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Abstract

The brain hosts a vast and diverse repertoire of neuropeptides, a class of signalling 

molecules often described as neurotransmitters. Here I argue that this description 

entails a catalogue of misperceptions, misperceptions that feed into a narrative in which 

information processing in the brain can be understood only through mapping neuronal 

connectivity and by studying the transmission of electrically conducted signals through 

chemical synapses. I argue that neuropeptide signalling in the brain involves primarily 

autocrine, paracrine and neurohormonal mechanisms that do not depend on synaptic 

connectivity and that it is not solely dependent on electrical activity but on mechanisms 

analogous to secretion from classical endocrine cells. As in classical endocrine systems, 

to understand the role of neuropeptides in the brain, we must understand not only 

how their release is regulated, but also how their synthesis is regulated and how the 

sensitivity of their targets is regulated. We must also understand the full diversity of 

effects of neuropeptides on those targets, including their effects on gene expression.

Introduction

Endocrinology is the study of hormones, secreted by 
endocrine glands in one part of the body, which travel 
in the blood and have prolonged effects on other parts of 
the body – effects that are determined by tissue-specific 
expression of their receptors. By contrast, neuroscience is 
the study of the brain, and particularly of neurones that 
release neurotransmitters at synapses with effects tightly 
localised in space and time, constrained by mechanisms 
of rapid reuptake and degradation. The schism between 
neuroscience and endocrinology, between interests 
above the neck and below it, is reflected in differences in 
dominant technological and methodological approaches 
and in different theoretical visions. Neuroscience has 
been dominated by electrophysiology and the study of 
information transmission by mapping neuroanatomical 
connectivity and by studying the spiking activity of 
neurones and its consequences for cognition and behaviour; 
endocrinology by the measurement of hormones and the 
analysis of the mechanisms by which they are produced 
and the signalling mechanisms by which they act.

Between these two, dangling below the brain 
and bathed in blood, is the pituitary gland, and 
dangling between neuroscience and endocrinology is 
neuroendocrinology, born of Geoffrey Harris’ insights in 
the 1950s.

The birth of neuroendocrinology

In the late 1950s, it was ‘well established’ that in man 
and other animals that ovulated spontaneously, ovulation 
is controlled by the pituitary (1). It was commonly 
believed that, in each ovarian cycle, increasing levels 
of oestrogen triggered the secretion of gonadotropin 
hormones by direct actions on the pituitary. This ‘fact’ 
was challenged by Harris, who argued that, in inducing 
ovulation, oestrogen acted not on the pituitary but on the 
brain, where its actions resulted in the release from the 
hypothalamus of a substance that was carried by blood 
vessels to the pituitary (2). In Harris’ theory, this was one 
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of several ‘releasing factors’, each of which regulated a 
different pituitary hormone.

Harris and his co-workers showed that portal blood 
vessels in the median eminence at the base of the 
hypothalamus fed into a ‘vascular plexus’ that filled the 
anterior pituitary and that the direction of flow in these 
vessels was from the brain, not to it. He then noted that, 
from earlier work, transplanting the anterior pituitary 
gland to a different part of the body led to an irreversible 
loss of function and atrophy of the target tissues on 
which pituitary hormones were known to act. But if the 
anterior pituitary was removed from its normal place in 
the sella turcica and then replaced there or in an adjacent 
site, normal function often returned. Harris hypothesised 
that, in these cases, the portal vessels had regenerated, 
renewing the vascular communication between brain  
and pituitary (2).

To test this, Harris and Jacobsohn (3) removed the 
pituitary from female rats. They then grafted pituitary 
tissue from new-born young into the subarachnoid space 
below the brain, either immediately below the cut portal 
vessels, or to one side below the temporal lobe. Ovarian 
cycles returned in all rats with transplants below the 
cut portal vessels, but when the transplants were below 
the temporal lobe, the ovaries and reproductive tracts 
atrophied and ovarian cycles ceased. In both cases, the 
transplants were re-vascularised – in the first case by portal 
vessels, in the second case by blood vessels of a different 
part of the brain.

But the path to acceptance of Harris’ theory was not 
yet clear. His theory blurred the conventionally accepted 
distinction between neurones and endocrine cells, and 
it postulated the existence of ‘releasing factors’ whose 
identification seemed beyond experimental reach. It 
engaged the opposition of Sir Solly Zuckerman (4). 
Zuckerman, as described by Lord Dainton, ‘…was unique. 
No scientist this century can match him in the timespan and 
weight of his influence on governments in peace or war’ (5).

Zuckerman, who had founded his career on studies 
of the menstrual cycle in primates, recognised that 
Harris’ theory would be disproved if any animal could be 
shown to have ovulated in the absence of portal vessels. 
In sixteen female ferrets, Thomson and Zuckerman (6) 
cut the neural stalk, and their case rested on results from 
two of them, two that had come into heat in response 
to artificial light even though, from their histological 
evidence, all connections between brain and pituitary had 
been eliminated.

But Harris suspected that the portal blood vessels 
had regenerated in these ferrets, so he and Donovan 

(7) set about their own experiments on ferrets. In their 
key experiments, after cutting the stalk, they inserted a 
paper plate between the stalk and the pituitary to prevent 
revascularisation of the pituitary by the portal vessels. In 
all ferrets where the plate had been inserted effectively, 
there was no revascularisation and no ovulation. They 
thus concluded that the method of stalk sectioning 
and the histological techniques used by Thomson and 
Zuckerman were inadequate.

In 1954, Harris and Zuckerman presented their 
discrepant findings at a Conference in London. As later 
recounted by Reichlin (8), ‘Harris won the debate, then, and 
in posterity’. Harris won, not just because his evidence was 
more convincing, but because he could explain something 
that Zuckerman could not. Zuckerman’s two ferrets had 
come into heat in response to light – hence the pituitaries 
had responded to signals from the retina despite what 
Zuckerman had claimed to be a complete separation of 
the pituitary from either nerves or blood vessels. For this, 
Zuckerman had no credible explanation.

Zuckerman did not concede, but was still maintaining 
his position in 1978 (Zuckerman 1978), a year after Schally 
and Guillemin had been awarded the Nobel Prize for their 
identification of some of the releasing factors that Harris 
had postulated. To understand Zuckerman’s resistance, we 
might recognise the threat that Harris’ theory posed to 
the community of reproductive endocrinologists among 
which Zuckerman was a pre-eminent authority. Harris, 
in placing the brain as the controller of reproduction, 
was shifting the responsibility for extending our 
understanding from endocrinologists to neuroscientists – 
to a different community, one already equipped with the 
expertise and technical methodologies that this change in 
focus demanded.

But neuroscientists, by and large, were disinclined to 
take up this challenge, disparaging the hypothalamus as 
the remnants of the ‘lizard brain’, and they left it to a new 
community of neuroendocrinologists. Harris himself set 
about identifying the releasing factor for gonadotropins, 
and came close to doing so (9, 10), though ultimately the 
prize – and the Nobel Prize that accompanied it – went to 
Schally and Guillemin, whose labs were resourced at a far 
greater level. Nevertheless, the catalogue of Harris’ research 
reads like a road map for neuroendocrinology (2). He (with 
George Fink) pioneered the collection of portal blood 
for assays of releasing factors (11), introduced a method 
of remote electrical stimulation of the hypothalamus 
in conscious behaving animals (12) and addressed the 
issue of stimulus-secretion coupling in oxytocin release, 
a key step that became important in understanding the 
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significance of pulsatile hormone secretion (13). In these 
and many other ways, he carved out a distinctive identity 
for neuroendocrinology.

Barricades between endocrinologists and neuroscientists 
remained, and these barricades were manned by 
definitions. For endocrinologists, the classical definition 
of a ‘hormone’ was that given by Starling (14): ‘Each 
specific hormone is manufactured by a group of cells and 
turned into the blood, in which it travels to all parts of 
the body, but excites definite reactions in one or a limited 
number of distant organs.’ For neuroscientists, on the 
other hand, ‘neurotransmitters’ were expected to satisfy 
three criteria: (i) that they were present at synapses within 
the presynaptic neurones, (ii) that they were released in 
a Ca2+-dependent manner upon depolarization of those 
presynaptic neurones and (iii) that they acted on specific 
receptors present on the postsynaptic neurone (15).

Neither endocrinologists nor neuroscientists were 
rigidly bound by these definitions. For endocrinologists, 
Starling’s definition encompassed the classical peptide 
and monoamine hormones well, but no complaint was 
made by its extension to steroid hormones, which pass 
cell membranes freely and can reach any targets in the 
body by diffusion through extravascular fluid. Nor was 
there objection to classing as hormones many agents 
that act within tissues, such as prostaglandins within the 
uterus, or oestrogens within the ovary, or the new host 
of ‘local’ hormones in many tissues. For neuroscientists, 
the definition of a neurotransmitter encompassed the 
classical neurotransmitters, packaged in synaptic vesicles 
whose release by exocytosis is tightly coupled to action 
potentials, but they came to concede that neurotransmitter 
release at synapses can ‘spill over’ to act at extrasynaptic 
receptors (16, 17, 18, 19, 20).

Neuropeptides

Following the discovery of the releasing factors and their 
identification as mainly peptides, came the recognition 
that the class of ‘neuropeptides’ extended far beyond 
the class of releasing factors. They include, on current 
reckoning, more than 300 different peptides expressed 
in various combinations in distinct subpopulations 
of neurones throughout the brain (21). The brain had 
classically been assumed to be stocked with essentially 
homogeneous neurones that acquire functional specificity 
mainly through their patterns of hard-wired connections 
and which shared a common language of spiking activity. 
Now, it seemed to comprise a vast multitude of distinct 
neuronal types that spoke in multiple languages.

However willing neuroscientists might have been to 
acknowledge peptides as an additional (though minor 
and supplementary) class of neurotransmitters, the facts 
resolutely refused to conform to this notion. As I have 
argued elsewhere (22), the idea that neuropeptides in the 
brain are neurotransmitters ‘is to a first approximation, 
a lie’, at least if we retain anything of the criteria for a 
neurotransmitter given above.

First to be dismissed must be the misperception 
that neuropeptides are released at synapses within the 
brain. Many neurones produce both peptides and one 
or more neurotransmitters, and both are packaged in 
vesicles, but not in the same vesicles (23). Conventional 
neurotransmitters are packaged in small synaptic vesicles 
that are specifically localised to synapses. Peptides are 
packaged in large dense-cored vesicles that are typically 
distributed throughout the cytoplasm of a neurone, and 
since for most neurones the dendrites comprise about 85% 
of the cell volume, it is in this compartment that large 
dense-cored vesicles are often mainly found. Synaptic 
vesicles can only be released at specialised sites in the 
presynaptic membrane, but large dense-cored vesicles 
can apparently be released from the soma, dendrites, 
axonal varicosities and even undilated axons – the  
main requirement appears to be that they must be close 
to the plasma membrane to be releasable (24, 25, 26, 27, 
28, 29, 30, 31).

Some large dense-cored vesicles are present in synapses, 
though not in particular abundance, and generally not 
close to the synaptic release site, and whether any are 
ever released into the synaptic cleft is questionable. 
Synaptic vesicles typically contain between 1000 and 
5000 molecules of transmitter, and about one such vesicle 
is released when an action potential invades a synaptic 
ending. A typical synaptic cleft has an area of ~1 µm2, 
and a diameter of ~50 nm. If 1000 molecules are released 
into this, they will achieve a concentration of ~0.3 mM, 
consistent with measures of quantal acetylcholine release 
at the neuromuscular junction, and amply enough to 
activate the low affinity receptors at which conventional 
neurotransmitters act (32). However, the vesicles in 
which peptides are packaged carry a much larger cargo. 
They typically contain not only the active peptide, but 
the entire peptide precursor. In the case of oxytocin and 
vasopressin, the precursors have a molecular weight of 
about 23,000; each vesicle contains about 85,000 of these 
molecules at a density so great that the contents are in 
crystalloid form (33, 34), which gives these vesicles their 
dense-cored appearance under the electron microscope. 
The release of just one of these vesicles into a synaptic cleft, 
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if confined there, would yield a peptide concentration in 
the high molar range. As the receptors through which 
peptides act have affinities in the nanomolar range, such 
concentrations would not merely be massively in excess 
for any specific receptors present, but would also act 
extensively at other peptide receptors present there.

Second, is the misperception that peptide release is 
tightly governed by electrical activity. In the rat, about 
9000 vasopressin cells project to the posterior pituitary. 
Each of their axons there contains about 2000 release sites 
(nerve terminals and swellings), each typically containing 
a few hundred vesicles – about 15 billion vesicles in all, 
with a total content of about 2 µg of vasopressin (35). 
Ludwig and Leng estimated how often these vesicles 
must be secreted to achieve a basal plasma concentration 
of vasopressin (about 1 pg/mL) given a half-life of 2 min 
and a volume of distribution of vasopressin of 60 mL 
(i.e. the plasma volume and total extracellular fluid 
volume). These imply that about 2500 vesicles/s are 
secreted in basal conditions (36). This calculation was 
based on deliberately conservative assumptions and is 
likely to be an overestimate; the pituitary store would be 
sufficient to maintain this level of secretion for only about 
6 days without replenishment and for only a few hours 
in conditions of sustained demand, when the plasma 
vasopressin concentration is ten-fold higher. The actual 
distribution volume as inferred experimentally is about 
20 mL in a rat, the plasma half-life is by many estimates, 
longer than 2 min, and to infer the rate of clearance from 
this requires modelling the exchange between plasma 
and extravascular fluid, as vasopressin is cleared from 
the plasma compartment alone by passage through the 
kidneys and liver (37). More realistic assumptions imply 
a basal secretion rate of closer to 800 vesicles/s or about 
one vesicle every 10 s from each cell. After 2  days of 
dehydration, when vasopressin concentrations in the 
plasma are ten-fold higher, vasopressin cells fire action 
potentials (spikes) in long bursts at 6–8 spikes/s separated 
by silences, and each cell is secreting about 1–2 vesicles/s. 
In these conditions, at any single release site in the axonal 
endings of any one vasopressin cell, one vesicle is secreted, 
on average, for every 5000 spikes or so – about once every 
15 min (22). This secretion is dependent on spike activity, 
but the very low probability of release at any given site 
implies that release is a highly stochastic process.

Third is the misconception that peptide release in 
the brain is governed only by electrical activity. Most of 
the vesicles that oxytocin cells hold within the brain are 
located in their long and voluminous dendrites. These 
are not normally releasable by electrical activity, but are 

constrained by an intracellular scaffold of filamentous 
actin to be far from the voltage-gated channels which 
are activated by the spikes that these dendrites conduct. 
However, some peptides trigger oxytocin release from 
these dendrites by mobilising intracellular Ca2+ stores 
from the rough endoplasmic reticulum that permeates 
the dendrites (31, 38, 39) – and some, like α-MSH, 
stimulate dendritic release even while inhibiting spiking 
activity (40). This is not to say that spike activity never 
releases dendritic oxytocin – some peptide signals can 
trigger a reorganisation of the filamentous actin to deliver 
vesicles close to the plasma membrane where they can 
be released in response to voltage-gated Ca2+ entry (41). 
This mechanism – ‘priming’ – underlies a change in the 
functional connectivity between oxytocin neurones, 
through autocrine and paracrine actions that bind the 
functional activity of oxytocin cells together. In lactation, 
this supports their ability to generate synchronous bursts 
in response to suckling, leading to the pulsatile secretion 
that is essential for the milk-ejection reflex (42).

Fourth is the misconception that communication 
between neurones requires physical proximity between 
them. There is often a striking mismatch between the 
density of receptors in any given brain region and the 
density of peptide-containing fibres in that region (43, 
44). Much is often made of the sparse peptide-containing 
fibres that occasionally wend their way through regions 
of abundant receptor expression, and these may deliver 
a functionally important peptide signal, as in the case of 
oxytocin in the amygdala (45). But even the CSF contains 
oxytocin concentrations that, if present in peripheral 
blood, would be sufficient to activate peripheral target 
organs. Some brain regions distant from the sites of 
oxytocin synthesis contain dense plexuses of oxytocin-
containing fibres, and oxytocin release from these axonal 
varicosities will have an important ‘local’ action (46) 
– local to the region, rather than to directly adjacent 
neurones. Even then we should be cautious, for every 
peptide-containing neurone also makes a conventional 
neurotransmitter, and these may often be the primary 
messenger of such fibres; oxytocin neurones express the 
vesicle glutamate transporter VGLUT2 (47), and glutamate 
thus appears to be a neurotransmitter used at their central 
synaptic projections (45, 48).

Oxytocin and vasopressin might be exceptional in the 
size of their vesicles. Many dense-cored vesicles in the CNS 
are smaller than these, with a volume only about 1/8 that 
of the typical oxytocin or vasopressin-containing vesicles 
and a correspondingly lower expected content. Thus, van 
den Pol (49) favours a local diffusion hypothesis, that, 
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given the low frequency of dense core vesicles in most 
CNS axons and because of the hours needed to replenish 
released peptides by synthesis and transport from the cell 
body, neuropeptides released by most neurons must act 
relatively locally on cells near the release site. However, 
any one neurone has a great many potential release sites, 
including all its axonal varicosities, each with a very low 
probability of release, thus, the potential targets of peptide 
release even from a single peptidergic neurone will be 
very widely scattered and widely distributed neurones 
will be exposed to secreted peptide in a sparse and highly 
stochastic fashion. When a brain region is permeated 
by many axons from a population of peptide-producing 
cells, it seems likely that such a projection will deliver a 
hormone-like signal to that region. How far such a signal 
will reach is hard to predict.

A striking demonstration of remote actions of 
neuropeptides comes from studies of the suprachiasmatic 
nucleus. Lesions of this nucleus in hamsters disrupt the 
circadian rhythms of behaviour that persist in constant 
darkness. In lesioned hamsters, circadian rhythmicity 
can be restored by transplanting fragments of neonatal 
suprachiasmatic nucleus into the third ventricle – and, 
remarkably, can do so even if those fragments are 
encapsulated in a membrane that allows substances to 
diffuse freely across the membrane but which permits 
no penetration of nerve fibres from the transplant to the 
host tissue (50).

Fifth, to be qualified rather than dismissed, is the 
notion that neuropeptides are neuromodulators, in 
the sense that they affect neuronal excitability, thereby 
altering the responses of neurones to neurotransmitters. 
Many neuropeptides affect gene expression in their 
targets: canonical examples include the effects of 
gonadotrophin-releasing hormone on pituitary expression 
of gonadotrophins (51, 52), the effects of thyrotropin-
releasing hormone on thyroid-stimulating hormone 
expression (53), and the effects of growth-hormone-
releasing hormone on growth hormone expression 
(54). Certainly many peptides do influence neuronal 
excitability, but as mentioned, some can alter functional 
connectivity by priming peptide release from dendrites.

For example, the splanchnic nerve terminals 
that innervate the adrenal medulla release PACAP 
(pituitary adenylate cyclase-activating polypeptide) and 
acetylcholine. Both regulate catecholamine release from 
chromaffin cells, but PACAP is released only at high 
frequencies, using secretory mechanisms different from 
those evoked by acetylcholine. During prolonged stress, 
PACAP maintains catecholamine synthesis via induction 

of tyrosine hydroxylase and PNMT (phenylethanolamine 
N-methyltransferase), and it enhances the transcription 
of other secreted molecules found in chromaffin cells. 
In the words of Smith and Eiden: ‘PACAP thus mediates 
chromaffin cell plasticity via a functional encoding of 
experience’ (55).

Some neuropeptides regulate local blood flow (56), 
some, like oxytocin may regulate glial cell morphology 
(57) and leptin (58, 59) and CRH (60) have been 
proposed to modulate synaptogenesis. The predominant 
attention given to electrophysiological actions of 
neuropeptides reflects the relative ease with which these 
can be determined by in vitro electrophysiology, and the 
assumption of many neuroscientists that neuropeptides 
are mere adjuncts to the serious business of information 
transfer that is conducted by neurotransmitters.

Finally, again to be qualified or at least questioned is 
the notion that the roles of neuropeptides in the brain are 
exercised purely through activity-dependent regulation of 
their release. Three points should be made. (i) The level 
of mRNA expression for peptides in specific neuronal 
populations varies in different physiological states. (ii) 
The amount of peptide released by a given stimulus is 
proportional to the amount available for release, which 
varies with the rates of synthesis and depletion. (iii) 
The actions of a neuropeptide depend on the level of 
expression of specific receptors, which varies in different 
physiological conditions. These points are considered in 
turn below.

Regulation of mRNA expression

One of the earliest and most striking examples of this 
comes from studies of the effects of chronic stress on the 
parvocellular neurones in the paraventricular nucleus of 
the hypothalamus that regulate the secretion of ACTH. 
These neurones normally regulate ACTH secretion via 
release of corticotrophin releasing hormone (CRH), but 
after chronic stress their expression of CRH is diminished 
while that of vasopressin, in the same neurones, is 
markedly enhanced. Thus the peptidergic phenotype of 
these neurones is plastic – what were ‘CRH neurones’ 
become ‘vasopressin neurones’ with marked consequences 
for the regulation of the stress axis (61). No less striking 
is the recent recognition of similar plasticity in the 
tuberoinfundibular dopamine neurones that regulate 
prolactin secretion. In lactation, these cease to release 
dopamine but instead release a peptide – leu enkephalin, 
and this change supports the stimulation of prolactin 
secretion in lactation (62).
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Regulation of receptor expression

The role of a peptide messenger may be exercised 
through activity-dependent regulation of its release, or by 
regulating its synthesis, or its availability for release or the 
sensitivity of its targets. One classic example of the last of 
these is the importance of changes in oxytocin receptor 
expression in the uterus for parturition. In all mammals, 
oxytocin secretion is increased during parturition, and this 
acts on a uterus prepared by a massive increase in oxytocin 
receptor expression (63, 64). In rats, what is secreted from 
pituitary is conveyed to its targets in a plasma volume of 
about 7.5 mL; in humans the pituitary is about 40 times 
larger than that of a rat, and the oxytocin content is 
proportionately greater. However, what is secreted in a 
human is conveyed in a plasma volume of 3–4 L, at least 
400 times larger than in a rat, and the half-life of oxytocin 
in rat and human are similar. Accordingly circulating 
concentrations of oxytocin are much lower in man than 
in small mammals (65), and the importance of the level 
of receptor expression in target tissues is correspondingly 
greater. Indeed, the increase in the sensitivity of the 
human uterus to oxytocin at term pregnancy is so great 
that it has been questioned whether any increase in the 
level of oxytocin at all is involved in human parturition 
before the third stage of labour (64).

Among the best-known behavioural functions 
of peptides are those of vasopressin and oxytocin on 
various facets of ‘social’ behaviour. A feature of these is 
how great are the species differences in these behaviours; 
the paradigmatic exemplars are the prairie voles, which 
make enduring partner bonds after mating and display 
biparental nurturing behaviours, and closely related 
species such as meadow voles which are promiscuous 
and asocial. These behaviours critically depend on the 
release within the brain of oxytocin and vasopressin, 
but the species differences do not apparently reflect 
any differences in the regulation of this release, but on 
differences in the sites and extent of receptor expression 
in the brain (66, 67).

Stimulus-secretion coupling

The amount of peptide secreted from neurones in response 
to electrical depolarisation depends on the pattern of 
stimulation (37, 55, 68, 69), on the number of vesicles 
available for release (70), and their precise location (24). 
The nerve endings of the axons that fill the posterior 
pituitary contain a ‘readily-releasable pool’ of vesicles that 
is refilled from reserve stores as it is depleted, and the cycle 

of local depletion and repletion results in complex non-
linearities in stimulus-secretion coupling (37, 69). After a 
period of water deprivation, the gland content is severely 
depleted, and in these conditions electrical stimulation 
of the gland releases oxytocin and vasopressin in direct 
proportion to the gland content (70).

When a synaptic vesicle containing a conventional 
neurotransmitter releases its contents, there is an 
abundant stock of vesicles available to re-supply the 
releasable pool, and re-uptake mechanisms recover 
neurotransmitter from the extracellular fluid to refill the 
empty vesicle and make it available for rapid re-use. By 
contrast, large-dense cored vesicles cannot be re-used, 
they must be replaced by newly synthesised vesicles. Thus, 
any acute activation of peptide secretion entails a cycle 
of depletion and repletion. Any marked increase in the 
rate of secretion must be compensated for by an increase 
in the rate of peptide synthesis and vesicle production, 
and the new vesicles must be transported from the cell 
body to the release sites – a process that can take several 
hours. This phenomenon will impose a temporal pattern 
on peptide secretion from neurones even if the signal for 
that secretion is unchanging.

But the availability of peptide stores is not the only 
factor that determines how much is secreted in response 
to a stimulus. As mentioned, priming of peptide stores 
can alter stimulus-secretion coupling in dendrites. At 
nerve terminals, other factors can do so. Oxytocin 
neurones, for example, co-express dynorphin, which 
acts on kappa-opioid receptors at their nerve terminals 
as an inhibitory feedback regulator of stimulus-
secretion coupling. In pregnancy, the expression of 
dynorphin is upregulated, and the enhanced negative 
feedback contributes to a progressive accumulation 
of oxytocin stores in the pituitary in preparation for 
parturition – the gland content increases by about a third  
without any apparent increase in the level of oxytocin 
mRNA expression (63).

In β-pancreatic cells, insulin secretion in response to 
glucose is elicited by an increase in intracellular (Ca2+). 
This ‘triggering’ pathway depends on the suppression of 
KATP channels in the plasma membrane (71). But after the 
first phase of insulin secretion, a metabolic amplifying 
pathway is engaged which depends on the initial 
triggering signal but is independent of KATP channels and 
involves cAMP signalling. This pathway enhances the 
sensitivity of the insulin-containing secretory vesicles 
to a given Ca2+ influx, and it can be engaged by peptide 
signals such as GLP-1 and GIP from gastrointestinal 
endocrine cells (72).
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Three modes of action of neuropeptides

When considering the actions on neurones of 
neuropeptides released from neurones in the brain, we can 
recognise three common modes of action. Neuropeptides 
act as autoregulators of neuronal activity, as paracrine 
regulators of aggregated populations of neurones,  
and as neurohormonal regulators of distant populations 
of neurones.

Autocrine regulation

Commonly, neurones express autoreceptors for the 
peptides that they release. As discussed above, in the case 
of oxytocin cells, activity-dependent release of dynorphin, 
a peptide co-packaged with oxytocin in neurosecretory 
vesicles but in very much lower abundance, is a negative 
feedback regulator of secretion from nerve terminals 
in the pituitary. Magnocellular vasopressin cells 
also express dynorphin, co-packaged in vasopressin-
containing vesicles. For these cells, dynorphin is again an 
autoregulator, but in this case of electrical activity – in  
vasopressin cells, sparse, activity-dependent release of 
dynorphin from the soma and dendrites has a critical role 
in sculpting the phasic pattern of electrical activity (73).

Paracrine regulation

Oxytocin cells also express oxytocin receptors and 
vasopressin cells also express vasopressin receptors, but in 
both cases their functional activity is quite elusive; because 
the receptors are internalised after ligand binding, and 
because there is a high concentration of these peptides 
in the extracellular space around the magnocellular cells, 
at any given time there are normally few free receptors 
available for binding on the cell surface. For oxytocin 
cells therefore these receptors are functionally effective 
only when very large amounts of oxytocin are released. 
During lactation, dendritic oxytocin release in response to 
suckling binds the population of oxytocin cells together, 
supporting their ability to generate synchronous bursts 
of activity (42). This can be considered as an example of 
positive feedback, but negative feedbacks can also bind a 
population together. In magnocellular vasopressin cells, 
dendritic vasopressin release is an inhibitor of neuronal 
activity – it acts as a ‘population signal’ allowing each 
cell to be aware of the level of activity amongst the whole 
population, and this feedback serves to equalise the 
average level of activity in the population, spreading the 
load of activity equitably (22, 74).

Neurohormonal actions

Neuropeptides in the brain are not generally scoured 
from the extracellular space by uptake mechanisms, 
and enzymatic degradation is relatively slow. They 
travel within the brain not by diffusion, but by the 
continuous flow of extracellular fluid, ending up in 
the CSF from which they are ultimately cleared. How 
much reaches the CSF varies considerably. Oxytocin 
and vasopressin are degraded within brain tissue by 
specific aminopeptidases, notably the membrane-
bound enzyme PLAP (75). Oxytocin and vasopressin 
are released in equimolar amounts with their respective 
neurophysins, which are large fragments of their 
precursor molecules, and the neurophysins are not 
enzymatically degraded within the brain. By comparing 
the concentrations of neurophysins in CSF with those 
of oxytocin and vasopressin, and given the rate of 
clearance from CSF, we can deduce that only about 
5% of the oxytocin and vasopressin that is released 
within the brain actually reaches the CSF (36). Yet their 
concentrations in CSF are still about ten-fold higher 
than the basal concentrations in plasma, and at levels 
that, when present in plasma, are amply sufficient to 
exert physiological effects. Peptide concentrations must 
vary considerably in different brain regions, as the 
result of differential degradation, the inhomogeneous 
flow of extracellular fluid and the variations in levels 
of local release. Neurohormonal signalling in brain is 
not homogeneous and indiscriminate. Nevertheless, 
such signalling reflects not a rapid and specific system 
of communication from neurone to neurone, but a 
prolonged communication between one population of 
cells and another – the difference between a ‘whispered 
secret’ and a ‘public announcement’ (36).

The potential impact of such neurohormonal signals 
might be glimpsed from studies in simple organisms 
such as Drosophila (76) and C. elegans (77). It seems that 
the connectome – the wiring diagram of connectivity 
amongst the 302 neurones of C. elegans – allows multiple 
potential behaviours for any given neuronal network. 
Which of these behaviours is expressed in a given 
circuit at a particular time depends on what Cornelia 
Bargmann called ‘the dark energy of the nervous system.’ 
The C. elegans genome encodes over 200 peptides, and 
these, she argues, along with biogenic amines such 
as serotonin and dopamine, sculpt the functional 
connectivity between neurones – defining which of the 
set of latent circuits in a neuronal network is engaged at 
a given time (77).
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Reflections

The original schism between endocrinology and 
neuroscience was bolstered by the apparently separate 
embryological origins of neurones and endocrine cells. 
However if we look to contemporary understanding of the 
molecular determinants of cell fate and to comparative 
genomics, we see a different story (78, 79). In Urbilateria, 
the marine organism proposed to be the last common 
ancestor of vertebrates, flies, and worms, cells that secreted 
a peptide ancestor of vasopressin and oxytocin combined 
properties that we have thought of as separate properties 
of endocrine cells and neurones. They used diverse 
signalling mechanisms, made both neurotransmitters 
and peptides, and had a wide range of specialized senses, 
linking feeding, reproduction and internal homeostasis to 
environmental conditions (80).

Given the many commonalities between, for 
example, β-pancreatic cells or any of the pituitary cell 
types and neurones, it seems clear that if these cells were 
embedded in the brain we would not hesitate to call 
them neurones. Yet although information flows in both 
directions between the brain and endocrine glands, we 
still cleave to a hierarchical view in which the brain, and 
the higher centres of the brain in particular, are credited 
with particular cognitive agency, as though neurones were 
clever in ways that endocrine cells are not.

We can extend this argument to encompass all 
endocrine cells in the body. For example, the adipocytes 
that store our fat not only sense the environment in 
which they reside, they communicate bidirectionally 
with other endocrine cells in the pancreas (81, 82) and 
elsewhere, express intrinsic circadian rhythmicity (83), 
and are innervated by neurones (84, 85). Through the 
actions of their product leptin on the brain, they not only 
regulate appetite by their effects on diverse populations of 
peptidergic neurones (86, 87), but also modulate energy 
expenditure (88) and food reward (89, 90). As I have 
argued elsewhere, ‘from the perspective of an adipocyte (…) 
the brain is just something that follows its instructions to keep 
it supplied with lipid’ (22).

There are two distinct ways to conceive of intelligence. 
We can conceive it as the ability of a cell to sense both 
the external environment and its internal state combined 
with the ability to respond adaptively to changes in the 
external environment. This would be to follow the sense 
in which Barbara McClintock, in her Nobel Prize lecture 
wrote ‘a goal for the future would be to determine the extent of 
knowledge the cell has of itself and how it uses that knowledge 
in a ‘thoughtful’ manner when challenged’ (91). Or we can 

conceive it as an emergent phenomenon, a property 
specific to highly complex multicellular systems that 
embraces the abilities to learn from past experience, to 
anticipate future challenges and to select from a range of 
possible strategies one that will appropriately meet those 
challenges. Intelligence in the latter sense is embodied not 
in a discrete location but in the whole complex network. 
In neither sense can we accord neurones greater cognitive 
capacity than, say, adipocytes.

Hierarchical metaphors of the organisation of brain 
and body have run their course. It is time to abandon 
them, and abandon too the conceit that will understand 
the brain through studies of neuronal connectivity and 
electrical activity alone. New technological advances, 
such as optogenetics and chemogenetics, have given 
unprecedented opportunities for understanding the 
role of electrical activity in information processing in 
the brain, but we are desperately in need of comparable 
advances in studying the functional regulation of 
neuropeptide release in the brain and its behavioral and  
physiological consequences.

It is time for endocrinologists to claim the brain as one 
of their own, and take up the challenge of understanding 
the hormones of the brain. At present, we have the 
technical ability to measure only oxytocin and vasopressin 
release by radioimmunoassay in brain areas in a functional 
context, and only with a relatively poor spatial and 
temporal resolution. Nanoflow liquid chromatography-
mass spectrometry offers a potentially powerful alternative 
to immunoassay for peptide detection because of its high 
sensitivity and specificity, and a recent paper has used 
this to measure opioid peptide release in discrete brain 
areas using microdialysis in fractions collected at 15-min 
intervals (92). This is clearly a step forward, but temporal 
resolution remains a challenge. Important advances 
have recently been made in the ability to measure the 
release of some neurotransmitters with high spatial 
and temporal resolution through the use of genetically 
encoded fluorescent sensors (93, 94). It seems possible that 
similar approaches may yet provide the ability to measure 
neuropeptide release with similar precision, but there are 
considerable technical barriers (95).

While chemogenetic approaches directly target 
G-protein-coupled receptors, optogenetic approaches have 
mainly been used to activate or inhibit neurones through 
regulation of ion channels (45, 96). However, optogenetic 
tools have also been developed to target intracellular 
signalling cascades (97). Thus, both optogenetic and 
chemogenetic approaches should be capable of being 
adapted to target the non-spike-dependent pathways that 
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regulate peptide release – if the problems with measuring 
this release on an appropriate timescale can be overcome.
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