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Aging of the central nervous system (CNS) is closely associated with chronic sterile low-
grade inflammation in older organisms and related immune response. As an amplifier for
neuro-inflammaging, immunosenescence remodels and deteriorates immune systems
gradually with the passage of time, and finally contributes to severe outcomes like stroke,
dementia and neurodegeneration in elderly adults. Cerebral small vessel disease (CSVD),
one of the major causes of vascular dementia, has an intensive connection with the
inflammatory response and immunosenescence plays a crucial role in the pathology of
this disorder. In this review, we discuss the impact of immunosenescence on the
development of CSVD and its underlying mechanism. Furthermore, the clinical practice
significance of immunosenescence management and the diagnosis and treatment of
CSVD will be also discussed.
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INTRODUCTION

Cerebral small vessel disease (CSVD), a considerable health care problem, contains a wide spectrum
of cerebrovascular diseases that primarily affect capillaries, small arteries and small veins in the
brain, and brings a serious hazard to aging societies (1). Arteriolosclerosis is the most popular and
extensive subtype of CSVD and closely related to the overall health status of the body like aging and
hypertension. Thus, such type is also called age-related and vascular risk-factor-related small vessel
disease (2). Mounting evidence indicated that arteriolosclerosis is the major cause of ischemic
stroke, intracerebral hemorrhage, dementia and raises mortality in elderly people, and the term
CSVD in this review is majorly used to discuss arteriolosclerosis (3). The neurobiological basis of the
underlying mechanism of CSVD is poorly understood now. However, chronic inflammation,
induced by either immune cells or non-immune cells, is closely associated with the aging process of
cerebral vessels and related brain metabolism and draws a substantial amount of attention.
Therefore, it is of great potential and significance to investigate the role of immune response
during aging in the development of CSVD and corresponding cerebral injury.

To better understand the immune system alteration during aging, the term “immunosenescence”
raises and represents the deterioration of multiple immune cells and function change of key
molecules like cytokines, chemokines and extracellular matrix components (4). It is renowned that
immunity acts an emerging role in the pathological process of CSVD in elderly (5). The peripheral
immune system, involving lymphocytes, cytokines and antibodies, contributes to the vascular
org November 2020 | Volume 11 | Article 5856551
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disorganization, blood brain barrier (BBB) leakage and immune
cells infiltration. Importantly, damaged cells suffer a special stage
called senescence-associated secretory phenotype (SASP) from
normal states to irreversible aging states. SASP could be found in
infiltrated immune cells and residential cells, including
endothelial cells, pericytes, neurons and glial cells during
CSVD. All the components could form a complex regulatory
network and play a crucial role in the pathophysiology of CSVD
(6, 7). Actually, immunosenescence has a bidirectional impact on
multiple disorders development, which often refers to
immunosuppression or immune activation. Such pathological
process tends to activate an immune response in CSVD and
contribute to chronic low-grade inflammation in the CNS,
named neuro-inflammaging.

Performing in-depth exploration of the cellular and molecular
level of immunosenescence could help physicians and specialists
to make a clinical decision and better predict the prognosis of
CSVD patients. Through screening key molecules in pathways
related to immunosenescence, a regulatory network and vital point
target genes could be constructed and found. Specialists could
focus on these key modules to build a prognostic model for CSVD
patients and provide more precise clinical plan. In addition, drug
development could be more time-saving and lower economic
toxicity based on these fundamental researches. However, the
contribution of immunosenescence in the initiation and
progression of CSVD remains obscure and an unmet need for
further exploration. This review focuses on the impact of
immunosenescence on the development of CSVD and its
underlying mechanism, and the meaning of immunosenescence
management for CSVD in clinical practice is also discussed.
Frontiers in Immunology | www.frontiersin.org 2
IMMUNOSENESCENCE IS A PROMISING
AMPLIFIER FOR NEURO-INFLAMMAGING

The concept of immunosenescence states the aging and functional
decline throughout the whole immune system. It usually
accompanies with a chronic low-grade inflammation status
termed inflammaging whose pro-inflammatory mediates
remarkably increase (8). This process not only involves the
immune system, but tissues such as senescent endothelium,
pericytes and adipose cells also. The immune system is composed
of innate and adaptive parts, both of which dramatically change in
the aging process (9).

Immune System Alterations in Aging
Process
Both adaptive immunity and innate immunity undergo
significant changes during the natural process of aging and
consequently cause a series of physiological and molecular
changes (Table 1). The cell transformation of lymphocytes,
along with the antibody and cytokines secretion, represents the
function of adaptive immunity while diminished function and
phenotype shift towards proinflammatory subtype of
macrophages mainly consist of the innate immunity alteration.

The adaptive immune system contains cellular immunity and
humoral immunity, composed of T cells and B cells in different
subpopulations. According to the initial of lymphocytes, T cells
origin from bone marrow, and then differentiate and mature in
thymus. Later, these functional cells release into circulation and
migrate to peripheral immune organs and tissues. Commonly, T
cells can be subdivided into 4 subgroups based on their distinct
TABLE 1 | Summary of immune changes in immunosenescence.

Immunity Cell Changes Study

Adaptive T cell - TCR pool diminishes Kilpatrick et al. (10)
- Subtype changes Li et al. (11)

Jagger et al. (12)
Raynor et al. (13)

- Inflammatory suppression weaken Fessler et al. (14)
Thomas et al. (15)

- Pro-inflammatory mediates production increase Hu et al. (16)
Singh & Newman (17)

B cell - Subtype changes Bulati et al. (18)
Palma et al. (19)

- Pro-inflammatory mediates production increase Frasca & Blomberg (20)
Innate Monocyte/macrophage - Chemotaxis/phagocytosis decrease Antonaci et al. (21)

Mahbub et al. (22)
- Subtype changes Seidler et al. (23)

Sadeghi et al. (24)
- Pro-inflammatory mediates production increase Sadeghi et al. (24)

Olivieri et al. (25)
Jacinto et al. (26)

Dendritic cell - Number decreases Della et al. (27)
- Pro-inflammatory mediates production increase Splunter et al. (28)

Microglia - Subtype changes Yao & Zhao (29)
- Pro-inflammatory mediates production increase Mecca et al. (30)

Vida et al. (31)
Neutrophils - Chemotaxis/phagocytosis decrease Niwa et al. (32)
NK cell - Number increase Gounder et al. (33)

- Pro-inflammatory mediates production increase Camous et al. (34)
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function: helper T cell, cytotoxic T cell, regulatory T cell (Treg)
and memory T cell. These subtypes participate in pathogen
identification, cytokines secretion, immune memory, pathogen
killing and immunoregulation, whose function was impaired at
varying levels in immunosenescence process. Meanwhile, the cell
counts of specific subtypes in functional immune organs
including thymic and ratio of different T cell types, which is
widely found, will also change in elderly. For example, the CD4
naïve T cells continuous decline with the thymic involution while
the number of T cells still remains steady at the periphery via
compensatory proliferation, resulting in the loss of diversity of T
cell receptor (TCR) pool (10, 35). Besides, both the increase of
the CD4/CD8 ratio and CD8+CD28- T cells was observed in
elderly people (11, 36).

Great attention has been paid to uncover the underlying roles
of some subtypes of T cells as more accurate and precise
detecting method develops and clear definition has been made
to these cell types. According to the recent studies, the T cell
types that only account for a small part the total population may
also make great sense and have tight connection with other cells
or stromal components which could be also called
microenvironment. It should be noted that the investigation on
Tregs, a newly research hotspot in T lymphocytes, is still
disputing. Some studies illustrate the downward number of
both natural Tregs and induced Tregs in the aging process,
while others found that the population of CD4+ Treg increased
remarkably in immunosenescence (12, 13). Genetic and
epigenetic modification also weakens the capacity of T cells
(37). In all, complex cellular biological changes make the host
susceptible to infection (37) and new technologies like single cell
sequencing would discover a virgin land in this area and help
researchers focus on the underlying mechanisms.

Senescent T cells could participate in inflammaging process as
a double agent role, which is based on its immunosuppression
function in the early stage and active function in late stage (38).
First, loss of TCR function affects the contact of myeloid-derived
suppressor cell (MDSC) responsible for inflammatory
suppression (38, 39). In late stage, inflammatory suppression
was impaired owing to the increase of CD8+CD28- Tregs because
of their weaker inflammatory resolution and shorter lifespan
compared with CD8+CD28+ Tregs (14). Thymic atrophy impairs
the negative selection, contributing to increasing self-antigen-
recognizing conventional T cells (15). The imbalance of T cell
subtypes causes the disorder of inflammatory factor production
such as interferon-inducible protein-10, interleukin (IL)-6 and
IL-8, increasing with age and exacerbate the inflammaging state
(16, 17). The DNA damage resulting from telomere attrition in
senescent T cell activates the NF-kB pathway, contributing to
consistent uplifting of pro-inflammatory mediators (38).

Similarly with T cells, the aging changes of B cells include the
reduction of naïve B cells together with expansion of memory B
cells (18, 19). Senescent B cells with altered B cell receptors and
functions are associated with higher cytokines production and
antibody presentation (40). Besides, B cells under chronic
inflammatory simulation tend to produce proinflammatory
cytokine and pathogenic antibodies (20).
Frontiers in Immunology | www.frontiersin.org 3
The innate immune system consists of several physical
barriers and various cells, including monocytes/macrophages,
neutrophils, eosinophils, basophils, dendritic cells and innate-
like lymphocytes like NK cells (41). Although less attention has
been paid, transformation of innate immunity is earlier and
stronger than adaptive immunity during the senescent process,
indicating its crucial role in the natural aging and pathology.

Monocytes, macrophages, dendritic cells (DCs) and microglia
are responsible to chemotaxis, phagocytosis, secretion and antigen
presentation, but these functions decline in elderly individuals.
Those over 55 turned out to have more peripheral monocytes with
impaired chemotaxis and phagocytosis. Moreover, the
inflammatory pathway and immune response of macrophages are
downregulated and suppressed (21, 22). The number of myeloid
DCs and monocyte precursors progressively decreases with
increasing age, though the number of classical CD14+CD16-

monocytes remains stable (27). A class of CD14+CD16+

monocyte subset, with downregulated expression of HLA-DR and
CX3CR1, increases with age significantly (23, 24). Interestingly,
some shifts result in the weaker defense ability, while other changes
result in the permanent low-level inflammatory environment. The
alteration of subtypes and upregulation of pro-inflammatory
cytokine expression is present in both aging DCs and microglia,
aggravating the inflammation inCNS (28–31). Besides, dysfunction
of microRNA results in higher production of inflammatory
cytokines such as IL-6, and reactive oxygen species (ROS), noted
in both steady and active state of monocytes during aging (24–26).

Neutrophils, as an essential part of innate immunity performing
cytotoxic effects and phagocytosis, are closely related to several
inflammatory diseases. The function and lifespan of neutrophils are
regulated by various cytokines: IL-2 prolongs the lifespan and
promotes inflammation while tumor necrosis factor (TNF)-a
induces the apoptosis. Senescent neutrophils show decreased
phagocytic, chemotactic ability and ROS production while the
adherent ability appears to remain still (38, 42). Although these
changes result in down-regulation of the inflammatory response,
the increased neutrophil generation enhances the inflammaging
(43). Overexpression of PI3K results in the inaccurate migration of
neutrophils and damages of normal tissues (43, 44). Besides,
elevated level of IL-6 and IL-8 enhances neutrophils activation
which would conversely affect inflammation outcome (45).

NK cells are differentiated from myeloid-lymphoid stem cells,
and they perform unspecific killing function targeting abnormal
cells like tumor cells, injured cells, and virus-infected cells via
multiple cytotoxic effects. Commonly, senescent NK cells have
weaker proliferative ability and larger cytotoxic subpopulation
(33). When immune response initials, cytotoxicity of NK cells
from elderly donors are weaker, which results from the alteration
of receptors or production of enzymes (46). Further, NK cells were
overactive in aging process via alteration of TLR function and shift
of subtypes, and they act as effector in inflammaging (34).

Immunosenescence Plays an Important
Role in Age-related CNS Disease
Immunosenescence is the core of various aged-related CNS
diseases, including cerebral vessel diseases and degenerative
November 2020 | Volume 11 | Article 585655
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neurological diseases. At the beginning of immunosenescence,
senescent cells fail to be cleared, resulting in accumulation of
abnormal cells and cell fragment and induction of SASP (47). On
this basis, the systemic pro-inflammatory state damages brain
tissue, which is worse owing to the pro-inflammatory mediators
produced from SASP (Figure 1).

Alzheimer’s disease (AD), the pathogenesis of which
remains unknown, has a great connection with age. Most
scientists believe in beta amyloid hypothesis that defines the
deposition of b amyloid peptide (Ab) as initiator, interrupting
the cellular metabolism and eventually progressing into AD.
Immunosenescence is also considered as a candidate
mechanism of AD, because the accumulation of Ab is closely
associated with impaired clearance ability and cytotoxic effect
of senescent microglia (48). Ab deposition interacts with glial
cells, pericytes, and neurons, modifies BBB and leads to
immune cell infiltration (49). Those infiltrated cells and
inflammatory mediators induce a proinflammatory
environment around the lesion, which eventually leads to
neuroinflammation and neurodegeneration (50, 51). Current
study concluded that the systematic immune response also
involves in the neuroinflammation for which there is a large
amount of evidence suggesting a proinflammatory state in AD
Frontiers in Immunology | www.frontiersin.org 4
patient, which implicates the complicated influence of
immunosenescence in this disease (50).

Parkinson’s disease (PD) is another commonneurodegenerative
disease in elderly that results from the degeneration of
dopaminergic (DA) neurons in substantia nigra, leading to
severe motor disorders. Mounting evidence suggested that
oxidative stress and inflammation injure the DA neurons, in
which microglia and astrocytes also play important roles (52–
54). Early study suggests that humoral immunity targets DA
neurons which promotes the neuroinflammation and
neurodegeneration in PD patient, agreeing with the activated
microglia and elevated cytokines observed in neurotoxin-based
PD model (55, 56). The therapy that focuses on balance between
pro- and anti-inflammation provides a promising therapeutic
strategy of PD (57). Pharmacological inhibition of oxidation and
inflammation reverses the function of monoaminergic synthesis,
which also supports this idea (58).

Cerebral vascular disease is a class of disease involving brain
vessels, including vasculitis, cerebral amyloid angiopathy, subacute
arteriosclerotic encephalopathy and CSVD, some of which have
been prone to be associated with immunosenescence and
inflammaging (59, 60). There lies a gap in CSVD, which we will
discuss in the next section.
FIGURE 1 | The immunosenescence and inflammaging are interconnected. In immunosenescence, accumulation of senescent cells produce SASP, increased
expression of inflammatory mediates of both immune cells and senescent cells and the insufficient downregulation of inflammation shift the body into the
inflammaging state that results in further systemic inflammation and tissue damage, leading to several aged-related diseases.
November 2020 | Volume 11 | Article 585655
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SENESCENCE OF IMMUNE CELLS, NON-
IMMUNE CELLS AND BBB DYSFUNCTION
IN AGE-RELATED CSVD

With ever-increasing life expectancy worldwide, the number of
individuals living in the community with age-related diseases,
especially CSVD (ArCSVD), will increase (61). The main
manifestations of ArCSVD include stroke, cognitive declines, gait
disorder, psychiatric disorders and urinary incontinence, and its
sequelae would impose a considerable burden on families and
society. ArCSVD is significantly associated with risk factors like
aging, arterial hypertension, smoking, diabetesmellitus, obstructive
sleep apnea (62–64). Besides, ArCSVD mainly affects the small
blood vessel of the cortex or medulla, including small arteries,
arterioles, capillaries, venules and small veins. The initial
pathological characteristics are endothelial proliferation, small
vessel wall thicken and arterial disorganization, and then develop
into arteriolosclerosis and lipohyalinosis, which underline the
pathological basis of ArCSVD. From an imaging perspective,
ArCSVD is characterized by features like lacunar infarcts, white
matter hyperintensity, subcortical infarcts, cerebralmicrobleedings,
perivascular spaces, intracerebral hemorrhage and cerebral atrophy
(2, 65, 66).Unfortunately, pathologicalmechanismsofArCSVDare
incompletely understood yet. According to recent studies,
immunosenescence roles in endothelial dysfunction and blood-
brain barrier disorder earn sustainable attention, which seems to be
the possible candidate for further study (67, 68) (Figure 2).

Senescence of Immune Cells
Immune cells senescence in the early stage of ArCSVD intrinsically
suppresses normal immune response and as a result increases
infection risk, whereas the subsequent SASP would produce
proinflammatory cytokines, including IL-1b, IL-6, and IL-8, and
consequently accelerate and aggravate endothelial injury and BBB
leakage. Each subsets of immune cells display specific function of
immunosenescence in ArCSVD.

Asone important typeofphagocytes,microglia take responsibility
for removing injured or dead neurons, glial cells and debris of the
myelin sheath in CNS.Meanwhile such cells also act as a stabilizer of
CNS structure and maintain BBB integrity and promote injured
tissue recovery (69).However, accumulating evidence confirmed that
microglia would become senescent and dysfunction, most likely
contributing to low-grade inflammation in CNS and aged-related
neurodegenerative diseases (70, 71). From the perspective
mechanisms, hypofunction of TREM2-DAP12 and CX3CL1-
CX3CR1 axes plays a crucial role in the loss of phagocytosis and
inflammatory modulation (30, 31). Senescent microglia suffers from
the loss of responsiveness, migration and phagocytosis, leaving the
accumulation of senescent cells and debris as a source of chronic
inflammation that damage cerebrovascular structures and neurons
(71, 72).Up-regulationof age-dependent inflammatorypathways are
related topro-inflammatory shift and increasingcytokineproduction
of microglia (73, 74). The cross-talk among astrocytes, neutrophils,
monocytes and macrophages, exacerbating the immune cell
infiltration and inflammatory response consequently (75). In
conclusion, senescent microglia activate inflammaging by tilting
Frontiers in Immunology | www.frontiersin.org 5
toward pro-inflammatory state, which is responsible for neuron
degeneration and BBB leakage (76).

In case of infiltrated immune cells augmented in the early onset
ArCSVD, includingmacrophages, neutrophils, T cells andNKcells,
are responsible for the inflammation, endothelial dysfunction and
ischemia of the area (77). As we mention above, the infiltration of
senescent immune cells with increasing inflammatory mediates
expression and altered function would aggravate the inflammation
storm in regions of the lesion. ROS and other cytotoxic products
from infiltrating immune cells enhance the oxidative stress of
endothelial cells, resulting in further vessel tone dysfunction and
vascular remodeling (78).While localized inflammation is a crucial
damage to the brain, it is also essential that the peripheral immune
response could aggravate the inflammation. According to a
community-based study, systemic inflammation is related to
white matter microstructural integrity among older adults (79).
Furthermore, anti-endothelial antibodies were found in ArCSVD
patients, implying the relationship between B cell activation and
endothelial dysfunction (80).

Taken together, the senescence of immune cells have a strong
connection with dysfunction of glia cells and endothelial cells.
Non-immune cells under the damage of inflammatory
environment finally become dysfunctional and promote the
progress and development of ArCSVD.

Senescence of Non-Immune Cells
Senescent residential non-immune cells in CNS, including
endothelial cells, astrocyte, pericytes, and oligodendrocytes, are
also found to play crucial roles in destruction and dysfunction of
BBB in ArCSVD. Moreover, these senescent cells can be
recognized by immune cells and activate a further response.

Endothelium is an important system regulating vessel remodeling,
vascular tone, balance of inflammatory and coagulation.Of note, it is a
fact that endothelial dysfunction is attributed to be a keymechanism in
ArCSVD (81). Apart from the increasing age, there is cogent evidence
supporting that two interconnected mechanisms—cellular oxidative
stress and low-grade inflammation — also contribute to endothelial
senescence (82).

Endothelial dysfunction mainly reflects in vessel tone changes.
Multiple factors are known as the contributor in vessel tone
regulation, but eNOS-derived NO is usually considered to be the
most important mechanism. NO plays an important role in
relaxation of vascular smooth muscle cells and preservation of
cerebral blood flow (82). The inhibitory effect of NO restrains
platelets from aggregation and adhesion, and the release of platelet-
derived growth factor that stimulates smooth muscle cell
proliferation (83). Meanwhile, NO also prevents relating immune
cells from activation of NF-kB and formation of inflammatory
factors (84, 85). However, the changes of eNOS signaling on
transcriptional and post-transcriptional level resulting from
hypertension, angiotensin II and aging, suppress the function of
eNOS by reducing NO synthesis (86–88). The loss of NO synthesis
results in vessel tone disorder, reduces the cerebral blood flow,
exacerbates oxidative stress and vulnerability of acute ischemia.
Furthermore, there is a vicious cycle in the senescent endothelium
(89). Activating TLR-NF-kB pathway results in subsequently
November 2020 | Volume 11 | Article 585655
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cytokines production including IL-1a, IL-1b, IL-6, IL-8, IL-10,
IL-12, TNF-a, and IFN-g (25, 90, 91). Pro-inflammatory
cytokines as well as the NF-kB protein induces the expression
of NADPH oxidase, contributing to the increase production of
ROS (92). These oxidative stress productions act as a positive
feedback that increases NF-kB activity, meanwhile they also
activate circulating and residential immune cells (89). Free
radicals would impair NO production by causing eNOS
uncoupling directly, the amplifying oxidative stress further
worsening the dysregulation of NO production (93). Taken
Frontiers in Immunology | www.frontiersin.org 6
together, it’s trapping in a vicious cycle of oxidative stress and
inflammation that progressively damage the endothelial function
which consequently develops into cerebrovascular dysfunction.

Pathologically, senescent epithelium results in impairment of
proliferation and angiogenesis, leading to abnormal vessel
remodelling (94). Vessel rarefaction is commonly observed in
hypertension and ArCSVD patient, suggesting the reduction of
the blood vessel in tissues (95). Decreased density and length of
capillary are found in the cerebral cortex of aging people.
Moreover, morpho-functional changes of capillary bed of the
FIGURE 2 | The conceptual model of immunosenescence and inflammaging mechanism of CSVD. Immunosenescence and inflammaging affect both vascular
function and BBB intactness that are keys of CSVD initiation. Cerebral vascular dysfunctions are various that further lead to pathological changes that can be found
on neuroimaging and clinical features.
November 2020 | Volume 11 | Article 585655
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cortex, reduction of external diameter, and increased wall-to-
lumen ratio and resistance are found in hypertensive patients
(96, 97). The consequences of cerebrovascular microstructure
remodeling are ischemic changes in the regions supplied by the
responsible blood vessels, showing as lacunar infarcts, white
matter hyperintensity or perivascular space in imageology.

Pericytes are isolated contractile cells that regulate cerebral
blood flow and maintain BBB (98). Pericytes participate in the
formation of capillary basement membrane, while multiple
signaling pathways between pericytes and astrocytes also exert an
essential effect on BBB integrity (99, 100). Dysfunction of pericytes
contributes to the aged-related cerebrovascular diseases. According
to a current study, the loss of pericyte coverage is reported in aged
mice, which may result from hypertensive induced oxidative stress
(101). While another study found that the loss of pericyte in aging
mice and attributed it to the glutamine pathway and ischemia as
pericyte is sensitive to ischemia (102). Moreover, pericytes are also
under the effect of inflammation. For example, some investigators
observed increasing permeability of BBB resulting from IL-1b-
induced pericytes, and come to the conclusion that dysfunction of
pericytes and inflammationmaydamage the integrity of BBB (103).
What’s more, loss of pericyte coverage reduces microcirculation,
breaks down BBB, exacerbates oxidative stress and cause
neurodegeneration, which is observed in an experiment of
pericyte-deficient mice (99). Thus, pericyte dysfunction is a
crucial part should not be neglected in ArCSVD.

Dysfunction of BBB
It is obvious that BBB disorder, on the basis of endothelial
dysfunction and pericyte disorder, plays a critical role in
ArCSVD. BBB is composed of basic membrane, astrocytes end
feet, pericytes and endothelial cells with tight junction (68). The
incidence of BBB leakage increases with risk factors like toxicity,
trauma, age and hypertension, and such injury is mainly related to
cell response induced by immunosenescence (104, 105). Although
the pathophysiology of BBB is complicated and intricate, the major
process nevertheless is recognized, and the most identical initiation
is endothelial dysfunction whose commonest outcome is BBB.

In the context of cerebrovascular dysregulation, chronic
exposition of high shear force leads to the alteration of the
tight junction and increased permeability of BBB (106). As a
result, immune cells and plasma components could enter the
brain parenchyma and trigger sterile inflammation (107).
Subsequently, oxidative stress and inflammatory cytokines
induced by the immune cells aggravate the local inflammatory
response and hinder the damage repair (85, 108). Furthermore,
damage of other glial cells and its production of large quantities
of inflammatory mediators and toxic substances could destroy
the barrier system (109).

Accordingly, a broad range of pathophysiological changes in
BBB disorder would finally contribute to white matter lesions and
other secondary damage in CSVD while imaging shows a
phenomenon termed as white matter hyperintensities (WMH) in
the clinical context (110). The degree of BBB leakage is commonly
assessed according to the signal ofWMH – the greater the range of
WMH, the more severe is the BBB leakage (111).
Frontiers in Immunology | www.frontiersin.org 7
CANDIDATE MARKERS OF
IMMUNOSENESCENCE IN ARCSVD FOR
CLINICAL DIAGNOSIS

The clinical performance of ArCSVD is complicated and variable,
and diagnosis of such disease relies on the imaging findings.
However, imaging exists an inherent drawback that only the late
stage patient whose injury is mostly irrecoverable could perform
remarkable imaging manifestations, indicating an unmet need for
developing one or more neo-markers for screening patients at
early stage. Thereafter, immunosenescence is consist of a wide
range of biomarkers alteration in the circulation system and shows
its great potential in prediction of ArCSVD as a sensitive and
accurate index available.

When ArCSVD initials and develops, multiple substances in
circulation system experience drastic change. Inflammation-
relative molecules, such as coding proteins and metabolites,
have been the hotspot in this area. Several endothelial markers,
involved in the activation of endothelial dysfunction and
inflammation, were associated with the seriousness of CSVD,
including neopterin, sICAM-1, and sVCAM-1 (112). Cytokines
are another big family having great changes during the
development of ArCSVD and divided into pro-inflammatory
and anti-inflammatory subtypes based on their distinct
functions. IL-6 and TNFa have raised great attention as their
pro-inflammatory function in ArCSVD. The uplifting of serum
IL-6 was usually observed in aged-related disease, and it was
prone to be associated with the progression of ArCSVD (113).
Other inflammatory factors, like TNF-a, were also increased in
ArCSVD. It should be noted that the downward of anti-
inflammatory cytokines also makes sense in ArCSVD as the
newly discoveries in IL-10 (77, 114).

Obviously, patterns and related metabolites were also seriously
affected by ArCSVD. The most significant changes are involving
glycol metabolism, lipid metabolism, vitamin B and vitamin D
metabolism pathways as what is tested in clinical practice.
Glycosylated hemoglobin (HbA1c), low density lipoprotein
(LDL), homocysteine (Hcy), 25-hydroxyvitamin D3 [25(OH)D3]
stand for the representatives for the foregoingpathways and thefirst
three substances significantly upregulates inArCSVDwhile the last
one as the sole protective factor decreases.

Immune cells also act a crucial role in ArCSVD and the
detection of these cells helps physicians and specialists better
predict this disease. The progressive remodeling of immune
system displays as the shifts of cell subtypes, including NK cells,
T cells and B cells subpopulations (115, 116). The diminishing of
naïve T cell pool and increasing memory T cells may be the
predictor of immunosenescence.

Today increasing evidence supports that non-coding RNAs
have a great impact on development of ArCSVD. As the most
well-known non-coding RNA, microRNAs have a more
definitive function in a related area. MicroRNAs are a group of
molecules that regulate the gene expression, mostly in a negative
direction, and build a complicated interactive network in both
pro- and anti-inflammatory pathways. Inflammation-associated
microRNAs represent the conditions of immunosenescence such
November 2020 | Volume 11 | Article 585655
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as MiR-126, MiR-146a, belonging to inflammatory pathway
while also related to endothelial dysfunction, can be used for
detection of ArCSVD (117, 118).
THE POTENTIAL REJUVENATION
STRATEGIES TO PREVENT CSVD
DURING AGING

Immunosenescence accelerates and exacerbates CSVD while
CSVD conversely promotes senescence of either CNS resident
cells or immune cells. Thereafter, it is meaningful to prevent CSVD
by postponing the process of immunosenescence. As inflammation
is the crucial part of immunosenescence that damage the structure
and function of nervous system in ArCSVD patients, most studies
focus on anti-inflammation treatment.

Targeting key immune cells can be a potential approach to
preventor improveArCSVD. Selectively inhibiting the activationor
cytokines secretion of microglia and macrophages is a potential
method to prevent the overactive neuroinflammation (119). Some
studies found that regulating the gene expression and altering the
phenotypes of microglia diminished the inflammation and
promoted the recovery by drugs or chemotactic factors (120,
121). Besides, regaining the loss functions of immune cells can be
another approach to prevent excessive inflammation. To clear the
senescent cells, enhancement of phagocytosis in macrophages and
chemotaxis in other immune cells and impeding the
overproduction of pro-inflammatory cytokines are out of urgent
necessity (122). In addition, the differentiation ofTregs, aswell as its
enhanced anti-inflammatory features, couldbe a prospectiveway to
delay the progress of ArCSVD. Overall, preventing ArCSVD is still
at the preclinical stage and not currently accepted in patients. Prior
to clinical manifestations, further studies are required for better
understanding the mechanism of interaction between anti-
inflammation and ArCSVD treatment.

Actually, clinical practitioners reach a common consensus that
lifestyle interventions may be a considerable and effective
approach to alleviating CNS damage. The lifestyle intervention
is well tolerated and it contains the management of sleep, motion
and diet. The risk factors like hypertension, hyperlipidemia,
hyperglycemia should be also controlled as they can disturb
both the metabolism and inflammaging (82, 123, 124). Nutrition
supplement, such as zinc, docosahexaenoic acid, active vitamin D,
Frontiers in Immunology | www.frontiersin.org 8
mecobalamin and folic acid, is also beneficial to the control of
inflammation and immune response (125).
CONCLUSION

CSVD is closely related to aging and little interest was shown in the
contribution of immunity to CSVD according to previous studies.
Nonetheless, the immunosenescence could be a prominent
participator in the initiation and development of ArCSVD. So
far, more studies should be carried out to further understand the
association of immunosenescence and CSVD:(a) Whether the
senescence of endothelia earlier than immunosenescence or not?
(b) How immunosenescence disrupts blood-brain barrier step by
step in this disease? (c) What should we do to uncover the specific
targets connecting immunosenescence with CSVD under the rapid
development of bioinformatic analysis and related technologies for
sequencing? In all, the researchers take the responsibility to solve
these questions and better transform the fundamental studies to the
clinical practice.
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