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Abstract: Bacteria isolated from companion animals are attracting concerns in a view of public health
including antimicrobial resistance and biofilm development, both contributing to difficult-to-treat
infections. The purpose of this study was to evaluate the minimum inhibitory concentrations (MIC) of
18 antibiotics in Escherichia coli isolated from two groups of dogs (healthy and diarrheic). Isolates were
classified into phylogroups, examined for the presence of resistance genes and biofilm-formation
capacity. In healthy dogs, phylogenetic analysis showed that 47.37% and 34.22% of E. coli isolates
belonged to commensal groups (A; B1) in contrast to diarrheic dogs; 42.2% of isolates were identified
as the B2 phylogroup, and these E. coli bacteria formed a stronger biofilm. The results of healthy dogs
showed higher MIC levels for tetracycline (32 mg/L), ampicillin (64 mg/L), ciprofloxacin (8 mg/L)
and trimethoprim-sulphonamide (8 mg/L) compared to clinical breakpoints. The most detected
gene encoding plasmid-mediated resistance to quinolones in the healthy group was qnrB, and in
dogs with diarrhea, qnrS. The resistance genes were more frequently detected in healthy dogs. The
presence of the integron int1 and the transposon tn3 increases the possibility of transfer of many
different cassette-associated antibiotic-resistance genes. These results suggest that dogs could be a
potential reservoir of resistance genes.

Keywords: E. coli; dogs; antimicrobial resistance; biofilm; phylogenetic groups

1. Introduction

Escherichia coli (E. coli) is a highly versatile bacterium that ranges from harmless gut
commensal to intra- or extra- intestinal pathogens [1]. Commensal E. coli colonizes in the
gastrointestinal tract within a few hours after birth. Although these strains are part of
the normal microbiota of humans and animals, several clinical reports have implicated
E. coli as the etiological agent of diarrhea in humans and their companion animals [2,3].
Previously, the most extensive investigations of E. coli infection have been described in
cattle, sheep and pigs. However, recently, the dogs and cats that live in close proximity to
humans have become a focus of disease transmission studies. Because the contact between
humans and pets has increased, the possibility of pathogenic microorganism transmission
between these organisms is very high. The fecal shedding of E. coli by companion animals
represents an important source of the zoonotic transmission of pathogenic agents [2].

The prevalence of drug-resistant bacteria, caused among other things by an excessive
use of antibiotics, is an increasing problem due to the possible transmission of resistant
bacteria or their resistance genes between animals and humans via direct or indirect contact,
such as through food/feed and the environment. Drug-resistant commensal E. coli isolates
may constitute a significant reservoir of antibiotic-resistance determinants, which can
spread to those bacteria that are pathogenic for animals and/or humans. Another problem
is biofilm development, since the biofilm matrix gives an additional resistance power to
the bacteria which makes them not only tolerant to harsh conditions but also resistant to
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antibiotics. This leads to the emergence of bad-bugs infections, such as multi-drug resistant,
extensively drug resistant and totally drug resistant types of bacteria [4].

For a long time, the focus of research was mostly on antimicrobial resistance (AMR)
monitoring in food-producing animals [5]. Recently, dogs and cats have been described
as potential vehicles for AMR; however, the data remained scarce. Therefore, it was
found necessary to take a closer look at the situation existing in companion animals.
Furthermore, approaching any issue from a One Health perspective necessitates looking at
the interactions between people, domestic animals including pets, wildlife, plants and our
environment [6].

Dogs and cats represent potential sources for the spread of AMR, due to the extensive
use of broad-spectrum antimicrobial agents in these animals (even those critically impor-
tant for human medicine, such as third generation cephalosporins and fluoroquinolones,
colistin, tetracyclines and macrolides) and their close and intensive contact with humans [7].
Moreover, pet feces on the ground of urban areas represent a significant public-health
problem [8].

So far, especially within the European Union’s member states, the monitoring of
the existing situation concerning AMR in indicator bacteria such as E. coli of companion
animals has been done sporadically. To the best of our knowledge, phenotypic resistance
profiles of 282 E. coli isolates were determined to be present in dogs and cats in three
European countries (Belgium, Italy and the Netherlands), of which 19% were isolated after
antibiotic treatment of the monitored animals. Furthermore, the situation in Sweden [9]
regards antibiotic resistance in the bacteria from humans and animals (including dogs),
and a 331 indicator E. coli was mapped in the years 2006 and 2012. A similar situation
exists throughout the European Union (EU) including the Slovak Republic, where the
data on indicator E. coli isolates are only related to poultry and the meat derived thereof.
A different situation is presented in the monitoring of AMR in clinical bacteria causing
various infections [10]. However, studies of companion animals demonstrating the current
situation of AMR concerning the indicator E. coli in the EU including the Slovak Republic
are rather rare.

Therefore, the objectives of our study were to evaluate the phenotypic and genotypic
AMR of commensal indicator and diarrheic E. coli isolated from Slovakian canine fecal
samples using the standardized automated diagnostic system Bel-MIDITECH to classify
their phylogenetic relatedness and to determine their biofilm-forming capacity as one of
the factors contributing to increased resilience.

2. Materials and Methods
2.1. Canine Samples, Isolation and Identification of E. coli

The rectal swabs from 38 healthy non-antimicrobial treated dogs and 45 dogs with
diarrhea, of varying breeds and from different households, were inoculated overnight at
37 ◦C in buffered peptone water (Oxoid, Basingstoke, UK). The samples from the diarrheal
dogs were taken before an antibiotic treatment. The samples were then subcultured on
MacConkey Agar (Oxoid, Basingstoke, UK) and UriSelect Agar (Bio-Rad Laboratories,
Hercules, CA, USA) overnight at 37 ◦C. The colonies were isolated, identified and confirmed
as E. coli using the MALDI–TOF MS (Matrix-Assisted Laser Desorption Ionization–Time
of Flight, Mass Spectrometry) biotyper (Bruker Daltonics, Bremen, Germany) according
to the methods described by Bessède et al. [11] and ENTEROtest24 (Erba Lachema Brno,
Czech Republic) for the routine identification of important species of the Enterobacterales
family within 24 h. One colony of E. coli was isolated from each sample.

2.2. Phylogenetic Groups

The form of the phylogenetic analysis was determined by using a new method,
according to Clermont et al. [12]. The quadruplex polymerase chain reaction (PCR) was
used to determine the phylogroup of each of the 83 isolates corresponding to the presence or
absence of the genes arpA, chuA, yjaA and TspE4.C2. All the isolates assigned to phylogroup
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A were screened using a C-specific primer trpA (trpAgpC). Similarly, all the D phylogroup
isolates were screened using an E-specific primer arpA (ArpAgpE). The oligonucleotide
primers, annealing and references are listed in Table 1.

Table 1. Primers used for the PCR detection of resistance genes and phylogroups.

Gene Primer Sequences (5′–3′) Annealing (◦C) Size Product
(bp) Reference

int1 F:GGGTCAAGGATCTGGATTTCG
R:ACATGCGTGTAAATCATCGTCG 62 483 [13]

tn3 F:CACGAATGAGGGCCGACAGGA
R:ACCCACTCGTGCACCCAACTG 58 500 [14]

dfrA F:GTGAAACTATCACTAATGG
R:TTAACCCTTTTGCCAGATTT 55 474 [15]

dfrB F:GATCGCCTGCGCAAGAAATC
R:AAGCGCAGCCACAGGATAAAT 60 141 [15]

tetA F:GGCCTCAATTTCCTGACG
R:AAGCAGGATGTAGCCTGTGC 55 372 [16]

tetB F:GAGACGCAATCGAATTCGG
R:TTTAGTGGCTATTCTTCCTGCC 55 228 [16]

oqxA F:GACAGCGTCGCACAGAATG
R:GGAGACGAGGTTGGTATGGA 62 339 [17]

oqxB F:CGAAGAAAGACCTCCCTACCC
R:CGCCGCCAATGAGATACA 62 240 [17]

qepA F:GCAGGTCCAGCAGCGGGTAG
R:CTTCCTGCCCGAGTATCGTG 60 199 [18]

qnrS F:ACGACATTCGTCAACTGCAA
R:TAAATTGGCACCCTGTAGGC 53 417 [19]

qnrA F:ATTTCTCACGCCAGGATTTG
R:GATCGGCAAAGGTTAGGTCA 53 516 [19]

qnrB F:GATCGTGAAAGCCAGAAAGG
R:ACGATGCCTGGTAGTTGTCC 53 469 [19]

aac(6′)-Ib-cr F:GATCTCATATCGTCGAGTGGTGG
R:GAACCATGTACACGGCTGGAC 58 435 [19]

mcr-1 F:CGGTCAGTCCGTTTGTTC
R:CTTGGTCGGTCTGTAGGG 58 309 [20]

mcr-2 F: TGTTGCTTGTGCCGATTGGA
R:AGATGGTATTGTTGGTTGCTG 58 567 [21]

sul1 F:CGGCGTGGGCTACCTGAACG
R:GCCGATCGCGTGAAGTTCCG 69 433 [22]

sul2 F:GCGCTCAAGGCAGATGGCATT
R:GCGTTTGATACCGGCACCCGT 69 293 [22]

sul3 F: GAGCAAGATTTTTGGAATCG
R:CATCTGCAGCTAACCTAGGGCTTTGA 51 990 [23]

arpA F:AACGCTATTCGCCAGCTTGC
R:TCTCCCCATACCGTACGCTA 59 400 [12]

chuA F:ATGGTACCGGACGAACCAAC
R:TGCCGCCAGTACCAAAGACA 59 288 [12]

yjaA F:CAAACGTGAAGTGTCAGGAG
R: AATGCGTTCCTCAACCTGTG 59 211 [12]

TspE4.C2 F: CACTATTCGTAAGGTCATCC
R: AGTTTATCGCTGCGGGTCGC 59 152 [12]

arpAgpE F:GATTCCATCTTGTCAAAATATGCC
R:GAAAAGAAAAAGAATTCCCAAGAG 57 301 [24]

trpAgpC F:AGTTTTATGCCCAGTGCGAG
R:TCTGCGCCGGTCACGCCC 59 219 [24]

blaTEM-1
F:ATGAGTATTCAACATTTCCG
R:CCAATGCTTAATCAGTGAGG 55 858 [25]

blaSHV
F:ATGCGTTATATTCGCCTGTG

R:TTAGCGTTGCCAGTGCTCGATG 58 301 [26]

cit F: TGGCCAGAACTGACAGGCAAA
R: TTTCTCCTGAACGTGGCTGGC 64 462 [27]

Abbreviations: int1 = integron; tn3 = transposon; resistance to trimethoprim = dfrA, dfrB; resistance to tetracycline = tetA, tetB; quinolone
resistance = oqxA, oqxB, aac(6′)-Ib-cr, qepA, qnrS, qnrA, qnrB; resistance to colistin = mcr-1, mcr-2; sulfonamide resistance = sul1, sul2 and
sul3; β-lactamase encoding blaTEM-1, blaSHV and ampicillinase–cit. Phylogenetic grouping: arpA, chuA, yjaA, DNA fragment TspE4.C2 and
requires additional testing for specific genes in the E (arpAgpE) and C (trpAgpC) groups.
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2.3. Antimicrobial Sensitivity

The minimum inhibitory concentration (MIC) testing was performed according to
Gattringer et al. [28] using the Slovakian automated diagnostic system Bel-MIDITECH
(Bratislava, Slovakia) consisting of ampicillin (AMP), ampicillin + sulbactam (SAM),
piperacillin + tazobactam (TZP), cefuroxime (CXM), cefotaxime (CTX), ceftazidime (CAZ),
cefoperazone + sulbactam (SPZ), cefepime (FEP), ertapenem (ETP), meropenem (MEM),
gentamicin (GEN), tobramycin (TOB), amikacin (AMI), tigecycline (TGC), ciprofloxacin
(CIP), tetracycline (TET), colistin (COL) and trimethoprim + sulfonamide (COT). The results
of the MIC values of each antibiotic were interpreted according to the clinical breakpoints
(CBPs) described by The European Committee on Antimicrobial Susceptibility Testing
(EUCAST) 2020 [29].

2.4. Detection of Resistance Genes

The strains were investigated for the presence of resistance genes using primers, as
shown in Table 1, by means of multiplex and/or single PCR assays. The amplifications
were carried out in a single tube with a volume of 25 µL, utilizing TaqI polymerase (Solis
Biodyne, Estonia) with 10 × Buffer B without Mg2+ (2–2.5 µL); deoxynucleotide triphos-
phates (dNTPs) mix (Promega, Madison, WI, USA; 2.5 µL); 25 mM MgCl2 (1.5–2.5 µL);
10–20 pmol/µL primers (Lambda Life, Bratislava, Slovakia; 0.1–0.2 µL); 10–100 ng/µL
DNA template (1–1.5 µL); and deionized sterile water. The PCR program consisted of
an initial denaturation step at 95 ◦C for 4 min, followed by 32 cycles of DNA denatura-
tion at 95 ◦C for 50 s, primer annealing at 50–69 ◦C (according to primers) for 50 s and
primer extension at 72 ◦C for 1 min. After the last cycle, a final extension step at 72 ◦C for
7 min was added. The presence of genes for a resistance to trimethoprim–dihydrofolate
reductase enzymes dfrA and dfrB; sulfonamide resistance–sul1, sul2 and sul3; resistance
to tetracycline—tetA and tetB; quinolone resistance–oqxA, oqxB; additional plasmid medi-
ated quinolone resistance determinants–aac (6′)-Ib-cr; quinolone extrusion by qepA, qnrS,
qnrA and qnrB; resistance to colistin encoded by mcr-1 and mcr-2; β-lactamase encoding
blaTEM-1, blaSHV and ampicillinase–cit were monitored. Moreover, we evaluated the pres-
ence of genes for integron int1 and transposon tn3, because they are capable of capturing
and expressing the genes contained in cassette-like structures that represent a substantial
proportion of the resistance determinants in Gram-negative bacteria.

2.5. Detection of Biofilm Formation

The ability for biofilm formation was assessed in a quantitative assay using a microtiter-
plate test (Nunc, Roskilde, Denmark). Strains were grown on Brain Heart Infusion (BHI)
agar, and colonies were re-suspended in a BHI broth (Oxoid, Basingstoke, UK) to reach the
0.5 suspension of McFarland’s standard, and volumes of 200 µL of these cell suspensions
were transferred to the wells of the microplate. For the negative control, we used an
uninoculated BHI medium. After incubation (24 h at 37 ◦C), the adherent cells were
washed three times using a saline solution and stained with a 0.1% crystal violet solution
(Mikrochem, Pezinok, Slovakia). The adhering dye was dissolved with 30% acetic acid,
and the optical density was measured at 570 nm in the Synergy HT Multi-Mode Microplate
Reader (BioTek, Winooski, VT, USA). For classification, we used the average optical density
(OD) value and cut-off value (ODc) (defined as three standard deviations (SD) above the
mean OD of the negative control). The final OD value of a tested strain was expressed as
the average OD value of the strain reduced by the ODc value. For the interpretation of
the results, the strains were divided into the categories described by Stepanovic et al. [30]:
OD ≤ ODc = non-biofilm producer; ODc < OD ≤ 2 × ODc = weak biofilm; 2 × ODc < OD
≤ × ODc = moderate and 4 × ODc < OD = strong biofilm producer.
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3. Results and Discussion
3.1. Antimicrobial Sensitivity

A total of 38 E. coli isolates recovered from the fecal samples of healthy non-antimicrobial
treated dogs and 45 E. coli isolates from dogs with diarrhea were investigated to phenotypic
and genotypic antimicrobial resistance profiles.

In our study, the highest frequency of resistance in the healthy dogs was recorded for
tetracycline (n = 13), ampicillin (n = 12), ciprofloxacin (n = 6), ampicillin + sulbactam (n = 6)
and trimethoprim + sulphonamide (n = 5). This resistance phenotype is the most common,
and this could indicate the mobile nature of the genes responsible for these resistance
phenotypes [31]. Two of the isolates showed phenotypic colistin resistance.

The group of dogs with diarrhea showed a lower resistance profile for ampicillin
(n = 0), ampicillin + sulbactam (n = 2) and trimethoprim + sulphonamide (n = 4). Only their
resistance to ciprofloxacin (n = 12) and tetracycline (n = 14) was higher.

These findings are important for clinicians because β-lactam antibiotics are the most
frequently used antimicrobials for gastrointestinal disease in dogs and cats [32]. Ampicillin-
resistant E. coli could still be isolated from the dogs treated with antibiotics 21 days after
treatment [33]. This emphasizes the fact that the intestinal tract acts as a reservoir for
resistant bacteria long after the treatment has been stopped. Different studies suggest
that high levels of resistance genes can still be found up to four years after antibiotic
exposure [34,35]. This once more supports the importance of prudent antimicrobial usage
in order to prevent the spread of antibiotic resistance.

3.2. Interpretative Reading of the Antibiogram and Detection of Resistance Genes

The most commonly used antimicrobials for companion animals in Europe (e.g.,
Poland [36], Italy [37], Finland [38], Sweden [39], Norway [40] and the UK [41]) are β-
lactams (such as ampicillin, amoxicillin and amoxicillin-clavulanate). Fluoroquinolones,
macrolides, tetracyclines, nitroimidazoles and trimethoprim/sulphonamides have been
also reported to be routinely used in small animal practice, but on a much smaller scale
than β-lactams.

Resistance to ampicillin (AMP) was found in 12 of the E. coli isolated from healthy
animals. The value of MIC 90 (minimum inhibitory concentration required to inhibit the
growth of 90% of microorganisms) for AMP in this group was 64 mg/L. Compared to the
EUCAST clinical breakpoint (CBP) (AMP = 8 mg/L), the level of our MIC was very high.
Next, a very important antibiotic for this group is ampicillin + sulbactam (SAM), because it
has a good safety profile and provides coverage for a wide spectrum of bacterial pathogens.
Six isolates from the healthy dogs were resistant to SAM, with a MIC 90 (16 mg/L) value
slightly lower than for AMP (CBP for SAM = 8 mg/L), while only two such isolates were
found in the dogs with diarrhea (MIC 90 = 8 mg/L). These results are comparable with
other studies conducted in Europe [42,43], although a higher resistance is more often
reported in southern European countries [10], which supports the importance of detecting
the antibiotic profile for success treatment in companion animals. From the β- lactamase
genes, we detected only simple blaTEM-1 in six isolates from the healthy dogs.

Some of the MIC levels found in this study were worrisome. The target MIC value
for colistin (COL) is 4 mg/L, or exceptionally 2 mg/L. An interesting finding was the
detection of phenotypic colistin-resistance in our two strains from healthy dogs, specifically
with values of 4 mg/L and 8 mg/L and one isolate from the dogs with diarrhea (8 mg/L).
For a further study of the mechanism of this type of resistance, it is recommended that a
molecular method should be used for the detection of the mcr-1 and mcr-2 genes; however,
in our case, this has not been confirmed. To the best of our knowledge, COL resistance
in companion animals has only been described in China [44], Germany [45], Finland [46],
Ecuador [47] and the Netherlands [43]. COL is currently the last choice in the treatment of
human infections caused by carbapenem-resistant enterobacteria.

The presence of tetracycline (TET) resistance was detected in the E. coli of both healthy
(n = 13) and sick dogs (n = 14) with MIC 90 (32 mg/L). Similarly, relatively high levels
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of TET resistance have been documented in other studies of dogs; for example, in Italy,
Belgium and the Netherlands [43] as well as in Poland [36]. In the past, tetracycline has been
used not only to treat urinary tract infections (UTIs), but various derivates of TET (such as
chlortetracycline) have been used as a growth promotor [48], and the resistance probably
reflects the long history of this application. These results indicate that the resistance to TET
is still growing, and it should be used only if the susceptibility of the bacteria is confirmed
by an in vitro study. Resistance to TET is conferred by one or more of the described tet
genes, which encode one of three resistance and efflux mechanisms that appear to be more
abundant among Gram-negative microorganisms [49]. All of our isolates were examined
for the presence of tetA and/or tetB genes. The most common determinant in the healthy
isolates was the tetA gene (n = 19), while tetB was detected in five isolates. These results are
comparable with others described by Costa et al., Torkan et al. and Yousefi et al. [50–52].
On the other hand, the isolates from dogs with diarrhea showed a higher prevalence of the
tetB gene (n = 13) versus tetA (n = 5).

Fluoroquinolone resistance is multifactorial, with both chromosomal and plasmid-
mediated quinolone resistance (PMQR) mechanisms that are often contributing to the
overall MIC [53]. The emergence of PMQR indicates that quinolone resistance can also
be acquired through a horizontal gene transfer [54], and PMQR genes can create an envi-
ronment in E. coli for the rapid selection of high levels of resistance [55]. The MIC 90 of
ciprofloxacin (CIP) was MIC 90 = 8 mg/L in both groups (Figure 1) and was higher than
CBP (0.5 mg/L). Among the 38 healthy E. coli isolates, 16 carried PMQR genes including the
qnrB gene in 13 isolates, qnrS in two isolates and one isolate with aac(6′)-Ib-cr. The isolates
from dogs with diarrhea were positive for qnrS (n = 9) and aac(6′)-Ib-cr (n = 2). As in other
studies [56,57], genes encoding PMQR were also present in the ciprofloxacin-sensitive iso-
lates, and this was not only related to the selective pressure of the fluoroquinolones used.
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of (a) healthy dogs and (b) dogs with diarrhea. Abbreviations: AMP = ampicillin; SAM = ampicillin + sulbactam;
TZP = piperacillin + tazobactam; CXM = cefuroxime; CTX = cefotaxime; CAZ = ceftazidime; SPZ = cefoperazone + sulbac-
tam; FEP = cefepime; ETP = ertapenem; MEM = meropenem; GEN = gentamicin; TOB = tobramycin; AMI = amikacin;
CIP = ciprofloxacin; TET = tetracycline; TGC = tigecycline; COL = colistin and COT = trimethoprim + sulfonamide.

Resistance to trimethoprim-sulphonamide (COT) was detected in 11 E. coli strains from
the healthy dogs and 5 isolates from the diarrheal dogs. In this study, the trimethoprim
determinant dfrA was harbored by three isolates of the healthy dogs. This rate of COT
resistance gene acquisition is high, and may be due to selection resulting from the frequent
use of the sulfonamide/trimethoprim combination (due to its broad-spectrum activity) in
small animal medicine [51]. This may also explain the presence of sul1 (n = 1 in the healthy
dogs) and sul2 (n = 9 in the healthy dogs and n = 5 in the dogs with diarrhea) genes in our
examined isolates. These results indicate a transmission of resistance genes to the normal
microflora of healthy dogs.

Antimicrobial multidrug resistance (MDR) (resistance to at the least three different
classes of antibiotics) was reported in 11 isolates of the healthy dogs and 2 isolates of the
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diarrheal dogs. The presence of integron 1 (int1; n = 12) and transposome (tn3; n = 12) in
the healthy dogs indicates that the genetic mechanism for obtaining AMR genes is present
not only in clinically-obtained isolates, but also in the isolates of a normal pet’s microbiota.
The int1 gene often occurs in combination with trimethoprim resistance (dfr) and resistance
to sulphonamide (sul), and it was detected in two isolates from the healthy dogs.

Data on pet animals is clearly needed for guiding the antimicrobial use policies in
small animal veterinary practice, as well as for assessing the risk of the transmission of
antimicrobial resistance to humans. Although our work evaluated antibiotic resistance
without comparing our isolates to human ones, there are other existing studies that provide
support for the occasional cross-host-species sharing of resistant strains, which highlights
the importance of understanding the role of companion animals in the overall transmission
patterns of multi-drug resistant E. coli with the potential for causing intestinal and/or
extraintestinal infection [58,59].

3.3. Phylogenetic Analysis and Biofilm Formation

Focusing on the phylogenetic analysis (Figure 2), most of the strains from the healthy
dog group were classified into commensal intestinal groups. In detail, 18 isolates were
members of phylogroup A, and 13 were members of phylogroup B1. Pathogenic phy-
logroups occurred less frequently, but phylogroup B2 included three isolates; phylogroup
E consisted of two isolates; one isolate fell into each of the phylogroup D and F groups.
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Figure 2. The E. coli phylogroup analysis in (a) healthy dogs and (b) dogs with diarrhea.

The many strains from the dogs with diarrhea were classified into B2 (19/45; 42.2%)
and B1 (22/45; 48.90%) groups. Our comparative analysis between the phylogroups of the
healthy and diarrheic dogs showed that the phylogroup B2 was visibly more common in
the dogs with diarrhea.

In the healthy animals, the B1 group predominated, followed by the A, B2 and D
groups [60]. These findings are important and show that the healthy dogs are colonized
by commensal and pathogenic strains. The observation that the phylogenetic group B2
was usually related with the uropathogenic E. coli (UPEC) infection and the phylogenetic
group D with the other extraintestinal pathogenic E. coli (ExPEC) has been previously
reported [61,62]. Our results are comparable with those of Vega-Manriquez et al. [63],
where the phylogroup analysis showed that a greater half (57%) of the E. coli isolates from
the healthy dogs belonged to the commensal A and B1 groups, in contrast to the sick dogs,
where the phylogroups D and B2 were dominant. In a study by Valat et al. [64], most
of the pathogenic E. coli in dogs from digestive pathologies were also assigned to the B2
phylogroup (58.6%).
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The ability of E. coli to form a biofilm is an important virulent property. Our strains were
divided into four main groups on the basis of their biofilm-producing capacity (Figure 3).
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Figure 3. The ability of E. coli isolates to form biofilm.

In the healthy dogs, 13 strains (34.2%) were classified as strong biofilm producers,
while the remaining 12 strains (31.6%) were regarded as moderate and 11 (29%) as weak
biofilm producers. Only two of the strains did not form a biofilm. Most of the clinical
isolates (70%, n = 32) had a stronger ability to form biofilms, followed by 13% moderate and
9% weak biofilm producers. In their study, Vijay et al. [65] examined the ability to form a
biofilm in enteroaggregative E. coli (EAEC) from humans and animals with diarrhea. In that
case, the EAEC isolates recovered from animals were low biofilm producers (65.3%), fol-
lowed by moderate (26.5%) and high biofilm producers (8.1%). It has been reported [66,67]
that biofilm formation may be an important contributory factor in persistent infection,
either by allowing the bacteria to evade the local immune system and/or by preventing
the transport of antibacterial factors, including antibiotics.

The analysis between the phylogenetic groups and the presence of phenotypic AMR
(Table 2) shows that 17 E. coli of the healthy dogs belonging to the commensal phyloge-
netic groups—A, B1—were without AMR phenotypic profile along with all examined
strains belong to the pathogenic groups B2, D, E and F. The remaining 14 E. coli—part
of the commensal phylogroups—showed resistance to antibiotics. The most common
phenotypic AMR profile in the healthy dogs were AMP–TET–COT (phylogroup A = 2 iso-
lates; B1 = 2 isolates) and AMP–CIP–TET–COT (phylogroup A = 2 isolates; B1 = 2 isolates).
Twenty-three E. coli of the sick dogs belonging to the commensal phylogenetic groups— A,
B1—were without AMR phenotypic profile, and two isolates showed phenotypic resistance
only to colistin. Predominant isolates of dogs with diarrhea showed the most common
form of CIP—TET combination in the B2 phylogroup (n = 7). Our study compared the
values of MIC 90 and MIC XG (geometric mean MIC values of an antibiotic agent; mg/L)
in E. coli of healthy dogs and dogs with diarrhea and points only to a slight increase in
these values in healthy animals versus dogs with diarrhea.
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Table 2. The frequency of phenotypic antimicrobial resistance/sensitivity divided into phylogroups
in healthy and sick dogs.

Phylogroups of Healthy Dogs Phenotypic Antimicrobial
Resistance Profile Number of Isolates

A Without AMR profile n = 8
A TET n = 2
A AMP, COT n = 1
A AMP, TET, COT n = 2
A AMP, SAM, TET n = 1
A AMP, CIP, TET, COT n = 2
A AMP, CIP, TET, COL, COT n = 2
B1 Without AMR profile n = 9
B1 AMP, TET, COT n = 2
B1 AMP, CIP, TET, COT n = 2
B2 Without AMR profile n = 3
D Without AMR profile n = 1
E Without AMR profile n = 2
F Without AMR profile n = 1

Phylogroups of sick dogs Phenotypic antimicrobial
resistance profile Number of isolates

A Without AMR profile n = 3
B1 Without AMR profile n = 20
B1 COL n = 2
B2 CIP n = 4
B2 TET n = 3
B2 CIP, TET n = 7
B2 TET, COT n = 2
B2 CIP, COT n = 1
B2 SAM, TET, COT n = 2
F Without AMR profile n = 1

Abbreviations: AMP = ampicillin; SAM = ampicillin + sulbactam; CIP = ciprofloxacin; TET = tetracycline;
COL = colistin and COT = trimethoprim + sulfonamide.

4. Conclusions

This study reported on a comparison of E. coli isolates from healthy and diarrheic dogs.
The observed results in the dogs with diarrhea showed differences in the phylogenetic
representation, especially in terms of a high incidence of B2 isolates that were able to
form a stronger biofilm compared to isolates from healthy dogs. The MIC 90 and MIC XG
monitoring pointed out only a slight increase in these values in healthy animals. However,
a high prevalence of genes encoding AMR and mobile elements in commensal E. coli can
indicate that these strains can be a vehicle for the spread dissemination of AMR.
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