading amounts. Western blot probed with

a monoclonal anti-succinyl lysine antibody.

(E) Protein abundance and PTMs in each subcellular structure. The outermost colors represent different subcellular

structures, and the color gradient indicates the abundance of each protein. The number of PTM types that can occur on

the proteins is represented by the line chart, whereas the numbers of modified sites of different types are illustrated by

various color gradients. Ph, phosphorylation; Ac, acetylation; Cr, crotonylation; Hib, 2-hydroxyisobutyrylation; Ma,

malonylation; Su, succinylation; Ub, ubiquitination; Me3, trimethylation.

See also Figure S2 and Tables S1, S2, and S3.
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than in T. evansi (Figure 1D and Table S3). Tb-exclusive and Tb-high expressed proteins were predomi-

nantly enriched in the citrate cycle (TCA cycle) pathway (Figures 1D and 1F and Table S3).

To validate the differential expression of proteins in these two parasites, parallel reaction monitoring was

applied to quantify individual unique peptides. Targeted verifications were performed on 13 differentially

expressed proteins, and the regulatory trends of these proteins in both parasites were consistent with the

proteome results (Figure S1 and Table S2).
In-Depth Global Identification Highlights Species-Specific PTMs

A proteomic repertoire of 10 types of PTMs was generated following PTM-specific affinity-enrichment tech-

niques that facilitate the detection of transient and substoichiometric PTMs (Figures 1A, 2A, and S2A–S2C

and Table S1 and Data S1). The replicates of the same experiments clustered tightly in PCA (Figure S2A),

and the distribution of the quantitative values after logarithmic transformation was reasonable (Figures S2B

and S2C). Specific masses of the modified peptides were matched to the corresponding proteins to count

the modification sites. There were 42,656 and 33,040 modified sites identified in 10 PTM-omics of T. brucei

and T. evansi, respectively (Figure 2A and Table S1). Respective PTM map and regulatory networks of the

proteins identified from the two trypanosome species were accomplished. In general, modified sites were

more conserved when aligned with their respective orthologs in species of trypanosomatid parasites, high-

lighting the functional significance of these sites (Figure 2B). The most significant difference in PTMs be-

tween the two species was succinylation, which predominantly occurred in T. brucei (Figures 2A, 2C and

2D). A circular proteome map was constructed to further depict the similarities and differences between

the proteins and PTMs of the two parasites; the modified proteins were relatively broadly distributed in

multiple cellular compartments, and the distribution of modified proteins was much prevalent across the

cytoplasm (Figures 2E and S2D). There is no obvious linear relationship between the level of phosphoryla-

tion and protein abundance, and the phosphosites were not highly conserved, indicating that protein

phosphorylation is more extensive than other PTM types (Figures 2B and 2E).

Functionally, PTMs were significantly involved in pervasive biological processes including signal transduc-

tion, translation, RNA processing, transport, and protein turnover in the parasites (Figure S2E and Table

S3). In both T. brucei and T. evansi, a large number of thioredoxins and the 70-kDa heat shock proteins

(HSP70s) were significantly succinylated, but it was malonylated exclusively in T. brucei (Table S3). The

involvement of PTMs in oxidation-reduction seems to be more critical to T. brucei (Table S3).

Furthermore, similar to the aforementioned proteomic analysis, all differentially modified proteins were classi-

fied into four groups, and the modification site numbers of these four groups were 1547, 809, 2201, and 2024,

respectively (Table S2). We observed that the differentially modified proteins were predominantly involved in

carbonmetabolism and translation, and the non-overlap proteins for malonylation in T. brucei and T. evansi still

share some significant pathways, especially in relation to carbohydrate metabolism (Figure S3A). In addition, an

interactive network of all differentially modified proteins was constructed (Figure S3B). These proteins were pre-

dominantly involved in cellular processes such as translation, glycolysis, and ubiquitin-mediated protein degra-

dation. An inosine-50-monophosphate dehydrogenase (IMPDH1, Tb927.10.16120), which catalyzes the conver-

sion of inosine-50-monophosphate to xanthosine-5’-phosphate, the major pathway in purine metabolism

(Bessho et al., 2013), exhibited extremely strong interactions with other proteins.
iScience 23, 101074, May 22, 2020 5
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Figure 3. Histone Modifications Are Highly Conserved in African Trypanosomes

(A) PTMs of canonical histones of both T. brucei and T. evansi. Cylinders indicate the globular domain of histones.

Sequences of mature histones are shown with the modified residues in bold (the numbers represent the amino acid

position following removal of the initial methionine).

(B) Heatmap displaying the significance (log2 T. b/T. e ratio) of all modified sites on histones and their variants.

See also Figure S4 and Table S4.
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Amapof protein-protein interaction networks for RBPs (square) and their substrate proteins (circle). The interactive proteins were connected by lines; different border

colors represent the regulation types of protein expression level, and the filling colors represent the trends of PTMs that occur on this protein.
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Histone Modifications Are Highly Conserved in African Trypanosomes

A large number of histone marks were observed (Figure 3A and Table S4). A total of 162 histone marks were

identified in T. brucei, 135 of which were novel, whereas all the 134 marks in T. evansi were reported for the

first time. Furthermore, 119 histone marks were shared in the two parasites.

An extensive range of PTMs occurred on the tails of histones compared with the globular domains. In general,

variant histones are less conserved than canonical histones (Croken et al., 2012). However, the modified sites of

the variant histones were extensively similar between the two parasites (Figure S4). Remarkably, several hyper-

acetylated regions that have been postulated as being important in the establishment of euchromatins and the

regulation of particular gene clusters under particular circumstances were identified. H2A.Z was predominantly

regulated by hyperacetylation, with K49 in the N terminus exhibiting greater levels of acetylation in TbH2A.Z.

Conversely, K164, K168, and K169 in the C terminus exhibited greater levels of acetylation in TeH2A.Z (Figure 3B

and Table S4). Hyperacetylated regions at the C terminus of histone H2A and the N terminus of histone H4were

predominant in T. evansi. Furthermore, many residues underwent multiple PTMs and had similar or opposite

effects on chromatin structure at different times; modification on H2BK96, H3K32, H3K61, H3K76, and H4K57

exhibited the most prominent effects in this regard.
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RNA-Binding Proteins, the Regulatory Elements of Gene Expression in Trypanosomes,

Undergo Extensive PTMs

The absence of RNAP II promoters in trypanosomes greatly simplifies the task of elucidating the contribu-

tion of RBPs to global gene regulation. A regulatory network of differentially expressed or modified RBPs

and associated interacting proteins was constructed (Figure S5). The identified RBPs were predominantly

involved in RNA processing, splicing, and ribosome biogenesis. Pyruvate kinase 1 (PYK1, TritrypDB: Tb927.

10.14140), a rate-limiting enzyme involved in the glycolysis pathway, also exhibited RNA-binding activity

(Lueong et al., 2016), was differentially regulated by six PTMs in the two trypanosomes. Pumilio homology

domain family member 8 (PUF8, TritrypDB: Tb927.3.2470), which has been implicated in various aspects of

ribosomal RNAmetabolism (Droll et al., 2010), was specifically acetylated in T. brucei and closely related to

RNA helicase. Furthermore, the double RNA-binding domain protein 9 (DRBD9, TritrypDB: Tb927.9.13280)

with K144hib, which is predominantly present in T. evansi, appears to be highly correlated with splicing

proteins.
Kinase-Phosphosite Regulatory Networks Highlighted Key Factors in Differential

Phosphorylation

The sequence contexts that underwent phosphorylation in both T. brucei and T. evansi were analyzed. The

flanking sequences of phosphosites exhibited different trends in the two trypanosomal species, suggesting

that protein kinases act specifically (Figures 5A and 5B and Table S5). Most of the motifs in which the argi-

nine (R) was present at the �2 or �3 position of the modified serine (S) were enriched in CAMK and AGC

kinases. Notably, most CMGC kinases, chiefly CDK, MAPK, DYRK, and GSK with proline (P) at the +1 po-

sition, always had higher levels of phosphorylation in T. brucei. In T. evansi, acidic amino acids (aspartic

acid [D] or glutamic acid [E]) occurred more frequently at the +1 position of phosphosites; most of the

TAF1 and CMGC/CK2 kinases contained such phosphorylation motifs.

The potential regulatory relationships between the differential expression and autophosphorylation of ki-

nases with their substrate phosphosites were also predicted in this study; both factors were closely related

to the phosphorylation level of whole proteins (Figures 5C and 5D). The elevated expression of cdc2-

related kinase 6 (CRK6, TritrypDB: Tb927.11.1180) and the elevated autophosphorylation of tyrosine 34

(Y34) of CRK3 (TritrypDB: Tb927.10.4990) in T. brucei affected the phosphorylation level of other proteins,

and Y34 was located at the ATP-binding sites (Figure 5E and Video S1); these were key factors leading to

the differential phosphorylation of T. brucei and T. evansi.
Variation in the PTM-omes of Flagellar Proteins Reflected the Differences in Parasite Motility

The trypanosome flagellum contains a canonical 9 + 2 microtubular axoneme alongside which the par-

aflagellar rod (PFR) runs (Bastin et al., 1998). The axoneme emanates from the basal body through the

transition zone and is laterally connected to the cell membrane via the flagellum attachment zone

(FAZ) (Figure 6). In each part of the flagellum, a majority of the proteins were highly or exclusively modi-

fied in T. evansi (Figure 6 and Table S6). Moreover, the differential PTMs associated with these proteins

further explains the more flexible appearance of T. evansi (Bargul et al., 2016) (Tables S3 and S6). The

inner-arm dynein (IAD5-1, TritrypDB: Tb927.7.920), knockdown of which causes cell motility defects,

was highly expressed in T. evansi (Wei et al., 2014). K1,134 of IAD5-1 was acetylated exclusively in

T. brucei and 2-hydroxyisobutyrylated in T. evansi. The flagellum attachment zone protein 2 (FAZ2, Tri-

trypDB: Tb927.1.4310) was heavily phosphorylated, and a similar observation was reported in T. brucei

(Nett et al., 2009b). However, the phosphorylation on this protein was more prevalent in T. evansi. N-gly-

cosylated sites were mainly identified in two proteins, PFR component (PFC16, TritrypDB: Tb927.10.

11300) and flagellum adhesion protein 2 (FLA2, TritrypDB: Tb927.8.4060), and the modifications occurred

more frequently in T. brucei.
PTMs Regulated Energy Metabolism and Trypanosomatid-Specific Redox System

Eight PTMs were significantly enriched in the glycolysis pathway (Figure S3), which is themain energy meta-

bolism pathway in BSF trypanosomes (Haanstra et al., 2016). The subcellular localization profiles of glyco-

lytic enzymes of both T. evansi and T. brucei were similar (Moreno and Nava, 2015), and most enzymes had

multiple modifications (Figure 7A). Notably, the acetylation and 2-hydroxyisobutyrylation that occurred on

the three rate-limiting enzymes were highly prevalent in T. evansi (Figure S5). Furthermore, it was observed

that many PTMs occurred at key residues of the enzymes. For example, the K117 of fructose-1,6-
8 iScience 23, 101074, May 22, 2020
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Figure 5. Kinase-Phosphosite Regulatory Networks Highlighted Key Factors in Differential Phosphorylation

(A) Violin plot analysis comparing the phosphorylation levels and distributions of different sequence motifs in the two parasites. The vertical position of each

histogram represents the relative modified level of T. brucei and T. evansi.

(B) Heatmap displaying the significance of the correlation of kinase types and motifs. The gradient color represents the degree of enrichment (log10 p value)

of the motif in the corresponding kinase.

(C and D) The regulatory relationship between differentially expressed (C) and autophosphorylated (D) kinases with their substrate phosphosites. The arrows

represent differentially expressed kinases, and circles represent phosphorylated sites. The size of each node reflects the degree within the network. The

colors of the nodes reflect the types of regulation.

(E) Differential phosphorylated sites detected in CRK3 are represented by the three-dimensional structure of protein. The phosphosite is shown in red, and

the ATP-binding pocket and active sites are marked in purple and yellow, respectively (PDB: 4GCJ).

See also Table S5 and Video S1.
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bisphosphate aldolase (ALDO), which could bemodified by six types of PTMs, is precisely positioned at the

active site (Figure 7B, Video S2), and N338 of enolase (ENO), which wasN-glycosylated, is located near the

substrate-binding pocket and metal-binding sites (Figure 7B, Video S3).
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Figure 6. Differences in the PTM-omes of Flagellar Proteins Associated with Parasite Motility

A simplified schematic diagram shows the architecture of the trypanosome flagellum, and the transmission electron

microscopic image shows a transverse section of the flagellum. Scale bar, 200 nm. Heatmaps displaying the differential

expression levels of proteins in each part of the two trypanosomes. See also Table S6.
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Trypanosomes, as early branching eukaryotes, have evolved in a manner that has resulted in a unique try-

panothione-based thiol-redox system (Manta et al., 2013). Trypanothione reductase (TryR, TritrypDB:

Tb927.10.10390), which has been considered as a target for antitrypanosomatid drugs, recycles trypano-

thione disulfide (TS2) back to dihydro-trypanothione (T(SH)2), and tryparedoxin (TXN) catalyzes the electron

transferred from T(SH)2 to different protein targets that are normally involved in multiple functions such as

cell proliferation and antioxidant defense (De Gasparo et al., 2019). We observedmultiple PTMs pertaining

to TryS, TryR, and TXN, and both TXN1 and TXN2 were expressed more prevalently in T. brucei than

T. evansi (Figure 7 and Table S7).
Crosstalk between Different Types of PTMs Involved in Critical Biological Processes

Correlation and Functional Overlaps

Proteins and sites modified by different PTMs were compared to assess the significance of the overlaps

(Figure S6A and Table S8). A large amount of overlap was observed among acetylated, crotonylated,

and 2-hydroxyisobutyrylated proteins in both T. brucei and T. evansi. The succinylated sites in T. brucei

had higher correlations with other lysine (Lys)-modified sites. However, in T. evansi, these sites had a

more significant correlation with malonylated sites. Functionally, most of these PTMs were positively asso-

ciated with carbohydratemetabolism (Figure S6B). For the disulfide isomerases,N-glycosylation was signif-

icantly enriched and negatively correlated with other PTMs.
10 iScience 23, 101074, May 22, 2020
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Figure 7. PTMs Regulate Energy Metabolism and Trypanosomatid-Specific Redox System

(A) Schematic diagram of the glycolysis pathway and trypanothione-based thiol-redox system in trypanosomes. Glycerol

3-phosphate (G3P) is reoxidized by the mitochondrial glycerol phosphate complex and returned to the glycosome for

further cycling. The consumption of NADPH by trypanothione reductase results in the maintenance of trypanothione in a

reduced state; the latter protein is generated by the pentose phosphate pathway. G-6-P, glucose 6-phosphate; F-6-P,

fructose 6-phosphate; F-1,6-BP, fructose 1,6-bisphosphate; DHAP, dihydroxyacetone phosphate; GA-3-P,

glyceraldehyde 3-phosphate; G-3-P, glycerol-3-phosphate; 1,3-BPGA, 1,3-bisphosphoglycerate; 3-PGA,

3-phosphoglycerate; 2-PGA, 2-phosphoglycerate; PEP, phosphoenolpyruvate; 6-PGL, 6-phosphogluconolactone; GSH,

reduced glutathione; Gsp, mono-glutathionylspermidine; TS2, trypanothione disulfide; T(SH)2, dihydro-trypanothione;

HK, hexokinase; PGI, glucose phosphate isomerase; PFK, phosphofructokinase; TPI, triosephosphate isomerase; GPDH,

glycerol-3-phosphate dehydrogenase; GK, glycerol kinase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PGK,

phosphoglycerate kinase; PGM, phosphoglycerate mutase; PYK, pyruvate kinase; G6PDH, glucose-6-phosphate

dehydrogenase; TryS, trypanothione synthetase; TryR, trypanothione reductase; TXN, tryparedoxin.

(B) Differentially modified sites detected in ALDO (left panel) and ENO (right panel) are represented by the three-

dimensional structure of proteins. The modified sites are shown in red, and the active sites of ALDO are marked in blue.

The substrate-binding pocket and the metal-binding sites of ENO are marked in yellow and purple, respectively. Protein

structures were obtained from the Protein DataBank (PDB, ALDO: 1F2J, ENO: 1OEP).

See also Figure S5, Videos S2 and S3.
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Lysine Acylations

Lys can be modified by various PTMs, especially acylations (Sabari et al., 2017). In this study, five types of

Lys-acylated proteins were quantified and the structural differences among their chains were observed.

Quantitative correlations between different PTMs occurring on Lys were predicted based on the Pearson

correlation coefficient (Figure S6C). In addition to succinylation, Lys malonylation was negatively correlated

with other acylations.
DISCUSSION

PTMs significantly increase the diversity and complexity of the proteome by altering protein function, local-

ization, and protein-protein interactions. Previous research indicated that the expression and function of

the surface-variant glycoproteins of T. brucei were controlled by several ubiquitylation pathways (Zoltner

et al., 2015). Nett et al. used sequential strong-cation exchange and TiO2 enrichment of BSF T. brucei phos-

phopeptides, identified 1,204 phosphorylation sites on 491 proteins (Nett et al., 2009b), and employed

anti-phosphotyrosine antibodies to identify 34 phosphotyrosine sites in PCF T. brucei (Nett et al.,

2009a). Using stable isotope labeling by amino acids in cell culture, another study reported stage-specific

phosphorylation changes in T. brucei and showed that differential phosphorylation is widespread between

the PCF and BSF (Urbaniak et al., 2013). Recent works detected 288 Lys acetylation sites in 210 proteins of

PCF and 380 sites in 285 proteins of BSF; notably, most K-ac proteins are enriched in metabolic processes,

suggesting that they are essential for parasite adaptation in the hosts (Moretti et al., 2018). However, so far,

these studies are not comprehensive with focus on a few PTMs, and such study on T. evansi has not been

reported.

In this study, we systematically investigated and compared the features of PTMs in the BSF of T. brucei and

T. evansi. We observed that succinylation occurred most differentially between the two trypanosomes (Fig-

ures 1A–1C). Many studies have shown that succinylation played an important role in the metabolic regu-

lation, especially in the mitochondrial pathway (Yang and Gibson, 2019). The higher level of protein succi-

nylation in T. brucei may explain the metabolic differences between T. brucei and T. evansi. The most

abundant PTMs in the two trypanosome species were crotonylation, 2-hydroxyisobutyrylation, acetylation,

and phosphorylation, and fewer O-GlcNAcylated and trimethylated proteins were identified (Figure 1A).

The number of O-GlcNAcylated proteins in the two species is similar to that identified in the Plasmodium

and Toxoplasma parasites (Aquino-Gil et al., 2018; Kupferschmid et al., 2017).

Proteins exhibiting species-specific expression and modification were revealed. Among the protein activ-

ities that were analyzed, oxidoreduction, which is functionally linked to environmental adaptation, was

highly expressed andmodified in T. brucei (Figure 1D and Table S7). This result correlates well with findings

in Plasmodium, where antioxidant proteins were preferentially expressed in the mosquito stage of the

parasite (Wang et al., 2018). Obviously, themodifications are essential in promoting the function of the anti-

oxidant proteins in the insect vectors. In addition, the dynein complex and proteins associated with

flagellar movement that supported the flexible appearance of T. evansi were predominantly expressed

and modified (Figure 1D and Table S6). Furthermore,N-glycosylation occurred more frequently in flagellar

proteins of T. brucei, suggesting that this PTM may be detrimental to parasitic motility. These findings

might explain why T. evansi has a more flexible appearance with greater adaptability in relation to move-

ment in restricted environments compared with T. brucei (Bargul et al., 2016; Broadhead et al., 2006; Lan-

gousis and Hill, 2014). Notably, IMPDH1, which exhibited extremely strong interactions with other proteins

(Figure S3B), has been shown to be essential for the survival of T. brucei. It differs in structure from its

mammalian counterpart and therefore may represent a novel anti-trypanosomal drug target (Bessho

et al., 2013).

The enrichment of Tb-exclusive and Tb-high expressed (Figure 1F) and modified (Figure S3A) proteins in

the citrate cycle may indicate that, after the parasitemia has reached a certain point, the parasite began

to switch from slender form to stumpy form, a process that is regulated by QS signaling pathways (Mony

et al., 2014); it is likely that proteins participating in the tricarboxylic acid cycle are expressed to prepare

for development in the insect vector and for the maintenance of well-developed mitochondria with abun-

dant cristae (Haanstra et al., 2016).

Although unusually divergent from other eukaryotes, trypanosomal parasites have kept a conserved

feature in their histones (Picchi et al., 2017). The protein sequences of histones of Trypanosoma parasites
12 iScience 23, 101074, May 22, 2020
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and other eukaryotes differ greatly but are compacted in a similar chromatin structure and organization

(Croken et al., 2012; Picchi et al., 2017). The histones and their PTMs were well conserved in trypano-

somes, and 88.8% of the histone marks in T. evansi are also present in T. brucei (Figure 3 and Figure S4).

Most modified sites on histones of T. brucei have been characterized in previous studies, such as H4K4ac,

which is cell cycle regulated and mediated by histone acetyltransferase 3 in T. brucei (Siegel et al., 2008),

and H4K10 is likely acetylated in all nucleosomes at transcription start sites (Kawahara et al., 2008; Siegel

et al., 2009). Previous study found that deacetylation of H4K14ac and replacing H4K10ac by arginines de-

layed DNA replication and reduced transcription in Trypanosoma cruzi (Ramos et al., 2015), and both

H4K10ac and H4K14ac were also identified in our study (Croken et al., 2012; Picchi et al., 2017). Dime-

thylation and trimethylation of H3K76, activities that are regulated by DOT1A and DOT1B, were

observed in both parasites (Picchi et al., 2017). Hyperacetylation occurred in different histone regions

of T. brucei and T. evansi, which suggested that the acetylated sites in each hyperacetylated region

may always be co-regulated and that each hyperacetylated region has distinct functions depending

on its position. In addition, a large number of novel histone modifications were revealed for the first

time, laying the foundation for further research. Many PTMs on histones are substoichiometric, reflecting

the dynamic properties of chromatin. The diversity of histone PTMs in trypanosomes reveals a dynamic

role in the regulation of histone function.

The regulation of RNAmetabolism is another important basis for determining cell function and fate. At the

protein expression level, the higher expression of zinc finger-type RBPs in T. brucei compared with that of

T. evansi is in accordance with the finding that there are a greater number of genes in T. brucei than in

T. evansi (Figure 1D) (Zheng et al., 2019). Furthermore, dynamic modifications of RBPs add another layer

of gene regulation. RBPs in trypanosomes execute important role in regulating mRNA abundance and

translational repression in combination with precursor mRNA or a portion of mature mRNA. Although there

is no significant difference in the expression level of the rate-limiting enzyme in the glycolysis pathway, a

variation in PTMs in PYK1, a protein that was also an RBP, is likely to affect the expression of other proteins

in various metabolic processes (Figure 4). Specific expression and modification of PUF8 in T. brucei might

indicate different mechanisms of rRNA maturation in the two trypanosomal parasites (Figure 4).

Furthermore, both CRK3 and CRK6 are essential in regulating the cell cycle and differentiation in T. brucei

(Jones et al., 2014), and Y34 of CRK3 was located at the ATP-binding sites, which are the targets of most

kinase inhibitor-based drugs (Figure 5). This provides support for the concept that trypanosome-specific

inhibitors can be developed. Furthermore, a notable observation is that most glycolytic enzymes that regu-

late the main energy-providing pathway of BSF trypanosomes were modified, and some of the modified

sites were in close proximity to the catalytic sites of these enzymes, suggesting that PTMs critically modu-

late the activity of key enzymes. Critical enzymes with ‘‘Erasers’’ and ‘‘Writers’’ function in the modification

processes are targets for drug development and some inhibitors have already entered the market in the

treatment of cancer and neurological diseases (Arrowsmith et al., 2012). The existing drugs for trypanoso-

miasis lead to side effects, and drug-resistant trypanosomes are emerging, emphasizing the need for ac-

tion to discover novel effective trypanocidal drugs to address unmet pharmaceutical needs (Field et al.,

2017). How to quickly discover the drugs and develop them effectively has always been a difficult point

in the prevention and treatment of trypanosomiasis. We present evidence that sirtuins can be potential tar-

gets for the therapy for trypanosomiasis, as these enzymes are important factors controlling growth and

differentiation during infection.

In conclusion, our study has revealed the most comprehensive PTMomics in the two African trypanosomal

parasites, T. brucei and T. evansi. The discoveries of parasite-specific modifications, especially the fine lo-

cations of the modified residues in the metabolic enzymes of both T. brucei and T. evansi, lay the founda-

tion for the development of new drugs.
LIMITATIONS OF THE STUDY

The values of PTM intensity were not normalized by protein intensity. We have compared the PTMdata with

or without normalization to that of the proteomic data. There was no significant correlation between the

PTM level and the protein expression level before normalization. After normalization, however, the PTM

values were negatively affected by the changes in protein levels, but should not be interpreted as real

modification changes.
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METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

All data is available in the main text or the Supplemental Information. The MS spectrometry measurement
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Figure S1. Target verification of proteomic data, related to Figure 1. 

The peak area distribution of the fragment ion of the unique peptides of the selected target proteins. The peak 
area of the fragment ion was calculated by normalizing to the area of the internal standard for each sample. 
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Figure S2. Qualitative analysis of differentially modified proteins in T. brucei and T. evansi, related to 
Figure 2. 

(A) PCA of PTM-omes resulted in a clear separation of two groups which clustered tightly and represented the 3 
eligible replicates of T. brucei and T. evansi. 

(B) Volcano plot shows the distributions of quantified PTMs commonly identified in the two parasites. Highly 
modified proteins in T. brucei are shown in red, T. evansi in blue, and the unchanged proteins are shown in gray. 

(C) Global distribution ratio for modified proteins in T. brucei and T. evansi. 

(D) Subcellular structure prediction and classification statistics for proteins in different PTM-omes. 

(E) Bar plots displaying KOG function distribution of the identified total proteins and modified proteins of T. 
brucei and T. evansi, respectively. 
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Figure S3. Quantitative analysis of differentially modified proteins in T. brucei and T. evansi, related to 
Figure 2. 

(A) KEGG enrichment of proteins highlighting sets of pathways that are differentially modified in T. brucei and 
T. evansi. Heatmap colors represent log2 fold changes. 

(B) Protein-protein interaction networks of differentially modified proteins; the interactive proteins are 
connected by lines, and the size of each protein node reflects the degree within the network. The colors of each 
node reflect which PTMs are differentially regulated. 
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Figure S4. Variant histones are also heavily modified, related to Figure 3. 

PTMs of variant histones for both T. brucei and T. evansi. Blue cylinders indicate the globular domains of 
histones. Sequences of mature histones are shown with the modified residues in bold (the numbers represent the 
amino acid position after removal of the initial methionine). 
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Heatmap displaying the variations of PTM types on all modified sites on the enzymes in the glycolysis pathway. 
The changed levels of kinases is indicated by the color of the vertical bar, and the levels of various 
modifications are indicated by the heat map. The modification types are color-coded. 
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Figure S6. Crosstalk between different types of PTMs associated with critical biological processes, related 
to Figure 2. 

(A) Heatmaps displaying the significance (-Log10 p value) of the overlaps of PTM datasets with one another. 

(B) Crosstalk between the PTMs that occur on the proteins following enrichment of GO terms, KEGG pathways 
and domains. Heatmap displaying the normalized enrichment score; red indicates positive correlations and blue 
indicates negative correlations. 

(C) The sites modified by different acylations were compared by ‘one versus all’ comparisons. Quantitative 
correlations between two modifications occurring at the same sites were evaluated using the Pearson correlation 
coefficient. The diagonal figures represent the relative quantitative abundance map of the modified sites. Scatter 
plots and Pearson correlations comparing individual replicate measurements are shown. 



Transparent Methods 

Ethics statement 

Six- to eight-week-old pathogen-free female BALB/c mice were maintained in an enriched environment, 

and animal experiments were performed according to the institutional guidelines on animal welfare and ethical 

permissions. The study was approved by the Ethical Committee of Shenyang Agricultural University, China 

(Clearance number 2015-CAV-01). 

Parasite cultivation and purification 

T. brucei Lister 427 strain (Wirtz et al., 1999) and T. evansi YNB strain (Zheng et al., 2019) were 

maintained in vivo using BALB/c mice, and the trypanosomes were inoculated intraperitoneally into healthy 

mice for serial passage. 

Trypanosomes were purified from the blood of infected mice over DEAE-cellulose (Sigma) when the 

parasitemia level reached 1×108 cells per ml (Lanham and Godfrey, 1970). 

SDS-PAGE and Western blot analysis 

The parasites were dissolved in SDS-PAGE loading buffer (250 mM Tris, 1.92 M glycine, and 1% SDS), 

electrophoresed on an SDS-PAGE gel and transferred to a 0.2-μm nitrocellulose membrane (Bio-Rad). After 

being blocked with Tris-buffered saline containing Tween 20 (TBST) and 5% skim milk (Sigma) for 1 h at 

37°C, the membrane was incubated in TBST containing 5% skim milk and the anti-succinyllysine antibody 

(1:1,000 dilution; PTM BIO) for 12 h at 4°C. Next, the membrane was washed 5 times with TBST buffer and 

further incubated with horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG (H+L) (1:10,000, Thermo 

Fisher Scientific). The membrane was incubated with the fluorogenic substrate (Millipore) for 5 minutes and the 

exposure time was adjusted according to the signal strength. 

Immunofluorescence assay (IFA) 

The smears of T. brucei and T. evansi were fixed with cold methanol in −80°C for 10 s and air dried. Next, 

the smears were washed three times using sterile phosphate-buffered saline (PBS) and blocked in 3% BSA for 1 

h at 37°C, and the slides were incubated in PBS containing monoclonal pan anti-succinyllysine antibody (PTM 

BIO) for 12 h at 4°C. The smears were washed with PBS and further incubated with Alexa Fluor 488-

conjugated goat anti-rabbit IgG (ThermoFisher Scientific) at 37°C for 1 h. The parasite nuclei were stained with 

DAPI (Invitrogen) for 5 min before image capturing with a fluorescence microscope (Leica). 

Protein extraction 

Parasites were incubated with a phenol extraction buffer (4-fold more buffer compared with parasite 

suspension) containing 10 mM dithiothreitol (Sigma), 1% protease inhibitors (Millipore), 1% phosphatase 

inhibitor (Millipore), 50 μM PR-619 (Selleck), 3 μM TSA (Selleck), 50 mM NAM (Sigma) and 2 mM EDTA; 

the mixture was ultrasonicated for 3 minutes, pause for 5 seconds per 3 seconds for 25% intensity. Next, an 

equal volume of Tris balance of phenol (Solarbio) was added and the mixture was centrifuged at 5,500 g for 10 

min at 4°C. The supernatant was subsequently extracted and 5 times the volume of 0.1 M ammonium 

acetate/methanol was added for an overnight extraction; the precipitated protein was washed with methanol and 

acetone. Finally, 8 M urea was added to dissolve the pellet, and protein concentration was determined using the 

BCA kit (Beyotime). 

Trypsin digestion 

Dithiothreitol was added to the protein solution to a final concentration of 5 mM and reduced at 56°C for 30 

min. Then, this mixture was alkylated with iodoacetamide (Sigma) to 11 mM for 15 min at room temperature in 

darkness. Finally, the urea concentration of the sample was diluted to less than 2 M by adding 100 mM 

NH4HCO. Finally, trypsin (Promega) was added at a 1:50 trypsin-to-protein mass ratio for the first digestion 



which was performed overnight at 37°C; a second 4 h-digestion was performed using a 1:100 trypsin-to-protein 

mass ratio. 

HPLC Fractionation 

The tryptic peptides (7.2 mg for phosphopeptides and 20 mg for others) were separated into fractions using 

high pH reverse-phase HPLC (Thermo Betasil C18 column, 5-μm particles, 10-mm i.d., 250-mm length). 

Briefly, peptides were first separated with a gradient of 8% to 32% acetonitrile (pH 9.0) over 60 min into 60 

fractions. Then, the peptides were combined into 4 fractions and dried by vacuum centrifugation. 

Affinity enrichment 

For phosphorylation analysis, peptide mixtures were first incubated in an IMAC microsphere suspension 

with vibration in loading buffer; the loading buffer contained 50% acetonitrile (Fisher Chemical) and 6% 

trifluoroacetic acid (Sigma-Aldrich). The IMAC microspheres with enriched phosphopeptides were washed 

three times with a buffer solution containing 50% acetonitrile/6% trifluoroacetic acid and 30% acetonitrile/0.1% 

trifluoroacetic acid sequentially to remove nonspecifically adsorbed peptides. To isolate the enriched 

phosphopeptides from the IMAC microspheres, elution buffer containing 10% NH4OH was added and the 

enriched phosphopeptides were eluted with vibration. The supernatant containing phosphopeptides was 

collected and lyophilized. 

For N-glycosylation analysis, peptides were dissolved in the enrichment loading buffer (80% ACN/1% TFA) 

and the supernatant was subsequently pipetted into a hydrophilic HILIC microcolumn. After centrifugation at 

4000 g for 15 min, the HILIC tip was washed three times with loading buffer. The glycopeptide was then eluted 

with 10% acetonitrile. Finally, the enriched glycopeptides were eluted with 80 μL of H2O and lyophilized to 

dryness. For deglycosylation, 2 μL of PNGase F in 50 μL of 50 mM NH4HCO3 was added and the mixture was 

incubated at 37°C overnight (Zhang et al., 2016). 

For analyses of acylation, ubiquitination, trimethylation, and O-GlcNAcylation, peptides were dissolved in 

IP buffer (100 mM NaCl, 1 mM EDTA, 50 mM Tris-HCl, 0.5% NP-40, pH 8.0) and the associated mixtures 

were incubated with pre-washed PTM-specific antibody conjugated beads (PTM BIO) at 4°C overnight with 

gentle shaking. Next, the beads were washed four times with IP buffer and twice with ddH2O (Fisher Chemical). 

The bound peptides were eluted from the beads with 0.1% trifluoroacetic acid. 

Finally, the eluted fractions were combined and vacuum-dried. For LC-MS/MS analysis, the resulting 

peptides were desalted with C18 ZipTips (Millipore). 

LC-MS/MS Analysis 

The tryptic peptides were dissolved in solvent A (0.1% formic acid) (Fluka), separated by an EASY-nLC 

1,000 UPLC system and directly loaded onto a home-made reversed-phase analytical column (15-cm length, 75 

μm i.d.). Solvent B was an aqueous solution containing 0.1% formic acid and 90% acetonitrile. 

For proteome analysis, the gradient was comprised of an increase from 5% to 23% solvent B over 38 min, 

23% to 35% for 14 min and climbing to 35% to 80% for 4 min, then holding at 80% for the last 4 min; a 

constant flow rate of 800 nL/min was used. For acylation, the gradient was comprised of an increase from 10% 

to 25% of solvent B over 38 min, 25% to 40% for 14 min and climbing to 40% to 80% for 4 min, then holding 

at 80% for the last 4 min, all at a constant flow rate of 700 nL/min. For detection of phosphorylation, the 

gradient was comprised of an increase from 3% to 25% solvent B over 62 min, 25% to 35% for 20 min and 

climbing to 35% to 85% for 4 min, then holding at 85% for the last 4 min, all at a constant flow rate of 700 

nL/min. For ubiquitination, the gradient was comprised of an increase from 9% to 25% solvent B over 38 min, 

25% to 40% for 14 min and climbing to 40% to 80% for 4 min and then holding at 80% for the last 4 min, all at 

a constant flow rate of 450 nL/min. For N- and O-glycosylation, the gradient was comprised of an increase from 



8% to 23% solvent B over 38 min, 23% to 35% for 14 min and climbing to 35% to 80% for 4 min and then 

holding at 80% for the last 4 min, all at a constant flow rate of 450 nL/min. 

The peptides were subjected to a nanospray ionization (NSI) source followed by tandem mass 

spectrometry (MS/MS) in Q ExactiveTM Plus (Thermo) coupled online to the UPLC. The electrospray voltage 

that was applied was 2.0 kV. The m/z scan range was 350 to 1,800 for a full scan, and intact peptides were 

detected in the Orbitrap at a resolution of 70,000. Peptides were then selected for MS/MS using an NCE setting 

of 28 and the fragments were detected in the Orbitrap at a resolution of 17,500. A data-dependent procedure that 

alternated between one MS scan followed by 20 MS/MS scans with 15.0 s dynamic exclusion was employed. 

An automatic gain control (AGC) target of 5E4 was used. The signal threshold was set to 10000 ions/s, the 

maximum injection time was set to 100 ms, and the dynamic exclusion time of the tandem MS scan was set to 

15 s to avoid duplicate scans of the parent ions. 

Database searching 

All MS/MS data were processed using the Maxquant search engine (v.1.5.2.8), and the spectra were 

searched against the UniProtKB database Trypanosoma brucei brucei (strain 927/4 GUTat10.1, 8,587 

sequences, release time 2017.10) and NCBI database Trypanosoma evansi (strain YNB, 8,636 sequences, 

registration date 2019.1.23) (Zheng et al., 2019), and concatenated with a reverse decoy database. Trypsin/P was 

selected as a cleavage enzyme allowing up to two missing cleavages per phosphorylation and four missing 

cleavages for other reactions. The mass tolerance for precursor ions was set as 20 ppm in the First search and 5 

ppm in the Main search, and the mass tolerance for fragment ions was set as 0.02 Da. Carbamidomethyl on Cys 

was specified as a fixed modification, and oxidation on Met and acetylation on protein N-terminus were 

specified as variable modifications. Additional variable modifications were specified for phospho-peptide 

analyses (phosphorylation of threonine, serine, and tyrosine residues), acetyl-peptide analyses (Kac), succinyl-

peptide analyses (Ksu), malonyl-peptide analyses (Kma), ubiquit-peptide analyses (Kub), 2-hydroxyisobutyryl-

peptide analyses (Khib), crotonyl-peptide analyses (Kcr), acetyl-peptide analyses (Kac), trimethyl-peptide 

analyses (trimethylation of lysine residues and trimethylation of arginine), and glycosyl-peptide analyses (N-

glycosylation of asparagine residues and O-glycosylation of threonine, serine). FDR was adjusted to <1% and 

the minimum score for modified peptides were set >40. Minimum peptide length was set at 7. Label free 

quantification (LFQ) was selected for the quantification method. Specific mass of the modified peptides were 

matched to the corresponding proteomes to count the modification sites. All other parameters in MaxQuant were 

set to default values. 

Parallel reaction monitoring (PRM) 

The resultant MS data were processed using Skyline (v.3.6). Peptide settings: enzyme was set as Trypsin 

[KR/P], and Max missed cleavage was set as 0. The peptide length was set as 7-25, variable modification was set 

as Carbamidomethyl on Cys and oxidation on Met, and max variable modifications were set as 3. Transition 

settings: precursor charges were set as 2, 3, ion charges were set as 1, and ion types were set as b, y. The product 

ions were set as from ion 3 to the last ion, and the ion match tolerance was set as 0.02 Da. 

Protein annotation and functional enrichment 

GO annotation was derived from the UniProt-GOA database. For the proteins which were not annotated by 

the UniProt-GOA database, the InterProScan software was used to annotate each protein’s GO function based on 

protein sequence alignment. Domain functional description was annotated by Interproscan, and the InterPro 

domain database was used. The KEGG online service tool KAAS was use to annotate the KEGG database 

description for proteins, and the annotation result was mapped on the KEGG pathway database using the KEGG 

service tool KEGG Mapper. Wolfpsort was used to predict subcellular localization. All functional enrichment was 

performed using a two-tailed Fisher’s exact test. For further hierarchical clustering based on different protein 

https://www.uniprot.org/proteomes/UP000008524
https://www.uniprot.org/proteomes/UP000008524
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA516558
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA516558
http://www.ebi.ac.uk/interpro/
http://www.genome.jp/kegg/


functional classification, all of the categories generated after enrichment along with their P values were collated; 

we subsequently filtered for those categories which were at least enriched in one of the clusters with a P value 

<0.05. This filtered P value matrix was transformed by the function x = −log10 (P value). Finally, these x values 

were z-transformed for each functional category. These z scores were then clustered by one-way hierarchical 

clustering (Euclidean distance, average linkage clustering) in Genesis. Cluster membership was visualized by a 

heat map using the “heatmap.2” function from the “gplots” R-package. 

Identification of homologous proteins and PTM sites 

The homologous proteins between T. brucei and T. evansi were determined using BLAST. All protein 

sequences from the two species were set as blast database files and query files. The blast output was defined as 

orthologous protein by filtration under the following conditions: E value < 1e−10, identity > 80, matched length 

coverage > 60% and mutual best hit between each other. MUSCLE (v. 3.8.31) was used to perform sequence 

alignment between homologous proteins. The simultaneous modified sites at the same position in homologous 

proteins were defined as the homologous PTM sites. 

PTM site evolutionary conservation analysis 

To estimate the degree of evolutionary conservation of PTM sites, a BLASTP analysis was used to compare 

the modified protein sequences identified in this study against protein sequences from 8 other species (H. 

sapiens, S. cerevisiae, T. gondii, P. falciparum, L. major, T. gambiense, T. evansi STIB805 and T. cruzi) using 

UniProtKB. MUSCLE (v3.8.31) was used to perform multiple sequence alignments. The conservation degree of 

modification sites for each species was calculated by counting the total number of conserved modified sites and 

the total number of conserved unmodified sites. An amino acid was considered to be conserved if it was 

identical in the aligned position of the query and the aligned species. The total number of the specific amino 

acid residues of proteins identified in this study was used as a control. P values were calculated using Fisher’s 

exact test. 

Phosphorylation motif analysis 

Motif analysis was performed using motif-x (v1.2). Sequences were manually aligned and all proteins 

identified in our study were used as background. A width of 13 residues, a minimum number of 20 occurrences, 

and a significance of 0.00001 were specified before running motif-x. 

Kinase-phosphosites regulated network 

Identification of kinases was accomplished by alignment with Eukaryotic Kinase and Phosphatase Database 

(EKPD). The phosphosites phosphorylated by the relevant PK groups, families, or subfamilies were predicted 

by software GPS 2.0. We assumed that all the PKs in the same cluster would phosphorylate the sites. Thus, the 

protein-protein interaction (PPI) database was used as the major contextual factor to reduce false positive 

predictions. 

Protein-protein interaction network 

The differentially modified proteins, the previously predicted and annotated RNA-binding proteins (Lueong 

et al., 2016; Zheng et al., 2019), and kinases were searched against the STRING database (v11.0) to identify 

protein-protein interactions, respectively. Only interactions between the proteins belonging to the searched data 

set were selected, thereby excluding external candidates. STRING defines a metric called “confidence score” 

and this was used to define interaction confidence; all interactions that had a confidence score >0.7 (high 

confidence) were fetched. The interaction network from STRING was visualized in Cytoscape (v3.7.1). 

Visual analysis of the three-dimensional structure of proteins 

Information pertaining to the three-dimensional structure of proteins was searched against the PDB database 

by protein sequence, and the formatted three-dimensional structure file was visualized by UCSF ChimeraX. 

Crosstalk analysis of different PTMs 



The probability of different types of PTMs occurring on the same proteins were compared using Fisher’s 

exact test p value, and the quantitative correlation between two types of PTM sites occurring on the same site 

were evaluated by the Pearson correlation coefficient. 

Taking each two kinds of modification as a group, the terms with significant co-enrichment were selected, 

and the two enrichment results with specific modifications or high modifications in the same trypanosome were 

considered to have the same trend, namely positive regulation. By contrast, the others were considered to have 

the opposite trend, namely negative regulation. If the two modifications were positively regulated, Score was 

defined as the multiplied value of Fold enrichment. If negatively regulated, Score was defined as the negative of 

the value obtained by multiplying Fold enrichment. 

Quantification and statistical analysis 

Quantitative proteomic analysis was applied to T. brucei and T. evansi with three biological replicates 

performed for each, respectively. LFQ intensity and peptide intensity was used to calculate protein and modified 

quantitation, respectively. Quantitation ratios of homologous proteins and modified sites were generated from an 

average of three repeated intensities. The two-tailed t-test was applied to calculate the p value for significant 

differences. Proteins and modified sites with ratios of T. brucei / T. evansi > 2 and p values < 0.05 were 

regarded as being up-regulated, while proteins with ratios < −0.5 and p values < 0.05 were regarded as being 

down-regulated. Proteins and modified sites detected only in T. brucei and T. evansi with three replicates were 

regarded as T. brucei-specific and T. evansi-specific, respectively. Statistical significance of the survival rate 

was obtained with SPSS using the Log rank test. 

Data and Software Availability 

All data is available in the main text or the supplementary materials. The MS spectrometry measurement 

files have been deposited at the ProteomeXchange consortium (http://proteomecentral.proteomexchange.org) via 

PRIDE Archive (PXD016245). 

 

Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Anti-acetyllysine Antibody PTM BIO Cat# PTM-101 

Anti-crotonyllysine Antibody PTM BIO Cat# PTM-502 

Anti-2-hydroxybutyryllysine Antibody PTM BIO Cat# PTM-801 

Anti-malonyllysine Antibody PTM BIO Cat# PTM-901 

Anti-succinyllysine Antibody PTM BIO Cat# PTM-419 

Anti-ubiquitin Antibody PTM BIO Cat# PTM-1106 

Anti-trimethyllysine Antibody PTM BIO Cat# PTM-601 

Anti-O-GlcNAc mouse mAb PTM BIO Cat# PTM-952 

Goat anti-Rabbit IgG (H+L) Secondary Antibody, HRP ThermoFisher Scientific Cat# 31460 

Goat anti-Mouse IgG (H+L) Secondary Antibody, HRP ThermoFisher Scientific Cat# 31430 

Alexa FluorTM 488 goat anti-mouse IgG (H+L) ThermoFisher Scientific Cat# A11029 

Chemicals, Peptides, and Recombinant Proteins 

dithiothreitol Sigma-Aldrich Cat# 43815 

PR-619 Selleck Cat# S7130 

NAM Sigma-Aldrich Cat# N5535 

TSA Selleck Cat# S1045 



Phenol Solarbio Cat# YZ-1524806 

iodoacetamide Sigma-Aldrich Cat# I1149 

trypsin Promega Cat# V5111 

Water (HPLC) Fisher Chemical 7732-18-5 

acetonitrile Fisher Chemical 75-05-8 

trifluoroacetic acid Sigma-Aldrich Cat# 302031 

formic acid Fluka Cat# 27001 

salermide Sigma-Aldrich Cat# S8825 

Critical Commercial Assays 

BCA kit Beytime Cat# P0012 

DAPI Invitrogen Cat# D21490 

Deposited Data 

Raw and analyzed data  This paper PXD016245 

Genome and RNA-binding proteins data of Trypanosoma 

evansi 

Zheng et al., 2019 http://doi.org/10.1

007/s11427-018-

9473-8 

The protein data of Trypanosoma brucei UniProtKB strain 927/4 

GUTat10.1, 

release time 

2017.10 

RNA-binding proteins data of Trypanosoma brucei Lueong et al., 2016 https://doi.org/10.

1111/mmi.13328 

Experimental Models: Organisms/Strains 

Trypanosoma brucei Lister 427 strain Wirtz et al., 1999 N/A 

Trypanosoma evansi YNB strain Zheng et al., 2019 N/A 

Pathogen-free female BALB/c Mouse Liaoning Changsheng 

Biological Technology 

Company 

N/A 

Software and Algorithms 

MUSCLE (v. 3.8.31) Edgar, 2004 http://www.drive5

.com/muscle/ 

Skyline (v.3.6) MacLean et al., 2010 https://skyline.ms 

motif-x (v1.2) Schwartz and Gygi, 2005 http://motif-

x.med.harvard.ed

u 

Maxquant search engine (v.1.5.2.8) Cox and Mann, 2008 https://www.maxq

uant.org/ 

the UniProt-GOA database The UniProt Consortium, 

2017 

http://www.ebi.ac.

uk/GOA/ 

The STRING database (v11.0) Szklarczyk et al., 2019 https://string-

db.org/ 

Eukaryotic Kinase and Phosphatase Database (EKPD) Wang et al., 2014 http://ekpd.biocuc

koo.org/ 



Cytoscape (v3.7.1) Shannon et al., 2003 https://cytoscape.

org/ 

UCSF ChimeraX Berman et al., 2019 http://www.rbvi.u

csf.edu/chimerax/ 

Other 

the three-dimensional structure of CRK3 PDB PDB: 4GCJ 

the three-dimensional structure of ALDO PDB PDB: 1F2J 

the three-dimensional structure of ENO PDB PDB: 1OEP 
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