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Electrochemical water splitting involving hydrogen evolution reaction (HER) and oxygen
evolution reaction (OER) is a greatly promising technology to generate sustainable and
renewable energy resources, which relies on the exploration regarding the design of
electrocatalysts with high efficiency, high stability, and low cost. Transition metal
phosphides (TMPs), as nonprecious metallic electrocatalysts, have been extensively
investigated and proved to be high-efficient electrocatalysts in both HER and OER. In
this minireview, a general overview of recent progress in developing high-performance
TMP electrocatalysts for electrochemical water splitting has been presented. Design
strategies including composition engineering by element doping, hybridization, and
tuning the molar ratio, structure engineering by porous structures, nanoarray
structures, and amorphous structures, and surface/interface engineering by tuning
surface wetting states, facet control, and novel substrate are summarized. Key
scientific problems and prospective research directions are also briefly discussed.
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INTRODUCTION

In the past decades, global energy consumption has been growing dramatically, with fossil fuels still
providing over 80% of energy consumption, resulting in severe energy crisis and greenhouse effect
(Zhang et al., 2017a; Peng et al., 2016). To address the key issue of these energy sources, researchers
have begun to exploit clean and renewable energy resources such as solar energy, geothermal energy,
wind power, and hydropower (Gallagher et al., 2015; Hou et al., 2011). Since hydrogen is regarded as
a pollution-free energy source with ultrahigh energy density, water electrolysis has attracted
tremendous attention for producing hydrogen energy from water in abundance (Peng et al.,
2014; Ying et al., 2017; Yu et al., 2019a). As shown in Figure 1, electrochemical water splitting
consists of two half-cell reactions, namely, hydrogen evolution reaction (HER) at the cathode and
oxygen evolution reaction (OER) at the anode. The current state-of-the-art water electrolysis
technology requires the use of precious metal (e.g., Pt and IrO2) electrocatalysts (Fujishima
et al., 2008; Stoerzinger et al., 2015). Nevertheless, the high cost and low abundance of precious
metals are restricting the widespread application of water electrolysis technology (Ying et al., 2014a;
Ying et al., 2018a; Xiao et al., 2019; Xiao et al., 2021a).

Accordingly, tremendous substantial efforts have been devoted to the development of sustainable
alternative electrocatalysts, one of which involves high efficiency, high stability, and low cost. Thus,
many nonprecious metal electrocatalysts including carbon/carbon-based nanomaterials (Lu et al.,
2015; Han et al., 2019; Ji et al., 2019), metal chalcogenides (Li et al., 2016), carbides (Yang et al., 2019;
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Lai et al., 2020), borides (Li et al., 2019), nitrides (Ye et al., 2018;
Tareen et al., 2019), oxides (Song et al., 2018; Li et al., 2020), and
especially phosphides (Ren et al., 2020; Sarkar et al., 2020) are
currently representative electrocatalytic materials for both HER
and OER. Among them, transition metal phosphides (TMPs)
have been widely investigated and demonstrated to be very
suitable for electrochemical water splitting (Dutta and
Pradhan, 2017; Wang et al., 2018).

As the first nickel phosphide was prepared for vapor phase
catalysis in the 1950s, it has been gradually depleted for a long
time (Sweeny et al., 1958). In the 1990s, Kupka et al. first used
metal phosphides as electrocatalysts (Kupka and Budniok, 1990).
In 2005, Liu et al. presented the high HER activity of Ni2P(001)
facet by density functional theory (DFT) calculations and
suggested that the Ni-P bonds form a weak “ligand effect” that
endows the fast dissociation of thiophene and hydrogen (Liu and
Rodriguez, 2005). In 2013, Lewis et al. used nanostructured TMPs
as HER electrocatalysts in acid media (Popczun et al., 2013). Until
2015, Yoo et al. made further progress demonstrating that the
surface oxidized compounds are the true catalytic site of the metal
phosphides (Ryu et al., 2015). Inspired by this work, massive
research studies on TMPs for water electrolysis in the past several
years have been reported. For example, Liu et al. reported an
oxygen doping strategy to prepare an effective NiCoP
electrocatalyst with optimized hydrogen adsorption energy and
plentiful exposed active sites (Liu et al., 2018a).

Currently, the field of synthesis of TMP electrocatalysts for
water splitting is experiencing a prosperous development with
increasing achievements. It is necessary to timely provide a brief
overview of this type of advanced material. In this minireview, we
provide a general overview of the recent advances in efficient
TMPs for electrochemical water splitting based on the

understanding of their relationship between structure and
performance. The developments in the design strategies based
on composition engineering, structure engineering, and surface/
interface engineering are summarized. Moreover, key scientific
problems and prospective research directions are also proposed.

Composition Engineering
Considering the influence of electron structure and intermediate
adsorption energy, the introduction of elements into TMPs, such
as element doping, hybridization with other compositions, and
tuning their molar ratios is often used to improve their
electrocatalytic performance.

Element Doping
In general, doping foreign elements can boost the intrinsic
activity of electrocatalysts (Niu et al., 2019; Song et al., 2021;
Gao et al., 2019). What is more, the optimal ratio of doping
elements can be predicted in advance via DFT calculations (Peng
et al., 2021; Fu et al., 2019). Hence, the electrocatalytic behavior
can be precisely regulated at the atomic scale. Most single metal
phosphides have a limited intrinsic activity due to the difficulty in
balancing the adsorption and desorption of reaction
intermediates (Parra-Puerto et al., 2019; Read et al., 2016;
Dutta et al., 2016). To solve the shortcomings, incorporating
foreign atoms into the single TMPs has been studied by many
research groups (Wu et al., 2018; Du et al., 2020; Yue et al., 2019;
Shin et al., 2020; Lv et al., 2020). Liu et al. reported that doping
element Zn into pristine CoP could significantly enhance HER
performance (Liu et al., 2017). Because Zn had lower electron
negativity as compared with Co, it could provide some electrons
to nearby P atoms and generate some electron-deficient cations.
As a result, the surrounding Co will lose more electrons, thus
weakening H chemisorption strength with Co and improving
HER performance (Figure 2A). Not only that many research
studies have been achieved to explore the effects of introducing
other elements such as N, S, or O into TMPs (Chang et al., 2018;
Xi et al., 2018; Wang et al., 2019; Mu et al., 2021).

Hybridization
Hybridization with other compositions also remarkably increased
catalytic activity because of the strong synergistic effect between
multiple compositions and the improved mass transportation
ability. In a multicomponent composite, the contacted
components/phases show special interactions (Wang et al.,
2018). By the rational design of the heterogeneous structure,
the physicochemical properties of the interface can be obviously
changed, thus presenting better performance than the single
bulk phase (He et al., 2018; Saha et al., 2020). Li et al. developed
a novel Fe@FeP core–shell nanoparticles on carbon nanotubes
as an efficient HER catalyst (Li et al., 2017). The resulting Fe@
FeP hybrid catalyst presented a low overpotential of 53 mV at a
current density of 10 mA cm−2 and a Tafel slope of 55 mV dec−1

due to the presence of strong electron interactions and
synergistic effects between Fe and FeP (Figure 2B). DFT
calculations showed that the hydrogen adsorption energy on
Fe@FeP is very close to that on Pt (111), revealing the
enhancement effect of the Fe@FeP core–shell structure. In

FIGURE 1 | Schematic illustration of an electrolyzer for electrochemical
water splitting and corresponding reaction equations in different reaction
conditions.
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addition, Yu et al. synthesized a FeP/Ni2P hybrid catalyst via the
chemical vapor deposition method (Yu et al., 2018). The
obtained hybrid catalyst showed excellent catalytic
performance in HER because it preferentially exposed the
most active facets compared to the FeP(001) crystal, which
contributed to the high activity not observed in typical FeP
crystals.

Tuning the Molar Ratio of M/P
Since the first use of TMPs in electrocatalysis, enormous efforts
have been devoted to pursuing the optimal metal/phosphorus
(M/P) molar ratios (Callejas et al., 2015). As studied before,
different M/P molar ratios lead to variations in crystal
structures, hence directly influencing the electrocatalytic
properties (Pei et al., 2017). In some situations, tuning molar
ratios of M/P could boost excellent enhancements on HER
activity. For example, Laursen et al. have explored the superior

HER activity of Ni5P4 nanoparticles by researching the different
catalytic performances between Ni2P and Ni5P4 nanoparticles
(Laursen et al., 2015). The combination of the Volmer–Tafel
mechanism and DFT calculation disclosed that Ni5P4 displayed
a faster reaction rate because of the increased binding energy of
the first hydrogenic intermediate, which in turn increases the
second proton affinity. Moreover, the bond length of Ni-P in
Ni4P5 is also longer than that in Ni2P (Figure 2C), explaining
that Ni4P5 exhibited much better catalytic activity compared
to Ni2P.

Structure Engineering
Besides the composition engineering mentioned above, structure
engineering is also an indispensable strategy to improve the water
splitting performance of electrocatalysts. Three main aspects
including porous structures, nanoarray structures, and
amorphous structures are discussed in this section.

FIGURE 2 | Typical examples of strategies for the development of TMP electrocatalysts: (A–C) composition engineering, reproduced with permission from ref. Liu
et al. (2017), Li et al. (2017), and Laursen et al. (2015), respectively; (D–F) structure engineering, reproduced with permission from ref. Xu et al. (2018a), Jiang et al. (2018),
and Hu et al. (2017), respectively; and (G–I) surface/interface engineering, reproducedwith permission from ref.(Yu et al. (2019b), Feng et al. (2015), and Yan et al. (2020),
respectively.
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Porous Structures
It is well known that the electrocatalytic reactions proceed on the
surface of electrocatalysts; tiny pore structure could lead to
improving the surface area and exposing more active sites
(Peng et al., 2018; Xiao et al., 2021b; Ying et al., 2018b; Ying
et al., 2014b). Since Erlebacher’s group put forward a continuum
model to explain the fundamental mechanism of nanoporosity
formation in the dealloying process (Erlebacher et al., 2001),
many scientists have continuously continued to explore this. In
this regard, Xu et al. developed a facile technique to prepare a
nanoporous (NixFe1-x)4P5 with controllable metal ratio
(Figure 2D), which serves as a bifunctional catalyst for both
HER and OER with an outstanding catalyst performance (Xu
et al., 2018a). Sun et al. designed porous and multishelled Ni2P
hollow spheres by using the carbon spheres as the template,
subsequently phosphating along with thermal treatment (Sun
et al., 2017). The hollow porous multishells and nanosized
subunits endow Ni2P with short charge transport distances,
abundant active sites, and high stability against agglomeration,
representing outstanding OER catalytic performance.

Nanoarray Structures
The nanoarray-structured self-supported electrodes, growing on
the free-standing substrates, with discontinuous phase contact
areas are very attractive due to avoiding the negative effects of
binders and generating excellent stability (Liang et al., 2016;
Zhang et al., 2020; Hou et al., 2020). In contrast to swarming
bubbles adsorbed onto the planar surface of bulk materials, these
nanoarrays can always show very preeminent electrocatalytic
activity. For example, Shen et al. reported a porous MoP
nanoflake array grown on nickel foam (MoP/NF) with
excellent performance in water electrolysis (Figure 2E) (Jiang
et al., 2018). In contrast to MoP, the enhanced electrocatalytic
performance of MoP/NF is ascribed to the reduced size and the
special nanoflake array structure. Moreover, besides avoiding the
use of binders, the porous MoP/NF could be directly treated as
both current collector and electrocatalyst, which made the active
sites fully exposed and conductive to gas penetration and mass
transfer. For another example, Su et al. successfully prepared self-
supported NiMoP2 with grain boundary rich nanowire
architecture on a carbon cloth substrate, showing small
overpotential and remarkable electrochemical durability for
water splitting (Wang et al., 2017). Such impressive
characteristics can be tracked to the hierarchical architecture of
the NiMoP2 nanowire in situ grown on a 3D carbon cloth substrate
weakening the disintegration tendency of catalyst, and the special
grain boundary nanowire structure of NiMoP2 provides the
maximum number of electroactive surface/active sites.

Amorphous Structures
Since vacancies and defects are often considered as active sites of
catalysis, amorphous catalysts are widely researched because of
the disordered domains containing lots of vacancies and defects
(Yan et al., 2017; Chu et al., 2020). In general, amorphous
structures are always rigorous to preparation conditions
(Zhang et al., 2016; Anantharaj et al., 2017; Ray et al., 2017).
For instance, Xiong et al. reported a high-efficiency OER

electrocatalyst based on bulk amorphous NiFeP in both
alkaline and acidic electrolytes (Hu et al., 2017). In this case,
the element P with proper electronegativity has been utilized to
stabilize Ni and Fe atoms as an amorphous metallic phase with
high conductivity and may also form active species for enhancing
OER performance. Besides, the metallic bonds facilitated the
electron transfer, whereas the P atoms supplied suitable bonds
with reaction intermediates (Figure 2F). At the same time, the
coordination numbers of Ni and Fe in Ni40Fe40P20 were largely
lower than those counterparts, indicating metal atoms in the
Ni40Fe40P20 were unsaturated. Combining these features together,
this Ni40Fe40P20 electrode manifested an outstanding
performance in OER. Therefore, the amorphous NiFeP
accomplishes unprecedentedly excellent OER performance.

Surface/Interface Engineering
Surface/interface engineering, including the tuning surface
wetting states, facet control, and novel substrate, is another
effective way to enhance the performance of electrocatalysts.
Since both mass transfer and gas delivery play a crucial role
during water splitting, modifying the surface wettability such as
superhydrophilicity is beneficial to HER and OER. In addition,
the facet control and novel substrate are also beneficial to
electrocatalytic properties via exposing more catalytic active
sites and facilitating the electrolyte transfer.

Tuning Surface Wetting States
During the electrolysis of water, the surface wettability such as
superhydrophilicity and superaerophobicity of the
electrocatalysts are key to the electrocatalytic process due to
the evolution of gas bubbles in the solution (Hao et al., 2016;
Tian et al., 2020). It is commonly thought that superhydrophilicity
is advantageous for mass transfer inside the electrode and can
improve the interaction between electrocatalysts and electrolytes
(Kim et al., 2021; Riyajuddin et al., 2021). Likewise, the
superaerophobicity can be beneficial to electrocatalysts by
avoiding bubble effects (Sheng et al., 2020). The formed gas
bubbles would adhere to the surface of the electrocatalyst
during the water splitting process, which would be a barrier to
the solution diffusing to the active sites and result in a dissatisfied
performance (Xu et al., 2018b). Precise surface design can improve
the surface’s superhydrophilicity and superaerophobicity to boost
the interaction between electrodes and electrolytes and also solve
the bubble adsorption issue during the electrocatalytic process. For
example, Yu et al. prepare a Ni2P nanoarray catalyst with a unique
superaerophobic surface feature grown on a Ni foam substrate,
which represents remarkable electrocatalytic activity and stability
in basic media (Yu et al., 2019b). The special superaerophobicity
endows an outstanding capability to withstand inside and outside
forces and releases the in situ–formed H2 bubbles timely
(Figure 2G), resulting in highly efficient electrocatalytic activity
and outstanding stability of the Ni2P/NF.

Facet Control
While researching the composition of a nanostructure to TMPs
that display reasonable electrocatalytic performance during water
splitting progress, a large portion of research studies have focused
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on enhancing the intrinsic activity of active sites on the surface of
nanostructures (Dutta et al., 2016; Lei et al., 2018; Ying et al.,
2018c). Hence, there have been enormous efforts to prepare facet-
controlled TMP nanostructures restricted by special facets which
exert excellent catalytic activity (Liu and Rodriguez, 2005;
Popczun et al., 2013). For example, Zhang et al. reported the
ultrathin CoP nanosheets with dominant active facets by a
chemical transformation method (Zhang et al., 2017b). The as-
prepared samples consist of porous nanosheets, which are in
single crystalline structure with a preferential [100] orientation.
DFT calculation disclosed that on CoP (Lv et al., 2021) facets, a
near-zero Gibbs free energy could lead to high utilization
efficiency of active sites, therefore endowing (Lv et al., 2021)
highly active CoP. In addition to single crystalline, other
crystallines are, of course, affected by the crystal surface. For
instance, Feng et al. reported novel {2—10} facet-exposed Ni3S2
nanosheet arrays on nickel foam (NF) (Figure 2H), which can
efficiently catalyze both HER and OER (Feng et al., 2015). The
excellent electrocatalytic performance in water splitting can be
attributed mainly to the synergistic effect between the nanosheet
array architecture and exposed {2—10} high-index facets.

Novel Substrate
Until now, two novel substrates with good conductivity, high
mechanical strength, and corrosion resistance in electrocatalysis
fields have been developed, which can act as supporting materials
for stabilizing electrocatalysts and facilitate the electron transfer
from the external circuit to electrocatalysts (Liu et al., 2018b; Gao
et al., 2021; Yu et al., 2020; Xiu et al., 2018). One of them is black
phosphorus (BP), a kind of 2D material, which is well known for
its intriguing physicochemical properties, such as high
charge–carrier mobility, tunable bandgap, and highly
anisotropic characters (Fei and Yang, 2014; Jiang and Park,
2014; Liu et al., 2014). In view of these merits of BP, Wu et al.
designed novel Ni3N-Ni2P-BP heterostructure nanosheets with
enhanced OER activity in alkaline conditions (Wu et al., 2019).
The DFT calculation demonstrates that Ni2P is very close to the
ideal value compared to the Gibbs free energies of Ni3N and BP.
In addition, the electron transfer rate can be improved by the
metallic nature of the Ni3N-Ni2P-BP catalyst. As a result, the
heterostructure of Ni3N-Ni2P-BP catalysts can remarkably
enhance the OER activity. As another promising 2D material,
transition metal carbides and nitrides (known as MXenes) with
the features of great mechanical stability, high conductivity, and
wide chemical variety display great potential as substrates (Du
et al., 2018; Yoon et al., 2019; Lv et al., 2021). For example, Yan
et al. successfully prepared novel CoP nanosheet arrays on the
surface of Ti3C2 MXene nanosheets (CoP/Ti3C2 MXene)
(Figure 2I) (Yan et al., 2020). Benefiting from the unique
structure and synergistic effect between the active CoP and

Ti3C2 MXene nanosheets, the 3D MXene matrix not only
prevents the self-aggregation of active sites but also
significantly facilitates the electrolyte accessibility and
enhances the charge/mass transfer. Hence, the CoP/Ti3C2

MXene heterostructure represents a largely improved
electrocatalytic activity and remarkable stability in HER over a
wide pH range.

CONCLUSION AND OUTLOOK

This review has summarized the reported strategies for
developing TMP electrocatalysts in electrochemical water
splitting, including composition engineering, structure
engineering, and surface/interface engineering. These strategies
can be utilized as common and efficient strategies for preparing
high-performance electrocatalysts. Moreover, the strategies
discussed above can be modified and/or extended to other
systems although we only focused on a limited number of
examples.

Although rapid and significant development has been made
in the synthesis of TMP electrocatalysts with superior HER and/
or OER performance, the research in this field is still at the
exploration stage, and several issues need to be addressed, such
as preparation of TMPs with a special facet, stabilization of
TMPs in acidic OER, and surface oxidation of TMPs. To better
understand the in-depth reason for the enhanced
electrocatalytic performance, two research aspects are
recommended: 1) in situ structural characterization for
investigating the catalytic active sites and 2) theoretical
reaction simulation for predicting the optimized structures/
compositions. Combining these two aspects, the field of TMP
electrocatalysts for water splitting will undoubtedly keep
moving forward rapidly.
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