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ABSTRACT: The use of substructural alerts to identify Pan-Assay INterference
compoundS (PAINS) has become a common component of the triage process in
biological screening campaigns. These alerts, however, were originally derived from a
proprietary library tested in just six assays measuring protein−protein interaction (PPI)
inhibition using the AlphaScreen detection technology only; moreover, 68% (328 out of
the 480 alerts) were derived from four or fewer compounds. In an effort to assess the
reliability of these alerts as indicators of pan-assay interference, we performed a large-scale
analysis of the impact of PAINS alerts on compound promiscuity in bioassays using
publicly available data in PubChem. We found that the majority (97%) of all compounds
containing PAINS alerts were actually infrequent hitters in AlphaScreen assays measuring
PPI inhibition. We also found that the presence of PAINS alerts, contrary to expectations,
did not reflect any heightened assay activity trends across all assays in PubChem including
AlphaScreen, luciferase, beta-lactamase, or fluorescence-based assays. In addition, 109
PAINS alerts were present in 3570 extensively assayed, but consistently inactive
compounds called Dark Chemical Matter. Finally, we observed that 87 small molecule FDA-approved drugs contained
PAINS alerts and profiled their bioassay activity. Based on this detailed analysis of PAINS alerts in nonproprietary compound
libraries, we caution against the blind use of PAINS filters to detect and triage compounds with possible PAINS liabilities and
recommend that such conclusions should be drawn only by conducting orthogonal experiments.

1. INTRODUCTION

The scientific community is in the grips of the data
reproducibility crisis, highlighted by Nature’s “Challenges in
Irreproducible Research” initiative.1,2 Oftentimes in drug
discovery, compounds active in primary biological screens
show no activity in follow-up studies.3−5 The measured effect of
false positives may be due to various mechanisms including
those that interfere with the assay detection technology such as
autofluorescence, hydrogen peroxide production, metal chela-
tion, chemical aggregation, etc.2−6

In a highly cited study,6 Baell and Holloway analyzed
compounds that showed activity in multiple assays and
suggested that these compounds may interfere with the
bioactivity detection technology. Such compounds were
cleverly dubbed PAINS, or Pan-Assay INterference com-
poundS. In an effort to provide a tool to enhance
reproducibility and reliability of true hit identification in drug
discovery, the authors then identified 480 “PAINS alerts”, i.e.,
substructural features frequently found in PAINS, and
suggested that these alerts could be used to flag false screening
hits and annotate suspect compounds in screening libraries.6

Following the original publication,6 which has garnered more
than 800 citations according to Google Scholar at the time of
this study, the concept of PAINS alerts (filters) has gained
much attention, many supporters, and prompted many follow-
up publications.7−9 Several web-based applications relying on

the original work by Baell and Holloway6 have been developed
to flag and filter compounds with PAINS alerts;10,11 chemical
databases, such as ZINC (http://zinc15.docking.org/) and
ChEMBL (https://www.ebi.ac.uk/chembl/), also flag com-
pounds containing PAINS alerts. On the scientific blogosphere,
publications reporting compounds flagged with PAINS alerts as
viable hits have been publicly ridiculed in a practice known as
“PAINS-Shaming.”12

The wide acceptance of the PAINS concept by the scientific
community and the availability of PAINS filters have made it
common for researchers to triage virtual screening hits flagged
with these alerts prior to experimental validation.13 Similarly,
lead compounds resulting from experimental screening
campaigns have typically been deprioritized for follow-up
studies if they contained PAINS alerts.14 Furthermore, scientific
journals have begun to recommend that all hit compounds,
virtual or otherwise, should be passed through one of the
publicly available PAINS filters before the manuscript is
considered for publication. For instance, the Journal of
Medicinal Chemistry requires that “active compounds from
any source must be examined for known classes of assay
interference compounds”.15 The authors are asked to “provide
firm experimental evidence in at least two different assays that
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reported compounds with potential PAINS liability are
specifically active and their apparent activity is not an artifact”.15

Thus, compounds with potential PAINS liability are those
flagged with PAINS alerts.
Amidst the generally wide acceptance of PAINS, there have

been a few voices cautioning about the overarching utility of the
alerts. Several authors have noted that the application of these
alerts could discard viable drug candidates because such alerts
have actually been found in approved drugs.16,17 More
substantial criticism of PAINS alerts has emerged as well on
Internet forums (but not in peer-reviewed publications). Aware
of these concerns, in the course of our own recent virtual
screening investigations, we re-examined the original study6

from which the 480 PAINS alerts were derived. We noticed

that the study6 employed a relatively small (93 000
compounds) and proprietary library (complete chemical
structures were not released) tested for one type of activity
(protein−protein interaction inhibition) in just six HTS
campaigns (three out of six targets were kept confidential)
using a single detection technology (AlphaScreen).
Though considerable effort was made to divulge as much

information as possible, due to the proprietary nature of the
original study and unavailability of the chemical library explored
therein, the detection of PAINS and the derivation alerts could
not be fully and independently reproduced. That being said,
upon further inspection of the 92 pages of Supporting
Information,6 we observed that more than half of the PAINS
alerts were derived from one or two compounds only (Figure

Figure 1. Probing the extrapolative power of PAINS alerts. A histogram showing the distribution of the number of PAINS alerts (amounting to 480
total) as the function of the number of compounds used to derive each alert. Note that 190 PAINS alerts were derived from one representative
compound only whereas only 18 PAINS alerts were derived from samples including more than 100 compounds per alert.

Figure 2. Study design for examining compounds in PubChem tested with AlphaScreen assay technology. Six assays targeting PPIs and using
AlphaScreen were identified in PubChem. Only those compounds that were tested in all six assays were considered. Compounds were binned into
two categories according to the number of active calls. Compounds in each category were then queried for PAINS alerts. The PubChem-wide
bioassay activity of all compounds was then investigated.
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1), with 68% (328 out of the 480 alerts) found in four or fewer
compounds only, and more than 30% (190 PAINS alerts)
found in one compound only showing “pan-assay” activity
(Figure 1; Table S1). This preliminary analysis lead us to
hypothesize that the majority of these alerts may have limited
extrapolative power.
Given the aforementioned limited sources of PAINS alerts,

we decided to probe into the pan-assay activity of PAINS and
the reliability of PAINS alerts by analyzing publicly available
data on extensively assayed compounds. To this end, we have
(i) assessed the robustness of PAINS alerts at flagging frequent
hitters among compounds assayed using the AlphaScreen
technology as reported in PubChem; (ii) scanned PubChem to
investigate the level of pan-assay activity of compounds with
and without PAINS alerts; (iii) examined the frequency of
PAINS alerts in extensively assayed, yet consistently inactive
compounds known as “Dark Chemical Matter”;18 and (iv)
profiled the PubChem-wide activity of FDA-approved drugs
with and without PAINS alerts. Overall, using publicly available
data, this study sought to evaluate the PAINS concept in
general, with an additional focus on specific PAINS alerts
established in the original investigation,6 in order to provide
both researchers and journal editors with insight into the utility
of PAINS alerts as they currently stand.

2. RESULTS AND DISCUSSION

Detection of PAINS in Chemical Libraries Tested with
the AlphaScreen Technology. We have identified six
PubChem assays that measure protein−protein interaction
(PPI) inhibition using AlphaScreen, i.e., the same type of
activity and the same technology employed in the original
study.6 The study design is shown in Figure 2. The six originally
studied assays were run at the relatively high compound
concentration of 25−50 μM in primary screens, which may
account for the high rate of interference, and two of the assays
used hexa-his/Ni anchors.6 We have chosen these six PubChem
assays, similar to a study by Schorpp et al.,19 in order to assess
the robustness of PAINS alerts to flag frequent hitters across a
similar, but not identical, series of assays. It should be noted
that the anchorage and screening concentrations reported in
PubChem were different from original study. However, current
PAINS filters look solely for the presence of specific functional
groups in assayed chemicals regardless of the assay conditions;
thus, the difference in these conditions does not invalidate the
use of PAINS alerts in this investigation.
As many as 153 339 unique compounds were found in

PubChem to have been tested across all six assays (Table S2).
Activity calls for each compound (Active, Inactive, and

Inconclusive) were recorded as defined by the assay depositor.
Compounds were then binned into two categories: “Frequent
Hitters” (active calls in at least two out of six assays) and
“Infrequent Hitters” (active calls in one or zero assays), which
is the same threshold as established in the original study.6 Both
categories were first queried for the presence of PAINS
substructural alerts using the SMARTS implementation from
PubChem Promiscuity,20 then confirmed using SYBYL Line
Notation (SLN) implementation from FAF-Drugs3.10 Four
categories arose: “Frequent Hitters-PAINS” (FH-PAINS),
“Frequent Hitters-No PAINS” (FH-NoPAINS), “Infrequent
Hitters-PAINS” (IH-PAINS), and “Infrequent Hitters-No
PAINS” (IH-NoPAINS). There was a concordance of
∼99.9% between the SMARTS and SLN implementations for
flagging compounds with PAINS alerts (Table S3). The
enrichment value (EV), which was previously defined6 as the
percentage of compounds active in at least two of the six assays
relative to the number of compounds that displayed no activity
across all six assays, was calculated to compare FH-PAINS vs
IH-PAINS (Table S4 and S5).
The results of our analysis are shown in Table 1. There were

902 compounds in the FH category, and only 208 (23%) of
these contained PAINS substructural alerts (FH-PAINS). The
remaining 694 FH lacked any PAINS alerts (FH-NoPAINS).
For the IH, 146 224 (96%) compounds lacked PAINS alerts
(IH-NoPAINS), but 6413 compounds (4%) still contained the
alerts (IH-PAINS). Comparing the numbers of IH-PAINS and
FH-PAINS leads to the apparent conclusion that, for this series
of assays, the majority of compounds containing PAINS alerts
(97%) were actually infrequent hitters.
The enrichment value calculated for PAINS-containing

compounds (FH-PAINS and IH-PAINS) was only 3.5%
(Table S4 and S5). Furthermore, if IH-PAINS that were active
in one assay only were taken into consideration, the overall EV
fell to 3.2% (Tables S4 and S5). The analysis of this series of
assays indicates that PAINS alerts are found much more
frequently in nonpromiscuous compounds.
To probe whether or not this observation is only limited to

assays related to PPIs using AlphaScreen, we investigated the
PubChem-wide bioassay activity of the same compounds.
Given that IH-NoPAINS constituted the overwhelming
majority of all compounds discussed above (146 224
compounds), the PubChem-wide activity of all IH-NoPAINS
was not evaluated due to computational constraints. Instead, a
random subset of 21 500 IH-NoPAINS (Table S7) were
evaluated; this number was selected to preserve approximately
the same ratio of frequent to infrequent NoPAINS (1:3.5) as
was observed for the PAINS (cf. Table 1). PubChem

Table 1. Lack of Pan-Assay Activity for Compounds with PAINS Alerts in PubChema

compound categories Ncompounds luciferase β-lactamase fluorescence all assays

FH-PAINSb 208 12% (93) 4% (9) 7% (312) 10% (546)
FH-NoPAINSb 694 6% (95) 2% (9) 3% (320) 5% (550)
IH-PAINSb 6413 3% (93) 1% (10) 2% (323) 2% (550)
IH-NoPAINSb 21500 1.5% (95) 0.5% (9) 1% (326) 1% (555)
Random-PAINSc 14611 3% (95) 1% (12) 2% (329) 3% (562)
Random-NoPAINSc 58722 2% (93) 0.6% (13) 0.8% (321) 1% (550)
Drugs-PAINSc 87 9% (71) 7% (40) 6% (223) 24% (602)
Drug-NoPAINSc 1373 5% (59) 5% (33) 3% (183) 15% (458)

aThe average fraction of activity calls for PAINS and non-PAINS (defined as containing or lacking PAINS alerts, respectively) across both detection
technology-specific assays and all assays in PubChem. The average number of assays in which the compounds were tested are shown in parentheses.
bDefined by the compound profile in PPI assays utilizing AlphaScreen. cDefined by presence or absence of PAINS alerts.
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Promiscuity20,21 was used to retrieve the activity calls for all
four aforementioned categories of compounds (FH-PAINS, IH-
PAINS, FH-NoPAINS, and IH-NoPAINS) tested in luciferase-,
β-lactamase-, and fluorescence-based assays (see Tables S4−
S7). Lastly, we assessed activity calls across all bioassays in
PubChem irrespective of the detection technology (Table 1).
We found that across all assays, including those that have

been reported as particularly susceptible to interference,5 FH-
PAINS were active in more assays than FH-NoPAINS;
however, IH-PAINS were active in fewer assays than FH-
PAINS (Table 1). The reduced activity of IH-PAINS in the
AlphaScreen assays, therefore, is not limited to this detection
technology, as it can be observed over all reported assays in
PubChem. Also, both categories of frequent hitters in
AlphaScreen (FH-PAINS and FH-NoPAINS) showed greater
PubChem-wide activity than infrequent hitters containing
PAINS alerts (IH-PAINS). Therefore, the broader activity
spectrum of these frequent hitters is independent of the
presence or absence of any PAINS alerts, highlighting the
importance of considering molecular entities as a whole rather
than chemical fragments when trying to derive any structural
rules governing assay promiscuity.
Analysis of PAINS Alerts in Chemical Libraries Tested

with the AlphaScreen Technology. The specific alerts
found in the above FH-PAINS and IH-PAINS categories were
then investigated on an individual basis. In total, 163 individual
PAINS alert types were observed in compounds among the two
categories (Table S8). It should be noted that multiple PAINS
alerts could be present within a single compound (Figure 3).
For the 208 FH-PAINS compounds, 41 individual PAINS

alerts were detected (Table S8). Of these 41 alerts, only 7
alerts, i.e., quinone_A(370), mannich_A(296), ene_six_he-
t_A(483), anil_di_alk_B(251), anil_di_alk_A(478), ene_o-
ne_hal(17), and imine_one_A(321), were found in more than
10 FH-PAINS compounds. The remaining 34 PAINS alerts
were present in 10 or less FH-PAINS compounds.
For the 6314 IH-PAINS compounds, 162 individual PAINS

alerts were detected (Table S8). Of these 162 alerts, 57 alerts
were found in more than 10 IH-PAINS compounds. Moreover,
15 of these alerts were found in more than 100 IH-PAINS
compounds. The anil_di_alk_A(478) alert, for example,
appeared in 1083 IH-PAINS compounds.
Next, the PAINS alerts that were present in both the FH-

PAINS and IH-PAINS were analyzed. Within these two
categories, 40 individual PAINS alerts were shared, roughly
∼25% of all observed alerts. Only one alert, i.e., anil_no_al-
k_A(1), was unique to FH-PAINS (Table S8); however, only 1

compound possessed this alert, which is consistent with the
limited sample size (1 compound) used to derive this alert (cf.
Figure 1). Similarly, 122 alerts were unique to IH-PAINS
(Table S8). For this series of assays, ∼75% PAINS alerts
present in the PubChem library analyzed herein (122 out of
163) were found only in IH.
The enrichment value (EV), defined as percentage of

compounds active in at least two of the six assays relative to
the number of compounds active in 1 or 0 assays, was
calculated for each of 40 shared PAINS alerts (Table 2). Only 6
alerts showed EVs greater or equal to 25%. However, 4 of these
6 alerts had less than 10 representative compounds. Therefore,
2 alerts, i.e., quinone_A(370) and quinone_D(2), were found
in 10 or more compounds and had an EV greater or equal to
25%. The remaining 34 shared alerts had EVs less than 25%,
and 32 of these 34 alerts had more than 10 representative
compounds. Indeed, 6 shared alerts had EVs less than 1.0%
despite being present in more than 100 compounds. For this
series of assays, the vast majority of PAINS alerts were found
among the IH-PAINS at much higher frequencies. The full
analysis of all 40 shared alerts, including representative
compound sizes and EVs, can be found in Table 2.

Random PAINS in PubChem. We also evaluated the
PubChem-wide activity of compounds tested in at least 25
separate bioassays based only on the presence or absence of
480 originally established PAINS alerts, i.e., irrespective of any
perceived promiscuity across a selected series of specific assays.
Randomly selected compounds that were evaluated in the
previous section were excluded. The resultant data set
contained 73 333 individual compounds. The structures of
these compounds were searched for PAINS alerts (described
above) and binned into two categories: Random-PAINS
(14 611 compounds) and Random-NoPAINS (58 722 com-
pounds). We compared these two categories following the
same protocol as described in the previous section (Table 1).
The average pan-assay activity of Random-PAINS was just 3%,
compared to an average of 1% for Random-NoPAINS (Table
1), i.e., Random-PAINS were marginally more active than
Random-NoPAINS. Additionally, of the 14 611 Random-
PAINS only 752 compounds (5% of the total) showed activity
in at least 10% of all assays. Of the remaining 13 859 Random-
PAINS (95%) that were active in less than 10% of all assays,
1146 had no activity at all, despite being tested in an average of
443 assays (Tables S9 and S10). These results indicate that the
mere presence of a PAINS substructure does not give rise to
any observed pan-assay activity, nor any marked interference
trends in luciferase-, β-lactamase-, or fluorescence-based assays.

Figure 3. Compounds with multiple PAINS alerts. Two representative compounds from the IH-PAINS and FH-PAINS categories that contain
multiple PAINS alerts.
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Table 2. PAINS Enrichment in Six PubChem Assays Employing AlphaScreena

aForty alerts were present in both FH-PAINS and IH-PAINS. Two alerts showed EVs greater or equal to 25% and were found in 10 or more total
compounds. Six alerts had EVs below 1.0%.
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In fact, only two PAINS alert containing compounds,
tanespimycin and dihydrexidine, were active in more than
50% of the assays (Figure 4). In total 202 PAINS alerts were

found among the Random-PAINS category. A PubChem-wide
analysis of alerts in random PAINS is described in the Global
Analysis of PAINS Alerts section.
Analysis of PAINS Alerts in Dark Chemical Matter.

Following the observation that Random-PAINS can be
consistently inactive across a large number of assays, we
probed the so-called Dark Chemical Matter (DCM)18 for the
presence of PAINS alerts. DCM was defined by Wassermann et
al.18 as compounds that have not yet shown any activity when
tested in a minimum of 100 assays. The complete data set of
139 352 DCM compounds, i.e. 128 997 PubChem and 10 355
Novartis DCM compounds, was downloaded from the
Supporting Information of the respective study.18

The data set was examined with FAF3-Drugs,10 and 3570
DCM compounds containing PAINS substructures were found,
encompassing 109 of the 480 original PAINS alerts6 (Table
S11). Of these 109 PAINS alerts, 30 alerts were found in more
than 10 compounds and 10 alerts were present in 100 or more
compounds (Table 3). This analysis shows that even
extensively assayed compounds containing PAINS alerts may
be consistently inactive.
Global Analysis of PAINS Alerts. In this study, a total of

24 802 PAINS compounds were analyzed (208 FH-PAINS,
6413 IH-PAINS, 14 611 Random-PAINS, and 3570 DCM-
PAINS) covering 220 specific PAINS alert types, which is
∼46% of the original PAINS alerts.6 In order to determine if
specific PAINS alerts correspond to compounds with elevated
assay promiscuity, we performed a global analysis of the
PubChem-wide activity of all PAINS compounds investigated
herein (Tables S12−S15). Since there is no agreed upon
threshold of pan-assay activity, we selected assay activity of at
least 10% as an arbitrary classifier. The global assay activity
associated with all alerts can be found in the SI.
Of these 220 PAINS alert types, 32 alerts had greater than

10% assay activity in either all assays, luciferase-, β-lactamase-,
or fluorescence-based assays (Table S12). However, only 12 of
these alerts were present in more than 10 compounds (Table
4). It should be noted, however, that six of these alerts can also
be found in DCM.
On the other hand, 176 (∼80%) of the total PAINS alerts

analyzed (220) were active in less than 10% of all investigated
assays and technologies and 88 alerts were present in DCM

(Tables S13 and S14). Eighty-four of 176 alerts were present in
more than 10 compounds (Table S13). Interestingly, 6 of these
alerts were found in more than 1000 compounds (Table 5).
Finally, 12 alerts were found exclusively in DCM-PAINS (Table
S15). Eleven of these alerts were found in less than 10
compounds, while 1 alert, i.e., hzone_phenol_B(215), was
present in exactly 10 compounds.
There are 16 PAINS alerts that were derived from more than

150 compounds (cf. Figure 1). Of all 480 alerts, these 16 alerts
were created from the most underlying data in the original
study.6 Given the prevalence and heightened promiscuity of
compounds possessing these alerts in the original study, we
specifically investigated whether any compounds in our
collection flagged by these 16 alerts display suspect assay
trends (Table 6). Aside from hzone_phenol_A(479) and

Figure 4. Random-PAINS displaying pan-assay activity. Tanespimycin
and dihydrexidine are active in 85% and 50% of all assays in PubChem,
respectively.

Table 3. PAINS alerts enriched in Dark Chemical Mattera

aTen alerts are present in 100 or more in Dark Chemical Matter
compounds (NDCM).
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hzone_phenol_B(215), which were found exclusively in DCM,
14 of these 16 alerts were frequently assayed and abundantly
present in the public collection. All 14 alerts displayed less than
10% activity in all PubChem assays despite being tested on
average in more than 500 assays each. Among these specific
alerts, the quinone_A(370) alert demonstrated the highest
activity in all assays (8.4%).
Our findings using data in the public domain can be

corroborated in part by other inquiries into the nature of
promiscuous compounds. For instance, while attempting to use
PAINS alerts to fill gaps in Eli Lilly’s promiscuity filters, Bruns
and Watson observed that “PAINS queries matched 286

promiscuous compounds that passed the Lilly rules, compared
to 3986 in the non-promiscuous set, for an enrichment factor of
4.0”.22 Furthermore, they noted that “although 67 PAINS
queries matched at least one promiscuous compound, only nine
queries matched at least five promiscuous compounds and had
an enrichment of at least 5.”22 These findings are consistent
with our observations that PAINS alerts in public data
frequently flag nonpromiscuous compounds or are manifested
in only a small number of promiscuous compounds.
On the other hand, another study on frequent hitter behavior

by researchers at AstraZeneca showed elevated “Frequent-hitter
Incidence %” for 10 out of 15 PAINS alerts.23 Although the

Table 4. PAINS Alerts Displaying Elevated Assay Activity in PubChema

aTwelve alerts have more than 10 compounds (NPubChem) and greater than 10% assay activity in either all assays, luciferase-, β-lactamase-, or
fluorescence-based assays (bold). Six alerts were also present in DCM (NDCM). The average numbers of assays in which the compounds were tested
are shown in parentheses.
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authors state that their “corporate data largely confirm previous
observations of the PAINS classes”, this study only investigated
part of the first tier of the 480 PAINS alerts, i.e., the 15 out of
16 alerts derived from more than 150 compounds (cf. Figure
1), or ∼3% of all alerts.23 As can be seen, in that study, one-
third of the profiled alerts did not show elevated frequent-hitter
behavior, which is, in part, aligned with our general
observations (Tables 5 and 6).
PAINS Alerts in Drugs. Other groups have noted that

many drugs contain PAINS alerts,6,16,17 and several careful and
keen analyses have centered around this phenomenon.24 It has
also been observed that many of these PAINS alerts in drugs
(but not all) map to poor ADMETox properties, such as
quinone-containing drugs.6 While this is an interesting
observation, we view interference propensity and poor
ADMETox properties as separate phenomena. Our group25

as well as others19 have also shown that a great majority of
toxicity structural alerts, much akin to PAINS alerts, are overly
sensitive and not predictive of actual in vitro or in vivo toxicity.
Given that drug repurposing is currently widely used as a boon
to traditional drug discovery,26,27 we profiled the PubChem-
wide bioassay activity of drugs with and without PAINS alerts
(Table 1).
A list of 1460 approved small-molecule drugs was compiled

from Drugs@FDA (https://www.accessdata.fda.gov/scripts/
cder/drugsatfda/). Structures for these drugs were searched
for PAINS alerts.10,20,21 We identified 87 small-molecule
approved drugs possessing 25 individual PAINS alerts (Table

S16). As observed in the preceding sections, Drugs-PAINS are
more active than Drugs-NoPAINS, having activity in 24% and
15% of all bioassays in PubChem, respectively (Table 1).
According to current filters,10,20 16 of these drugs possess
quinone PAINS alerts. The promiscuity of quinone-containing
drugs have been extensively discussed in the PAINS
literature6,24 and is supported by our analysis (cf. Tables 2
and 4). For instance, the chemotherapeutic doxorubicin, which
contains the quinone_A(370) alert, has been tested in more
than 4000 assays with active calls ∼85% of the time.
At the same time, however, the relationship between

polypharmacology and PAINS has not yet been adequately
explored. Many drugs show polypharmacological behavior and
possibly derive their efficacy from interacting with multiple
targets.28 Indeed, a similar study on promiscuity in extensively
assayed compounds found that drugs are more promiscuous
than bioactive compounds,28 which is evidenced in our analysis
as well (Table 1). Polypharmacology may well account for the
increased activity of both Drugs-PAINS and Drugs-NoPAINS
relative to the other categories (cf. Table 1). While the
phenomena of assay interference and polypharmacology have
rightfully been contrasted,28 there is very real possibility that a
compound may both possess PAINS alerts and display
polypharmacological behavior. Given that PAINS-containing
drugs are now frequently used in drug repurposing screens, a
larger discussion about the utility of PAINS alerts and
polypharmacology should take place.

Table 5. PAINS Alerts Not Displaying Elevated Assay Activity in PubChema

aThese 6 alerts are present in more than 1000 compounds (NPubChem) and have less than 10% assay activity in either all assays, luciferase-, β-
lactamase-, or fluorescence-based assays. All six alerts were also present in DCM (NDCM). The average numbers of assays in which the compounds
were tested are shown in parentheses.
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Beyond PAINS Substructures. PAINS concept has been
widely accepted by many experienced medicinal chemists both
in academia and the pharmaceutical industry. Indeed, the

original study from which the PAINS alerts were derived and
the impetus behind it are an important step toward
reproducibility and the appropriate use of resources in drug

Table 6. Global Assay Activity of Compounds in PubChem Possessing the Top 16 PAINS Alertsa

aThe bioassay activities of 14 out of 16 alerts have been profiled with more compounds than were used to derive the alerts originally.6 Two alerts
were found only in DCM (NDCM). The average numbers of assays in which the compounds were tested are shown in parentheses.
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discovery. However, our findings based on the analysis of public
data suggest that many compounds containing PAINS alerts do
not actually show high assay promiscuity, leading to the
conclusion that these alerts should not be blindly used, in the
absence of orthogonal experimental assays, to deprioritize a
compound.
At the same time, it is undeniable that pan-assay interference

compounds exist and care must be taken to avoid these
compounds. Moreover, we recognize that true “PAINS” may be
present in the data analyzed herein but have not been classified
as such because the current alerts do not cover these
compounds.29 The issue of what constitutes a pan-assay
interference compound thus remains unclear. For example, in
How to Triage PAINS-Full Research, Dahlin and Walters define
PAINS as “compounds that are recognized by the substructure
filters reported by the Baell and Holloway article.”29 By this
definition, all alerts (filters) are treated equally, regardless of the
underlying data used to derive the alert or the actual
promiscuity of flagged compounds. Yet our analysis indicates
that the identification of such compounds should not be
restricted to substructures alone. Substructural alerts, PAINS or
otherwise, do not take into consideration the whole molecular
environment,25 as illustrated by PAINS alerts manifesting in
both promiscuous and frequently inactive compounds (DCM).
Attempts should then be made to move beyond substructural
or fragment-based alerts. For instance, Yang and co-workers in
their “BadApple” algorithm have extended the identification of
promiscuous compound to larger scaffolds.30

In recent publications by Alves et al.,31−33 quantitative
structure−activity relationship (QSAR) models were used in
conjunction with structural alerts for toxicity to dramatically
improve the accuracy of prediction of multiple toxicity end
points over alerts alone. The authors of the present study
advocate the development of a similar approach for PAINS
alerts. Such publicly accessible models, if successful, could be
employed even for proprietary compounds insofar as chemical
descriptors of PAINS alert-containing compounds could be
shared without divulging actual molecular structures (given the
proprietary nature of most compounds used to derive and
evaluate PAINS so far6,22,23). The challenge is to build
externally predictive QSAR models capable of classifying
PAINS versus non-PAINS compounds. Using such models,
predictions of suspect compounds could be made, giving higher
confidence in the utility of the alert and the nefarious nature of
the compound.
Meanwhile, the concept of PAINS alerts, at the very least,

needs a redefined set of “best practices”29 that covers the
appropriate use of alerts, which may include cross-referencing
the promiscuity profiles of structurally similar compounds or
alert types in the public domain, annotation of particularly
susceptible assays, targets, and conditions, pointers to the
appropriate controls, and a generally agreed upon definition of
pan-assay activity. It would be of great value if a community-
wide effort to screen and analyze a large set of commercially
available compounds representing all current PAINS alerts
against multiple targets in various assays was performed by
several independent groups.

3. CONCLUSIONS
It is imperative to establish target selectivity for any compound
considered a viable chemical probe or drug candidate through
rigorously acquired experimental data and meaningful SAR.
Future studies may well establish some generalized approach

for detecting frequent hitters engendered by assay interference.
However, until such approaches are developed and rigorously
validated across a large number of molecules, researchers
should be cautioned about using the current PAINS alerts as
reliable indicators of nonspecific pan assay interference.
Though it has been stated elsewhere that compounds flagged
with PAINS alerts are not active in all assays or against all
targets,6,29 our analysis provides systematic and data-driven
support of this claim across a large series of compounds, alerts,
and assays. Our findings do demonstrate, with publicly available
data at hand, that majority of the original PAINS alerts are not
indicative of pan-assay compound promiscuity, that many
compounds without PAINS alerts are as, if not more,
promiscuous as those with the alerts, and that many
compounds flagged by PAINS alerts show no activity. It is of
great importance that reviewers and journal editors request
experimental proofs of selectivity, such as orthogonal
experimental assays, for hit and lead compounds reported in
scientific manuscripts. However, the results of this study
strongly suggest that such requests should not be based solely
on the results of PAINS filters.29
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