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Abstract

A 1q42 deletion is a rare structure variation that commonly harbours various deletion breakpoints along with
diversified phenotypes. In our study, we found a de novo 1q42 deletion in a boy who did not have a cleft palate or
a congenital diaphragmatic hernia but presented with psychomotor retardation. A 1.9 Mb deletion located within
1q42.11-q42.12 was validated at the molecular cytogenetic level. This is the first report of a 1q42.11-q42.12 deletion
in a patient with onlypsychomotor retardation. The precise break points could facilitate the discovery of potential
causative genes, such as LBR, EPHX1, etc. The correlation between the psychomotor retardation and the underlying
genetic factors could not only shed light on the diagnosis of psychomotor retardation at the genetic level but also
provide potential therapeutic targets.
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Introduction
Psychomotor retardation has always been described as a
slowing of physical and emotional reactions and shared
similarities with depression [1]. As a component of de-
pression, psychomotor retardation could provide clinical
and therapeutic clues for effective treatments [2]. Specific-
ally, depressed patients were usually classified as melan-
cholic or non-melancholic based on their psychomotor
symptoms [3]. Several studies have shown the correlation
between psychomotor retardation and depression severity
[4, 5]. Furthermore, psychomotor retardation has been
speculated to be a potential pathognomonic factor for
melancholia [6]. Thus far, a series of indexes has been de-
veloped for measuring psychomotor retardation, such as
drawing tasks and cognitive, motor, speech and biological
tests [7–10]. Although the measurements of psychomotor
retardation have been detailed, the underlying genetic
pathogenic factors are not well-known.
Copy number variations (CNVs) have been reported to

be associated with dozens of complex diseases, including
variant types of cancers, HIV-1/AIDS susceptibility and
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immunity-related diseases [11–13]. According to previ-
ous reports, CNVs usually play an important role in gene
dosage, gene disruption, gene fusion, and position effects
where abnormal CNVs could cause various diseases
[14, 15]. Compared with other deletions, cases with
deletion at 1q41–q42 were rarely reported, and exist-
ing evidence mostly showed its correlation with con-
genital diaphragmatic hernia (CDH) and Fryns
syndrome [16, 17]. Here, we performed genomic
screening using a microarray and discovered a de novo
1.9 Mb deletion at 1q42.11–q42.12 (chr1: 224,086,911-
226,016,203) in a 4-year-old boy showing psychomotor re-
tardation without CDH. Further analysis suggested the in-
volvement of several OMIM (Online Mendelian
Inheritance in Man) genes, such as dispatched 1 (DISP1)
and homo sapiens H2.0-like homeobox (HLX). However,
DISP1 and HLX always accompanied psychomotor retard-
ation and, thus, were normal in our case.
This study was conducted to refine the clinical presen-

tation of a 1q42.11–q42.12 microdeletion and establish
the genotype-phenotype correlation.
Patient data
The proband was a 4-year-old boy referred to the Clin-
ical Genetics Service for psychomotor retardation. The
boy’s parents were unrelated, and both have uneventful
le is distributed under the terms of the Creative Commons Attribution 4.0
.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
ive appropriate credit to the original author(s) and the source, provide a link to
changes were made. The Creative Commons Public Domain Dedication waiver
ro/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s41065-016-0022-0&domain=pdf
mailto:sundeming2016@126.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Ta
b
le

1
Ph

en
ot
yp
ic
al
co
m
pa
ris
on

of
ou

r
pa
tie
nt

an
d
re
po

rt
ed

pa
tie
nt
s
w
ith

1q
41
q4

2
m
ic
ro
de

le
tio

n
sy
nd

ro
m
e

Pa
tie
nt
/s
ou

rc
e

O
ur

pa
tie
nt

Ri
ce

et
al
.,
20
06

[4
1]

M
az
ze
u
et

al
.,2
01
0
[4
2]

Ju
n
et
.a
l.,2

01
3
[4
3]

Fi
lg
es

et
al
.,
20
10

[2
0]

D
ec
ip
he

r
10
15

D
ec
ip
he

r
26
69
48

D
ec
ip
he

r
30
06
73

C
oo

rd
in
at
ea

(c
hr
1:
)

22
40
86
91
1-
22
60
16
20
3

21
99
78
22
8-
22
53
59
88
8

21
98
94
31
3-
22
91
56
92
4

22
31
04
21
1-
22
32
87
57
0

22
18
85
00
0-
22
73
40
00
0

22
09
16
99
9-
22
61
62
86
9

22
26
94
07
9-
22
71
47
00
0

22
28
21
37
8-
22
66
77
84
2

D
el
et
io
n
si
ze

1.
9
M
b

5.
4
M
b

1
M
b

18
3
Kb

5.
45

M
b

5.
25

M
b

4.
45

M
b

3.
86

M
b

In
he

rit
an
ce
/o
rig

in
de

no
vo

un
kn
ow

n
D
e
no

vo
de

no
vo

de
no

vo
de

no
vo

de
no

vo
un

kn
ow

n

Br
ai
n
D
ef
ec
t

-
+

+
+

+
N
R

N
R

N
R

C
le
ft
Pa
la
te

-
+

+
-

+
+

+
+

H
yp
ot
on

ia
-

+
N
R

+
-

N
R

+
N
R

H
ea
rt
D
ef
ec
t

-
-

+
-

-
+

-
-

Co
ng

en
ita
lD

ia
ph

ra
gm

at
ic

H
er
ni
a

-
-

-
-

-
+

-
-

Se
iz
ur
es

+
+

-
+

+
-

-
-

Ps
yc
ho

m
ot
or

Re
ta
rd
at
io
n

+
-

-
-

-
-

-
-

N
um

be
ro

fI
nv
ol
ve
d
G
en
es

b
13

>
50

>
20

2
>
50

>
40

>
60

>
50

N
R
N
o
Re

co
rd

a G
RC

h3
7/
hg

19
w
as

us
ed

in
co
or
di
na

te
b
Re

fS
eq

ge
ne

s
in
vo

lv
ed

w
er
e
co
un

te
d
in

U
C
SC

br
ow

se
r
(h
tt
p:
//
ge

no
m
e.
uc
sc
.e
du

/)

He et al. Hereditas  (2017) 154:6 Page 2 of 7

http://genome.ucsc.edu/


He et al. Hereditas  (2017) 154:6 Page 3 of 7
family histories. It was reported that the patient was
born by normal spontaneous delivery without intrauter-
ine exposure to drugs or other potentially harmful fac-
tors. He began speaking single words at the age of 1 year
and 8 months and started walking at approximately 2
years old. Mental retardation was observed since the age
of 2, and he was diagnosed with psychomotor retard-
ation. In addition, he was risible and particularly friendly
to foreigners. A physical examination of the child
showed no abnormalities.
Methods
Conventional cytogenetic analysis and Fluorescence in
Situ Hybridization (FISH)
Peripheral blood samples were collected from three fam-
ily members with informed consent. A cytogenetic ana-
lysis was performed with the standard collection of
blood lymphocytes. Metaphase chromosomes were G-
banded at 550 bands of resolution.
Metaphase FISH analysis on cultured peripheral blood

lymphocytes was performed using a combination of
CEP1 (green) probe and single-copy DNA probes
(RP11-496N12, 1q42.12, red) that were cloned in BACs
(BlueGnome, UK). A minimum of 20 metaphase cells
was assessed under a fluorescence microscope (Leica
Microsystems, Wetzlar, Germany).
Chromosomal Microarray Analysis (CMA)–Single
Nucleotide Polymorphism (SNP) array analysis
Genomic DNAs were isolated from the peripheral blood
samples using a QIAamp DNA Blood Mini Kit (Qiagen,
Fig. 1 Microdeletion at 1q42.11-q42.12, which spans 1.9 Mb (illustrated wit
Valencia, CA, USA). The DNA concentrations were
measured with a NanoDrop spectrophotometer (ND-
1000 V.3.1.2; NanoDrop, Thermo Fisher Scientific Inc.,
Wilmington, DE, USA). The DNA was amplified, la-
belled and subjected to 250 ng of product to hybridize
CytoScan HD arrays (Affymetrix, Santa Clara, CA, USA)
according to the manufacturer’s instructions. The Affy-
metrix CytoScan HD array covered over 2.7 million
markers, of which 750,000 were SNPs that could be used
for genotyping, and 1.9 million were non-polymorphic
probes. The Chromosome Analysis Suite software pack-
age (Affymetrix) was used for all analyses.
Results
CMA
The genome-wide array analysis of the proband showed a
1.9 Mb deletion at 1q42.11–q42.12 (see Fig. 1), ranging
from chr1 as follows: 224,086,911-226,016,203 (GRCh37/
hg19). However, his parents showed normal ploidy at the
same region.

FISH and real-time PCR
The FISH analysis of the parents showed in tegrated
1q42.11-q42.12, while the patient carried only one frag-
ment copy at 1q42.11-q42.12 (see Fig. 2).
In addition, the karyotypes of the parents and the boy

were normal (see Fig. 3; data of parents not shown).

Discussion
Psychomotor retardation could affect physical and
emotional reactions and cause speech and walking
h red box in the top)



Fig. 2 FISH results of cells from the patient and his parents. Two copies of 1q42 were detected in the father (a) and mother (b), while only 1
copy of 1q42 was retained in the cells of the patient (c), thus identifying the deleted region at 1q42. The red fluorescence of 1q42 was indicated
with a white arrowhead

Fig. 3 Karyotyping of the cells from the patient. Normal karyotyping was visualized via G-banding techniques with a resolution of 550 bands
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abnormalities, which are also the most universal mani-
festations of major depression [1–4]. Furthermore, psy-
chomotor retardation was also involved in adverse
effects of drugs, such as benzodiazepines [18]. Since the
roles of pathogenesis and important phenotypes in pa-
tients with depression remain unclear, the discovery of
causative genes is critical. In our studies, the de novo
1.9 Mb microdeletion found at 1q42, which was accom-
panied by 1q41, was mostly reported as the critical re-
gion for CDH [17, 19]. However, the data in the
Decipher database also suggested connections of com-
mon phenotypes in cleft palate, coarse facial features
and intellectual disability with a deletion of 1q42.11-
q42.12 (Table 1). Nevertheless, neither congenital dia-
phragmatic hernia nor facial flaw spresenting with signs of
psychomotor retardation, such as learning to walk or talk
at the age of 2, were observed in our proband. The reason
for the sediscrepancies between our case and other re-
ported patients with 1q41q42 microdeletion syndrome is
that the deletion in our case only affects the 1.9 Mb
spectrum of 1q42 while 1q41q42 deletions of the latter
mainly extend into the 1q41 region [17, 20–22].
In the deleted 1.9 Mb range, we found 13 genes, in-

cluding 7 OMIM genes. Among the seven OMIM genes,
most were correlated with development. FBXO28 is
characterized by an approximately 40-amino acid F-box
motif and was reported to contribute to intellectual dis-
ability, seizures and a dysmorphological phenotype in
patients with 1q41q42 microdeletion syndrome [23, 24].
At the molecular level, FBXO28 could act as a master
regulator of cellular homeostasis by targeting key pro-
teins for ubiquitination. For example, FBXO28 could
mediate the degradation of Alcat1 via targeting Alcat1
for monoubiquitination at K183. Meanwhile, FBXO28
could also function inubiquitylation-independent path-
ways, including the transmission of CDK activity to
MYC function during the cell cycle [25, 26]. Neverthe-
less, more studies are needed to elaborate the detailed
molecular pathogenic mechanism of FBXO28 in
1q41q42 syndrome. NVL, known as nuclear VPC (valo-
sin containing protein)/p97-Like, is another OMIM gene
belonging to the AAA-ATPase (ATPases associated with
various cellular activities) super family. The major iso-
form of NVL is NVL2, which was mainly localized in the
nucleus and participated in ribosome biosynthesis [27–29].
Wang et al have investigated 1045 major depressive
disorder patients, 1235 schizophrenia patients and
1235 normal controls of Han Chinese origin and found
that the NVL gene could confer risks for both major de-
pressive disorder and schizophrenia in the Han Chinese
population [30]. The high correlation between NVL and
major depression suggested that NVL was a potential
causative gene for psychomotor retardation. As a gene en-
coding an axonemal dynein heavy chain, the deletion of
DNAH14 was associated with motile cilia function. Al-
though DNAH14 is an important gene for motile cilia, fur-
ther research is needed to understand its contribution to
psychomotor retardation. SRP9 encodes a 9k Da signal
recognition particle. A SRP9 and RP14 complex was re-
ported to be involved in the elongation arrest function of
SRP, which was important to the co translational targeting
of secretory and membrane proteins to the endoplasmic
reticulum (ER) [31]. Furthermore, SRP9 also showed
higher expression levels in human colorectal cancer [32].
To date, the importance of the role of SRP9 in its contri-
bution to psychomotor retardation is not well-studied.
LBR and EPHX1 genes are located in regions that are fre-
quently deleted in 1q42.11q42.12 deletion syndrome and
thus should be investigated because of their neuronal sig-
nificance. LBR encoded lamin B receptor which belongs to
ERG4/ERG24 family and was also shown to be a pivotal
architectural protein that plays an important role in the
nuclear envelope [33, 34]. Mutations in the LBR gene
could also affect neutrophil segmentation and sterol reed-
ucates activity. LBR was associated with two different rec-
ognized clinical conditions, Pelger-Huet anomaly (PHA)
and Greenberg skeletal dysplasia [35, 36]. On the other
hand, GravemannS. et al. have shown that the copy num-
ber of LBR and nuclear segmentation index of neutrophils
were highly correlated while the gene-dosage could affect
granulopoiesis [37]. Recently, Mc Caffery JMand col-
leagues have found that the two SNPs (rs2230419 and
rs1011319) in LBR were associated with baseline Beck De-
pression Inventory scores, which also suggested the poten-
tial role of the gene in depression. EPHX1 gene encoded
epoxide hydrolase, a critical biotransformation enzyme
that converted epoxides to trans-dihydrodiols that could
be conjugated and excreted from the body [38]. The
dysfunction of EPHX1 was reported to contribute to
several human diseases, including neurodegeneration
where its differential expression was presented in pa-
tients with Alzheimer’s disease [39]. Additionally,
EPHX1 affected the cerebral metabolism of epoxyeico-
satrienoic acids and, hence regulated neuronal signal
transmission in mice [40]. Although there is no direct
evidence on the causal relationship between EPHX1
and psychomotor retardation, studies have revealed
the important function of EPHX1 in neuron systems
and suggested the potential role of EPHX1 in neuronal de-
velopment, which if dysfunctional could lead to psychomotor
retardation.
The most common midline defects of 1q42.11–q42.12

deletion syndrome are cleft palate and CDH. However,
these manifestations did not appear in our patients. Com-
pared with patients with a cleft palate and CDH, the 1.9
Mb deletion region in our case did not cover DISP1 and
Shh, which were reported to be involved in the pathogen-
esis of developmental defects and CDH [16, 20]. The
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normality of DISP1 and Shh seems to be the major reason
for the absence of a cleft palate and CHD in our patient.
The complex intra chromosomal gene interactions and

positional effects are of great importance in complex
patterns of midline defects and genes involved in develop-
mental pathways. Our study of a 1q42.11–q42.12 deletion
in a boy without a cleft palate but with psychomotor
retardation has provided evidence regarding the
genotype-phenotype correlation between a 1q42.11–
q42.12 microdeletion and psychomotor retardation; es-
pecially important is the finding of potential causative
genes, such as LBR and EPHX1, which could become
therapeutic targets. Nonetheless, more studies are
needed to explore the detailed molecular mechanism of
psychomotor retardation pathogenesis.
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