
Vol.:(0123456789)1 3

Eur Biophys J (2018) 47:309–316 
https://doi.org/10.1007/s00249-017-1264-0

ORIGINAL ARTICLE

Fractal analysis of lateral movement in biomembranes

Lech Gmachowski1 

Received: 27 August 2017 / Revised: 9 October 2017 / Accepted: 26 October 2017 / Published online: 2 November 2017 
© The Author(s) 2017. This article is an open access publication

smooth transition to normal diffusion on entering a large 
compartment, as observed in experiments.
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Introduction

Living cells consist of cytoplasm enclosed within a mem-
brane, which is crowded with many macromolecules, such 
as proteins, nucleic acids and actin filaments, and with orga-
nelles. In crowded environments, interactions take place 
between molecules diffusing on a random walk and other 
objects present. Due to intermolecular forces, this crowded 
environment may cause specific effects on molecular mobil-
ity. Such an environment affects diffusional movement of 
single molecules in both three-dimensional solutions and 
two-dimensional membranes.

The effect of the attractive potential strength on the diffu-
sion coefficient in membranes has previously been investi-
gated using Brownian dynamics simulations. A sharp tran-
sition from free diffusion to slowed diffusion was observed 
at a potential depth of about 6 kBT, and then the diffusion 
coefficient decayed exponentially to a value five orders of 
magnitude lower at 20 kBT (Forstner et al. 2008). This value 
corresponds to an upper Arrhenius activation energy meas-
ured for lateral lipid diffusion, 50 kJ/mol, which is an indica-
tor of intermolecular interaction (Bag et al. 2014; Okamoto 
et al. 2016).

Interactions existing in crowded biological environments 
alter the molecular velocity (Selle et  al. 2004; Hall and 
Hoshino 2010) and therefore cannot be represented by the 
thermal speed. Also, the duration of one random walk step is 

Abstract  Lateral movement of a molecule in a biomem-
brane containing small compartments (0.23-μm diameter) 
and large ones (0.75 μm) is analyzed using a fractal descrip-
tion of its walk. The early time dependence of the mean 
square displacement varies from linear due to the contri-
bution of ballistic motion. In small compartments, walking 
molecules do not have sufficient time or space to develop 
an asymptotic relation and the diffusion coefficient deduced 
from the experimental records is lower than that measured 
without restrictions. The model makes it possible to deduce 
the molecule step parameters, namely the step length and 
time, from data concerning confined and unrestricted dif-
fusion coefficients. This is also possible using experimen-
tal results for sub-diffusive transport. The transition from 
normal to anomalous diffusion does not affect the molecule 
step parameters. The experimental literature data on molecu-
lar trajectories recorded at a high time resolution appear to 
confirm the modeled value of the mean free path length of 
DOPE for Brownian and anomalous diffusion. Although the 
step length and time give the proper values of diffusion coef-
ficient, the DOPE speed calculated as their quotient is sev-
eral orders of magnitude lower than the thermal speed. This 
is interpreted as a result of intermolecular interactions, as 
confirmed by lateral diffusion of other molecules in different 
membranes. The molecule step parameters are then utilized 
to analyze the problem of multiple visits in small compart-
ments. The modeling of the diffusion exponent results in a 
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different from the pure Brownian relaxation time (Pace and 
Chan 1982; Ayton and Voth 2004). Both define the diffusion 
coefficient as v2τ/2, where v · τ = λ is the mean free path of a 
diffusing molecule.

A moving molecule follows line segments between points 
and knowledge of the step parameters makes it possible to 
characterize the mobility by analyzing short time dependences 
of mean square displacement of biomolecules using the fractal 
model of diffusion (Gmachowski 2014, 2015). At a very short 
time interval, the molecule travels along the same segment 
and its movement can be considered as ballistic (Langevin 
1908; Wu and Libchaber 2000; Caspi et al. 2002; Kneller 
2011), for which the fractal dimension Dw = 1. Then, the tra-
jectory is formed and the evolution of the fractal dimension is 
observed. If the membrane is unrestricted, the fractal dimen-
sion increases to achieve an asymptotic value after a very long 
time. For the random walk, this asymptotic value Dw = 2.

In place of its fractal dimension, a moving molecule trajec-
tory can be characterized by the diffusion exponent α = 2/Dw, 
being the asymptotic time power in the time dependences of 
the mean square displacement. This value is equal to 1 for a 
random walk, < 1 for sub-diffusion, and 2 if the molecule’s 
movement is permanently ballistic.

Computation of molecule step parameters

The trajectory, along which a molecule travels, is character-
ized by the scale-dependent fractal dimension Dw(s; Takayasu 
1982; Rapaport 1984, 1985; Matsuura et al. 1986; Bujan-
Nuňez 1998), which changes from 1 to 2 for a random walk. 
This concept was utilized to estimate the effect of the step size 
of a random walk on the structure of aggregates built by the 
successive addition of monomers to a growing cluster (Gma-
chowski 2008) and used to describe the ballistic-diffusive tran-
sition of a Brownian particle (Gmachowski 2013, 2014). Then, 
the form of scale-dependent fractal dimension was modified 
(Gmachowski 2015) to obtain the required fractal dimension, 
Dw = 2/α, at a large scale of observation.

The scale of observation changes from 0 to the transport 
distance 〈r2〉1/2, and the corresponding length of trajectory 
decays from the trajectory contour length, equal to the prod-
uct of the time t and the mean velocity of the particle v, to 
〈r2〉1/2. Alternatively, the contour length can be described as 
the product of the molecule mean free path λ and number of 
steps t/τ. Hence, integrating the fractal formula describing the 
dependence of trajectory length on the scale of observation
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Equation (2) is a source of several useful formulae utilized 
throughout this paper. It states that the time dependence of 
transport distance for a given diffusion exponent is affected 
by the diffusion exponent and the walking step parameters—
its time and length.

The main advantage of the fractal model of diffusion 
is the description of the molecular trajectory with fractal 
dimensional evolution from 1 at the beginning to the asymp-
totic value at an advanced stage of motion. For short diffu-
sion trajectories, the time relations of mean square displace-
ment are not straight lines in log–log plots, as described by 
the Einstein relation. This makes it possible to determine 
the molecule walk parameters from short time records of 
mean square displacement. Regarding random walk dif-
fusion, α = 1, the relation 〈r2〉/4t is thus not constant but 
increases with time to achieve asymptotically the diffusion 
coefficient. This quantitative description gives Eq. (2) which 
can be utilized to determine the molecule mean free path λ 
and the mean step time τ from the measured confined and 
unrestricted diffusion coefficients. Putting α = 1, one can 
rearrange Eq. (2) to get

a formula defining the confined Brownian diffusion coef-
ficient, 〈r2〉/4t, which is related to the diffusion coefficient, 
D = λ2/2τ, and is dependent on the number of steps

or is a function of normalized diffusion distance:

The confined diffusion coefficient is less than the unre-
stricted one because of the short time frame or the geo-
metrical restriction limiting the growth of the mean square 
displacement. Figure 1 presents both dependencies.

Equation (2) can also serve to determine the molecular 
mean free path and the step time for cases other than random 
walk diffusion. Let us write this equation for two different 
mean square displacements of the molecule position meas-
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two cases remains unchanged, so dividing the formulae one 
gets after rearrangement

a formula serving to determine a molecule’s mean free path 
from the data measured, assuming a given value of α. Then, 
the characteristic time can be computed by Eq. (2) using 
mean square displacements of the molecule’s position meas-
ured for the first or second time.

Interpretation of experimental data

The characteristic of molecule trajectory changes slowly 
from ballistic at short times of observation to asymptotic if 
the surface is sufficiently large. This occurs for both normal 
diffusion and sub-diffusive transport. If the area of obser-
vation is restricted, the trajectory fractal dimension cannot 
achieve an asymptotic value. The confined diffusion coef-
ficient, deduced from mean square displacement, is less 
than that for the unrestricted membrane. If the molecule is 
inside a membrane compartment, which is not fully perme-
able (Meilhac et al. 2006), the molecule performs the walk 
for longer. Because the diffusion distance is limited to the 
compartment size, the trajectory becomes contracted, which 
is characteristic for sub-diffusion.

The cell membrane has been found to be compartmental-
ized (Fujiwara et al. 2002). For example, the movement of 
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 
tagged with Cy3 in the head group region, was investigated 
at the single-molecule level in the cell membrane of normal 
rat kidney (NRK) fibroblast cells at a high time resolution. 
It was discovered that the walking molecules are confined 
within compartments of diameter of 0.23 μm for 0.011 s on 

(6)

� =

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎝
t
1

t
2

�
r2
�1∕2

2

⟨r2⟩1∕2
1

⎞
⎟⎟⎠

�

2−� �
r2
�1∕2

2
−
�
r2
�1∕2

1

⎞
⎟⎟⎟⎠
∕2∕

⎛
⎜⎜⎜⎝
1 −

⎛
⎜⎜⎝
t
1

t
2

�
r2
�1∕2

2

⟨r2⟩1∕2
1

⎞
⎟⎟⎠

�

2−� ⎞⎟⎟⎟⎠

average before hopping to adjacent compartments. These 
compartments exist within greater compartments with 
diameters of 0.75 μm where phospholipids are confined for 
0.33 s. It was also stated that the diffusion within 230-nm 
compartments is slower than in large unilamellar vesicles 
(LUV) which lack compartmentalization.

The model described here makes it possible to deduce 
a molecule’s mean free path and the single-step time from 
the observation time, confined diffusion coefficient and 
unrestricted diffusion coefficient. The unrestricted diffusion 
coefficient was taken as D = 8.5 μm2/s (Fujiwara et al. 2002; 
Murase et al. 2004) as the average of reported values. For the 
reported values of Dconf = 5.4 μm2/s and the compartment 
size 〈r2〉1/2 = 0.23 μm, the corresponding time of normal 
diffusion is calculated by the relation

to be equal to t = 2.45 × 10−3 s. Then, the one step time 
is calculated by Eq. (4) to be τ = 2.56 × 10−4 s and the 
molecule’s mean free path is deduced from Eq.  (5) as 
λ = 0.0660 μm.

If the membrane compartment’s boundaries are not fully 
permeable, the molecule stays inside the compartment for a 
time, performing a random walk with the same step param-
eters before it jumps to the adjacent compartment. The num-
ber of performed steps determines the diffusion exponent 
according to a rearranged form of Eq. (2)

and diminishes from α = 1, characteristic for Brownian dif-
fusion, valid for the number of steps less than or correspond-
ing to Dconf, to that resulting from the actual residence time 
of the molecule in a compartment. Figure 2 presents the 
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Fig. 1   Normalized confined diffusion coefficient as dependent on 
normalized root mean square displacement and the number of steps
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evolution of the diffusion exponent with the number of steps 
performed in the compartment.

The above experimental and calculated data make it pos-
sible to compute the sub-diffusion exponent corresponding 
to the experiment. Knowing the measured residence time 
in the compartment, t = 0.011 s, and the step parameters, 
the obtained exponent is α = 0.573. Practically the same 
result, α = 0.573, can be obtained for the larger compart-
ment, where 〈r2〉1/2 = 0.75 μm and t = 0.33 s. This confirms 
the same character of anomalous diffusion on a larger scale, 
provided the step parameters are calculated properly.

Utilizing the data of residence times for 0.23- and 0.75-
μm compartments, Eq. (6) makes it possible to calculate the 
mean free path as being dependent on the diffusion expo-
nent. Then, the step time can be computed by Eq. (2) using 
mean square displacements of the particle position measured 
for the first or second time, as well as the diffusion coeffi-
cient, D = λ2/2τ. The results are presented in Fig. 3.

The mean free path and the step time both diminish with 
the diffusion exponent. The calculated diffusion coefficient 
passes through a minimum at α of about 0.573. At this point, 
the parameters λ and τ are very close to that calculated ear-
lier and the diffusion coefficient attains approximately the 
unrestricted value (8.52 instead of experimental 8.5 μm2/s). 
The step parameters determined either from data of confined 
normal diffusion or experimental results for sub-diffusive 
transport are practically the same. The transition from nor-
mal to anomalous diffusion does not affect the molecule step 
parameters.

This agreement seems to be a result of consistency in 
data measured for sub-diffusive transport, normal confined 
diffusion and separately for unrestricted diffusion. If the 
unrestricted diffusion coefficient were below 8.5 μm2/s, 
it would not have the corresponding point in Fig. 3. Tak-
ing D = 9 μm2/s, there are two values of diffusion expo-
nents, 0.520 and 0.621, for such a diffusion coefficient as 
can be calculated or read from Fig. 3. The step parameters 

calculated by the presented method for Dconf/D = 5.4/9 
are τ = 3.27 × 10−4 s and λ = 0.0767 μm. The diffusion 
exponents determined for small and large compartments by 
Eq. (8) are not the same but both are close to 0.55.

The indicator of experimental data consistency is the 
unrestricted diffusion coefficient located at the minimum of 
the dependence of λ2/2τ on α, generated utilizing the sub-dif-
fusion data of residence times for small and large compart-
ments. The corresponding molecule step parameters are then 
the same as those calculated from confined and unrestricted 
normal diffusion data.

Discussion

Fractal description of lateral movement in biomembranes 
makes it possible to deduce from experimental data the mean 
free path of a diffusing molecule and its step time. The quo-
tient of these two values is the molecule’s speed. If interac-
tions are absent, this speed is equal to the thermal veloc-
ity ∼ (kBT/m)1/2. The fractal model of diffusion describes 
well the transition from ballistic to diffusive motion of 
a Brownian particle (Gmachowski 2013), as tested for 
micrometer silica particles in air as well as in water (Gma-
chowski 2014). The calculated step parameters then refer to 
the measured diffusion coefficient and the thermal speed of 
the particles.

The application of the fractal model to describe lateral 
movement in biomembranes, described in this paper, also 
gives the proper value of the diffusion coefficient, but the 
DOPE speed calculated as λ/τ = 257 μm/s is several orders 
of magnitude lower than the thermal speed. This is thought 
to be caused by intermolecular interactions in biomembranes 
(Forstner et al. 2008; Bag et al. 2014; Okamoto et al. 2016) 
which alter both the walking molecule velocity (Selle et al. 
2004; Hall and Hoshino 2010) and the duration of one ran-
dom walk step (Pace and Chan 1982; Ayton and Voth 2004).

The calculated mean free path of DOPE is 66 nm. Similar 
values of mean free path and velocity in one dimension were 
determined (Gmachowski 2014) for lipids (6 nm; 560 μm/s) 
and proteins (15 nm; 150 μm/s) diffusing in tubular mem-
branes with tube radii ranging from 10 to 250 nm (Domanov 
et al. 2011), as well as for peptides in membranes confined 
by immobile molecules (12 nm; 380 μm/s; Gambin et al. 
2006). Also, similar values (56 nm; 150 μm/s) were obtained 
(Gmachowski 2015) for 1,2-dioleoyl-sn-glycero-3-phospho-
choline (DOPC) in a supported lipid bilayer, prepared on 
mica (Skaug et al. 2011) for both Brownian diffusion and 
sub-diffusive transport.

The mean step time calculated in this paper is 10 times 
longer than the highest time resolution, 25 μs, at which a 
typical long-term trajectory of Cy3-DOPE was recorded. 
Therefore, the records are not time-lapse, as they would be 
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Fig. 3   The diffusion exponent dependence of step parameters and 
corresponding diffusion coefficient calculated by Eqs.  (2) and (6) 
using the residency times in small and large compartments
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if too low a time resolution was used, but should copy the 
real trajectory of the walking molecule. It seems that the 
trajectories presented (Fujiwara et al. 2002), recorded for a 
DOPE molecule in an LUV bilayer and in the cell membrane 
of an NRK cell, consist of segments of the mean length close 
to the calculated value. The model value of mean free path 
length of DOPE for Brownian and anomalous diffusion can 
thus be regarded as confirmed by experimental records.

If the time resolution if too low, the obtained trajecto-
ries are not detailed enough to discover the character of a 
molecule’s diffusion, due to averaging of the image signal 
(Fujiwara et al. 2016). What appears to be random walk at a 
low resolution, is actually hop diffusion visible at high reso-
lution. The movement of gold-DOPE complexes in FRSK 
cell membranes was examined (Murase et al. 2004) at time 
resolutions of 25 and 110 μs. In both cases, the trajectories 
exhibited temporal confinement, with occasional hops to 
adjacent compartments. This suggests that both time reso-
lutions are sufficient to record the original trajectory and a 
higher resolution only confirms its detailed shape.

Sub‑diffusion in membrane compartments

The problem of sub-diffusion in biomembranes needs 
special analysis. If a large compartment consists of 
(0.75/0.23)2 ≅ 11 smaller ones, the residency time is not 11 
times longer but 0.330/0.011 = 30 times. This suggests many 
repeated visits of diffusing molecules in small membrane 
compartments, which can be noticed in analyzing trajecto-
ries of DOPE molecules recorded at a high time resolution 
(Fujiwara et al. 2002). The higher occurrence of repeated 
visits than for normal diffusion are the reason for sub-diffu-
sion in large compartments since visits often result in more 
time needed to achieve a given mean square displacement 
as compared to a random walk.

We now consider the probability of repeated visits in a 
compartment. At the start of a molecule’s random walk, 
making a second visit in an adjacent compartment is not pos-
sible. After the first hop the molecule can return to the start-
ing compartment. At the intermediate mean square displace-
ments, there are more compartments in the neighborhood, 
which can be visited once again. At an advanced diffusion 
distance, however, the probability of repeated visits becomes 
lower and lower since there are fewer adjacent compartments 
and the molecule is close to leaving the larger compartment. 
The higher probability of a secondary visit in a compartment 
is connected with a longer walking time and hence with a 
temporarily lower diffusion exponent.

Thus, the diffusion exponent diminishes from α = 1, char-
acteristic for Brownian diffusion and valid for a number of 
steps less than or equal to that corresponding to Dconf, to 
one resulting from the actual residence time of a molecule 
in a small compartment with α = 0.573. Then, α further 

decreases to achieve a minimum at an intermediate diffu-
sion distance, and rises in the vicinity of the boundary of 
the large compartment. So, the transport is slower than sub-
diffusion with a mean exponent in the intermediate diffusion 
distance that becomes faster at the end of residency in the 
larger compartment.

The diffusion exponent α can be identified with the slope 
of the time dependence of the mean square distance only 
for long time periods. The local diffusion exponent, β, is a 
result of Eq. (2)

or

if one wants to calculate the local slope of the time depend-
ence of 〈r2〉/4t.

To model the time records of the mean square displace-
ment, the local diffusion exponent is taken in the form of 
a quadratic function of the sub-diffusive transport distance

where the constants a, b and c are determined from values of 
β for limiting diffusion distances of 0.23 and 0.75 μm, equal 
to 0.775 [real, calculated by Eq. (10) using α = 0.573] and 
1 (postulated), respectively, and the integral form of Eq. (9)

after using the data for a large compartment: 
〈r2〉1/2 = 0.75 μm; t = 0.330 s.

Then, the time dependence of 〈r2〉/4t was calculated by 
Eq. (12), as well as the β coefficient by Eq. (11) and the α 
exponent from a rearranged Eq. (10)

Figure 4 presents the time dependence of 〈r2〉/4t calculated 
by Eq. (2) with a constant value of α = 0.573. Decay of the 
diffusion coefficient during sub-diffusive transport can be 
observed, but the shape of the obtained line does not indicate 
the transition to normal diffusion. Based on experimental 
data and the corresponding model (Saxton 2007; Destain-
ville et al. 2008), the slope given by Eq. (10) should achieve 
0 at long time periods. Contrary to the first dependence, the 
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corresponding line generated by Eqs. (11) and (12), after 
modeling of the slope in the range limited by experimental 
points, has an expected shape. Figure 5 shows the hypotheti-
cal evolution of both exponents with the diffusion distance.

Equations (11) and (12) make it also possible to calcu-
late the hypothetical tempo of the logarithmic increase, 
d ln (t/τ)/d ln (〈r2〉/λ), of the number of steps performed 
by a molecule during its walk through the compartment. 
It is depicted in Fig. 6 as 1/β dependence on diffusion dis-
tance and compared to that of 1/β calculated by Eq. (9) for 
α = 0.573. One can observe an extra increase in the num-
ber of steps in the intermediate region of the walk. This is 
equivalent to the increasing contraction of the trajectory 
in places, where the probability of visits several times in 
the same small compartments is higher. The agreement 
of the shape of the obtained time dependence of 〈r2〉/4t 
with the experimental data and the corresponding model 
(Saxton 2007; Destainville et al. 2008) makes the variabil-
ity of the diffusion exponents with the transport distance 
appear correct.

Conclusions

It is shown here that the fractal model of lateral movement in 
biomembranes describes the lateral movement in a double-
compartmentalized biological membrane. The results are 
illustrated by Fig. 7. The movement is diffusive, α = 1, for 
early time periods. The molecule performs a random walk to 
achieve a diffusion distance equal to the small compartment 
size. Comparing the diffusion coefficient measured in this 
region with that measured in the absence of restrictions, it 
is possible to deduce the molecule step parameters, the step 
time and length.

However, the movement is sub-diffusive when a mole-
cule is confined in a small compartment where the diffusion 
exponent decays with time from α = 1, characteristic for 
normal diffusion, to a value observed for longer diffusion 
distances in the large compartment. Using this value, the 
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small and large compartment sizes and the corresponding 
residency times, it is possible to calculate from the model 
the molecule step parameters which are very close to that 
calculated earlier and the calculated diffusion coefficient 
approximately equal to the unrestricted value.

Such an agreement is a result of consistency of data 
measured separately for normal diffusion and sub-diffusive 
transport. The fractal model of lateral movement in biomem-
branes can thus serve to test the consistency of experimental 
results in both cases (Fig. 8).

The experimental trajectories presented, recorded at a 
time resolution ten times higher than the model step time, 
consist of segments of the mean length close to the calcu-
lated value. The model values of the mean free path length 
of DOPE for Brownian and anomalous diffusion can thus be 
considered as confirmed by experimental records.

The molecule step parameters were then utilized to ana-
lyze the problem of multiple visits in small compartments. 
The value of the asymptotic diffusion exponent α does not 
remain constant in the sub-diffusion region due to the vari-
able probability of repeated visits in small compartments, 
changing with the diffusion distance. As a result of the mod-
eling performed with recording of residency times in small 
and large compartments, both the asymptotic and the local 
diffusion exponents pass through their minimum values and 
the local exponent achieves the value β = 1 at the large com-
partment exit, proper for normal diffusion.
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