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Abstract

Since the microbiome has a significant impact on human health and disease, microbe-dis-

ease associations can be utilized as a valuable resource for understanding disease patho-

genesis and promoting disease diagnosis and prognosis. Accordingly, it is necessary for

researchers to achieve a comprehensive and deep understanding of the associations

between microbes and diseases. Nevertheless, to date, little work has been achieved in

implementing novel human microbe-disease association prediction models. In this paper,

we develop a novel computational model to predict potential microbe-disease associations

by bi-random walk on the heterogeneous network (BiRWHMDA). The heterogeneous net-

work was constructed by connecting the microbe similarity network and the disease similar-

ity network via known microbe-disease associations. Microbe similarity and disease

similarity were calculated by the Gaussian interaction profile kernel similarity measure;

moreover, a logistic function was applied to regulate disease similarity. Additionally, leave-

one-out cross validation and 5-fold cross validation were implemented to evaluate the pre-

dictive performance of our method; both cross validation methods performed well. The

leave-one-out cross validation experiment results illustrate that our method outperforms

other previously proposed methods. Furthermore, case studies on asthma and inflamma-

tory bowel disease prove the favorable performance of our method. In conclusion, our

method can be considered as an effective computational model for predicting novel

microbe-disease associations.

Introduction

There are a large number of microbes in the human body. Research indicates that approxi-

mately 90% of the cells in and on the human body are microbial cells [1]. These microbes,

including bacteria, eukaryotes, archaea and viruses, reside in and on different body surfaces

such as the mouth, skin, vagina and gut, with the vast majority residing in the gastrointestinal

tract [2]. These microbes make up an important part of the human body. Recently, due to the

impressive advances in metagenomics and metatranscriptomics tools, scientists have begun
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earnestly investigating the human microbiome. For example, the Human Microbiome Project

(HMP) was recently launched to explore microbial communities and their relationships with

human hosts [1]. The study found that the interaction between human microbiome and cells

would affect human health and contribute to the pathogenesis of various diseases [3]. On the

one hand, the relationship between humans and the microbiome is symbiotic and mutualistic.

For instance, the gut microbiome advances nutrition and energy harvest by fermenting food

components that cannot be digested by the host [4]. In addition, the microbiome can help

develop the immune system [5, 6], maintain homeostasis [7], and protect against pathogens

[8]. On the other hand, there is strong evidence that some microbiomes may lead to various

diseases. Recent studies have discovered the associations between body microbiomes and ail-

ments such as cancer [9], diabetes [10, 11], obesity [12–14] and kidney stones [15]. Thus, it is

imperative for researchers to achieve a comprehensive understanding of the associations

between microbes and diseases, which would not only help determine disease pathogenesis,

but also boost disease diagnosis and therapy.

Though some computational methods have recently been proposed to study microorgan-

isms and human diseases [16–18], little work has been undertaken to advance human

microbe-disease association prediction models. Until 2016, Ma et al. built the Human

Microbe-Disease Association Database (HMDAD) by collecting microbe-disease association

data from 61 previous published studies, providing a valuable informational resource for

investigating microbe-disease associations. Based on the freely available data, several network

based prediction methods have been proposed to achieve microbe-disease association infer-

ence. Shen et al. developed RWRHMDA, which applies a random walk with restart algorithm

on the heterogeneous network to rank candidate microbes for a specific disease [19]. Chen

et al. proposed KATZHMDA to infer potential disease-related microbes by integrating walks

of different lengths in the heterogeneous network [20]. Huang et al. introduced PBHMDA to

obtain the prediction scores of each candidate microbe-disease pair by evaluating all paths

between a microbe and a disease [21]. Meanwhile, during the last few years, the bi-random

walk algorithm has been widely used in the field of bioinformatics to address biomedical prob-

lems [22–26]. Inspired by its superior performance, we apply bi-random walk algorithm to the

study of human microbe-disease associations in the present study. It is a global strategy that

explores the missing microbe-disease associations simultaneously, and can predict novel

related microbes for diseases without any known associated microbe information.

More specifically, we present a novel computational approach that executes a bi-random

walk algorithm on the heterogeneous network to predict potential microbe-disease associa-

tions (BiRWHMDA). Based on Gaussian interaction profile kernel similarity and logistic func-

tion transformation, we constructed the microbe similarity network and the disease similarity

network. Subsequently, the heterogeneous network was constructed by connecting the

microbe similarity network and the disease similarity network using the known microbe-dis-

ease associations. Then, the bi-random walk algorithm was executed on the heterogeneous net-

work to predict potential microbe-disease associations. Cross validation frameworks are

implemented to evaluate the performance of BiRWHMDA. The AUC (the area under of ROC

curve) values were 0.8964 and 0.8808 in leave-one-out cross validation (LOOCV) and 5-fold

cross validation, respectively. Experiment results of LOOCV demonstrate that our method

outperforms other previously proposed methods. Furthermore, case studies of asthma and

inflammatory bowel disease (IBD) also demonstrate the favorable performance of our method

in predicting novel microbe-disease associations. In summary, BiRWHMDA can be consid-

ered as an effective predictive tool for potential microbe-disease associations.

Human microbe-disease association prediction
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Materials and methods

Dataset

The dataset used in this study (S1 File) was downloaded from the newly built Human

Microbe-Disease Association Database (HMDAD, http://www.cuilab.cn/hmdad), which col-

lects human microbe-disease association data from 61 previously published studies. Presently,

HMDAD possesses 483 verified microbe-disease association records between 292 microbes

and 39 diseases. Here, the microbes are curated at the genus level [27]. However, the set had

several duplicate associations; after removing the duplications, we acquired 450 distinct associ-

ations and then constructed an adjacency matrix A of the microbe-disease association net-

work. A(i,j) is equal to 1 if there is a known association between disease d(i) and microbe m(j);
otherwise, the appropriate coding is 0 [20].

Microbe similarity

To construct the heterogeneous network, the microbe similarity network and the disease simi-

larity network should be separately constructed. Further, we needed to ascertain the similarity

between each microbe-microbe pair and each disease-disease pair. In this work, we apply the

Gaussian interaction profile kernel similarity measure to determine microbe similarity and

disease similarity [28–36].

Based on the assumption that similar microbes are more likely to show a similar interaction

and non-interaction pattern with diseases, Gaussian interaction profile kernel similarity for

microbes can be calculated from the known microbe-disease association network [33]. The

microbe interaction profile m(i) is a binary vector encoding the presence or absence of the

associations with each disease in the known microbe-disease association network, defined as

the ith column of the adjacency matrix A of the microbe-disease association network con-

structed above. Then, the Gaussian interaction profile kernel similarity between microbe m(i)
and m(j) is calculated from their interaction profiles as follows:

SMðmðiÞ;mðjÞÞ ¼ expð� gmkmðiÞ� mðjÞk2
Þ ð1Þ

The parameter γm denotes the normalized kernel bandwidth, which is calculated based on the

new kernel bandwidth parameter γ’
m as follows:

gm ¼ g
0

m=ð
1

nm

Xnm

k¼1

kmðiÞk2
Þ ð2Þ

Here, nm is the number of microbes and γ’
m is simply set to 1 [20].

Disease similarity

Similar to microbes, Gaussian interaction profile kernel similarity between disease d(i) and d
(j) can be defined as follows:

KSDðdðiÞ; dðjÞÞ ¼ expð� gdkdðiÞ� dðjÞk2
Þ ð3Þ

gd ¼ g
0

d=ð
1

nd

Xnd

k¼1

kdðiÞk2
Þ ð4Þ

where nd is the number of diseases and γ’
d is also set to 1.

According to a prior study [37], similarity value ranges in [0, 0.3] are not informative, while

similarity value ranges in [0.6, 1] are informative. To improve predictive accuracy, we regulate
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disease similarity by applying logistic function transformation. The function is defined as fol-

lows:

SDðdðiÞ; dðjÞÞ ¼
1

1þ ec�KSDðdðiÞ;dðjÞÞþd
ð5Þ

where KSD(d(i),d(j)) is the Gaussian interaction profile kernel similarity between diseases, and

c and d are parameters that control the adjustment effect. For KSD(d(i),d(j))2[0,0.3], SD(d(i),d
(j))�0; and for KSD(d(i),d(j))2[0.6,1], SD(d(i),d(j))�1. When KSD(d(i),d(j)) = 0, we set SD(d(i),
d(j)) = 0.0001, which set d as log(9999). Vanunu et al. tune the parameter using cross validation

and set c = -15 [37]. In the present study, we used the adjusted result, SD, to represent the final

disease similarity.

Construction of the heterogeneous network

Based on the microbe similarity and disease similarity calculated above, both the microbe simi-

larity network and the disease similarity network can be constructed. In the microbe similarity

network, let M = {m(1), m(2), . . ., m(nm)} denote the node set of nm microbes; the edge

between two microbes is weighted by the similarity value of these two microbes. Likewise, in

the disease similarity network, let D = {d(1), d(2), . . ., d(nd)} denote the node set of nd diseases,

while the edge between two diseases is weighted by the similarity value of these two diseases.

We further analyze the frequency distribution of edge weights in each network. Fig 1 indicates

that the distribution of edge weights in the disease similarity network is more concentrated

after logistic function transformation.

Besides, the microbe-disease association network can be modeled as a bipartite graph

[38]. In the bipartite graph, the heterogeneous nodes correspond to either microbes or

diseases, and edges denote the presence or absence of the associations between them. If

there is a known association between disease d(i) and microbe m(j), the weight of the edge

is equal to 1; otherwise 0. To get a comprehensive view of the bipartite graph, we analyze

the degree distribution of the microbes and diseases in the microbe-disease association

network (Fig 2). It shows the activeness of all nodes in the entire network. On average,

each microbe is associated with 1.54 diseases and each disease is associated with 11.54

microbes.

The global heterogeneous network contains above-mentioned two types of nodes (microbes

and diseases) and three types of edges between them, which can be constructed by connecting

the microbe similarity network and the disease similarity network via the known microbe-dis-

ease associations.

Fig 1. Frequency distribution of microbe similarity and disease similarity. (A) Frequency distribution of

microbe similarity. (B) Frequency distribution of disease similarity.

https://doi.org/10.1371/journal.pone.0184394.g001
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BiRWHMDA

In this study, we developed a novel computational method of BiRWHMDA to predict human

microbe-disease associations. Fig 3 shows the flowchart of BiRWHMDA. Firstly, microbe sim-

ilarity and disease similarity could be calculated based on the known microbe-disease associa-

tions originated from HMDAD. Secondly, the global heterogeneous network was built by

combining the microbe similarity network, the disease similarity network and the microbe-

Fig 2. Degree distribution for microbes and diseases in the microbe-disease association network. (A)

Degree distribution of microbes. (B) Degree distribution of diseases.

https://doi.org/10.1371/journal.pone.0184394.g002

Fig 3. The flowchart of BiRWHMDA.

https://doi.org/10.1371/journal.pone.0184394.g003
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disease association network. Finally, the bi-random walk algorithm was performed on the het-

erogeneous network to obtain the association probability scores between microbes and dis-

eases. The source code for BiRWHMDA is available in S2 File. In the following, we focus on

the bi-random walk algorithm for microbe-disease association prediction.

To have a deep understanding of this algorithm, we first introduce the concept of circular

bigraph (CBG), which plays an important role in the procedure. A CBG is defined as a sub-

graph consisting of a microbe path {m1, m2, . . ., mm}and a disease path {d1, d2, . . ., dn}, with

two ends linked by two known microbe-disease associations (m1, d1) and (mm, dn). The length

of a CBG is defined as the length of the longer path of the two paths (Fig 4). A CBG describes a

vicinity relation between the associations (m1, d1) and (mm, dn). Accordingly, a potential

microbe-disease association is evaluated by its distance to other associations in the microbe

similarity network and the disease similarity network [24].

Bi-random walk explores the CBG patterns by iteratively performing random walk on the

microbe similarity network and the disease similarity network simultaneously, to infer novel

microbe-disease associations [22]. The CBGs are weighted by a decay factor α, which ranges

from 0 to 1; the importance of a CBG is decreased when the path length becomes longer. Nev-

ertheless, the microbe similarity network and the disease similarity network contain diverse

topologies and structures, which would generate disparate optimal amounts of random walk

steps. To solve this problem, two parameters, l and r, are introduced to restrict steps on the

two sides [26]. The iterative process is described as follows:

random walk on the microbe similarity network : Rm ¼ aMDt� 1 � SM þ ð1 � aÞA ð6Þ

random walk on the disease similarity network : Rd ¼ aSD �MDt� 1 þ ð1 � aÞA ð7Þ

Here, α is the decay factor. Rd(i,j) and Rm(i,j) denote the probability that disease d(i) associates

with microbe m(j). The algorithm is detailed in Fig 5:

At the end of the process, the matrix, MD, is acquired as the final prediction result, illustrat-

ing the association probability between each microbe and disease pair. For each disease, the

potential associated microbes can be ranked according to the prediction probability scores.

The top ranked microbes indicate the most relevant associations, potentially providing valu-

able information for further microbe-disease association research.

Fig 4. CBGs in the microbe-disease association network. (A) CBG of length 1. (B) CBG of length 2. (C) CBG of length max (l, r).

https://doi.org/10.1371/journal.pone.0184394.g004
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Experiments and results

Performance evaluation

To evaluate the prediction performance of the model we proposed, LOOCV and 5-fold cross

validation were implemented on the 450 known microbe-disease associations. In each round

of LOOCV, every known microbe-disease association was taken as the test sample, and the

other known associations were taken as the training samples [39]. In addition, the microbe

similarity and the disease similarity were recalculated at every turn. The predictive perfor-

mance was evaluated by the rank of the test sample in the candidate samples (all unverified

microbe-disease associations) based on their prediction scores. In 5-fold cross validation, the

450 known microbe-disease associations were randomly divided into five subsets. For each

trial, one subset is processed as test samples and the other four subsets are processed as train-

ing samples; the unverified microbe-disease associations are regarded as candidate samples

[40, 41]. Moreover, to reduce potential sample division bias, we performed random divisions

100 times.

A receiver-operating characteristic (ROC) curve, which plots the relationship between the

true positive rate (TPR, sensitivity) and the false positive rate (FPR, 1-specificity) by setting dif-

ferent thresholds, was applied to determine the prediction performance. Sensitivity represents

the percentage of the test samples that rank higher than the given threshold, while specificity

represents the opposite. AUC was also calculated, such that an AUC value of 1 denotes perfect

performance, and an AUC value of 0.5 indicates random performance [42–44]. As a result,

our model achieves AUC values of 0.8964 and 0.8808 in the LOOCV and 5-fold cross valida-

tion frameworks, respectively (Fig 6). While 0.8808 is the average AUC value of 100 operations

in 5-fold cross validation, we further obtain the standard deviation of 0.0029. Ultimately, these

results confirm the superior performance of this method.

Fig 5. Description of algorithm bi-random walk.

https://doi.org/10.1371/journal.pone.0184394.g005
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Effect of parameters

There are three parameters in our model. The parameter α is the decay factor, which is used to

down-weights the importance of a CBG when its path becomes longer. The parameters l and r
are introduced to limit the number of random walk steps in the microbe and disease similarity

network, respectively. To investigate the effects of the three parameters, we set various values

for them and then calculated the AUC values by LOOCV. The details can be seen in Table 1.

The experimental results illustrate that BiRWHMDA achieves satisfactory performance when

parameter l is equal to r. Taking various parameter combinations into account, we set the

three parameters as α = 0.4, l = 2 and r = 2 in our experiment.

Comparison with other methods

To our knowledge, RWRHMDA, KATZHMD and PBHMDA are state-of-the-art compu-

tational methods for predicting microbe-disease associations. In considering important

differences, RWRHMDA is based on a stochastic process that aims to predict candidate

microbes for a disease by calculating the probability of the random walker reaching them

[19]; KATZHMDA is based on the KATZ measure that calculates nodes’ similarity in the

heterogeneous network to solve the problem of link prediction [20]; PBHMDA is a path-

based method that utilizes a special depth-first search algorithm in the heterogeneous

interlinked network to infer potential microbe-disease associations [21]. These methods

are similar in that they are all accomplished based on a heterogeneous network which is

constructed by connecting the microbe similarity network and the disease similarity net-

work via the known microbe-disease associations.

Our method, BiRWHMDA, aims to predict novel microbe-disease associations by capturing

CBG patterns on the global heterogeneous network. It is a multi-task learning method, which

explores the missing microbe-disease associations simultaneously, instead of prioritizing candidate

Fig 6. The ROC curve and AUC values of our method.

https://doi.org/10.1371/journal.pone.0184394.g006
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microbes for a specific disease [45–47]. Additionally, BiRWHMDA can predict novel microbes for

diseases without any known associated microbe information.

In this study, we implemented these three methods using the same datasets as BiRWHMDA,

and then compared their performance by the LOOCV method. Consequently, BiRWHMDA

achieves the best performance among all the methods with an AUC value of 0.8964, while

RWRHMDA, KATZHMDA and PBHMDA yield AUC values of 0.7254, 0.8382 and 0.8760,

respectively (Fig 7). The results demonstrate that BiRWHMDA works better than the other

methods, and the predictive performance of BiRWHMDA increases nearly two percentage

points higher than the latest method, PBHMDA.

Case studies

We also implemented case studies involving asthma and inflammatory bowel disease (IBD) to

further evaluate the ability of our method to predict novel microbe-disease associations. Here,

novel associations refer to the microbe-disease pairs that are not known to be associated in the

dataset. For each disease, the candidate associated microbes are ranked according to the pre-

diction association scores obtained from BiRWHMDA. We observed microbes from the top

10 candidate microbes confirmed by current research. Furthermore, we compare the results of

BiRWHMDA with the latest method, PBHMDA. In this study, we assume that if a microbe is

associated with one disease, the genus that the microorganism belongs to is also associated

with the disease.

Asthma is a common long-term inflammatory disease of the lung airways. In BiRWHMDA,

a total of eight of the predicted microbes in the top 10 candidate microbes have been validated

Table 1. Effect of parameters α, l and r in the results.

α = 0.2

r = 1 r = 2 r = 3 r = 4

l = 1 0.8944 0.8631 0.7892 0.7275

l = 2 0.8612 0.8952 0.8656 0.7911

l = 3 0.8530 0.8610 0.8954 0.8658

l = 4 0.8527 0.8529 0.8610 0.8954

α = 0.4

r = 1 r = 2 r = 3 r = 4

l = 1 0.8944 0.8807 0.8424 0.7930

l = 2 0.8669 0.8964 0.8820 0.8480

l = 3 0.8513 0.8653 0.8960 0.8819

l = 4 0.8503 0.8511 0.8647 0.8916

α = 0.6

r = 1 r = 2 r = 3 r = 4

l = 1 0.8944 0.8880 0.8676 0.8416

l = 2 0.8700 0.8966 0.8895 0.8660

l = 3 0.8492 0.8670 0.8965 0.8885

l = 4 0.8478 0.8483 0.8648 0.8960

α = 0.8

r = 1 r = 2 r = 3 r = 4

l = 1 0.8944 0.8930 0.8805 0.8623

l = 2 0.8727 0.8969 0.8917 0.8747

l = 3 0.8467 0.8667 0.8956 0.8817

l = 4 0.8425 0.8428 0.8580 0.8636

https://doi.org/10.1371/journal.pone.0184394.t001
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(Table 2). Pseudomonas aeruginosa could cause asthma, which has already been diagnosed by

bronchoscopic examination [48]. Lactobacillus rhamnosus is associated with asthma preven-

tion [49]. Colonization by clostridium difficile at 1 month of age is associated with the inci-

dence of asthma between ages 6 and 7 [50]. Firmicutes and actinobacteria are present in lower

proportions in asthmatic patients [51]. Clostridium coccoides XIVa species is significantly

associated with a positive Asthma Predictive Index (API) [52]. Propionibacterium acnes is

more prevalent in asthma patients; therefore, Propionibacterium is also considered to be asso-

ciated with asthma [53]. Only Burkholderia and Oxalobacter formigenes have not been vali-

dated to date. The top 10 candidate microbes of asthma obtained from PBHMDA are also

listed in Table 2; nine of these microbes have been previously confirmed [49, 51, 54–59].

IBD is a group of inflammatory conditions of the colon and small intestine. In

BiRWHMDA, each of the microbes in the top 10 has been validated (Table 3). There is an

Fig 7. The ROC curve and AUC values of different methods.

https://doi.org/10.1371/journal.pone.0184394.g007

Table 2. Prediction results of associated microbes for disease asthma.

Rank BiRWHMDA PBHMDA

Microbe Evidence Microbe Evidence

1 Pseudomonas PMID:13268970 Firmicutes PMID:23265859

2 Lactobacillus PMID:20592920 Lactobacillus PMID:20592920

3 Burkholderia Unconfirmed Lachnospiraceae Lee et al., 2014

4 Clostridium difficile PMID:21872915 Veillonella PMID:25329665

5 Firmicutes PMID:23265859 Bacteroides PMID:18822123

6 Actinobacteria PMID:23265859 Bacteroidaceae Qiu et al., 2013

7 Clostridium coccoides PMID:21477358 Streptococcus PMID:17950502

8 Propionibacterium PMID:27433177 Fusobacterium Dang et al., 2013

9 Propionibacterium acnes PMID:27433177 Actinobacteria PMID:23265859

10 Oxalobacter formigenes Unconfirmed Eubacterium unconfirmed

https://doi.org/10.1371/journal.pone.0184394.t002
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inverse association between helicobacter pylori and IBD [60]. Research shows a significant

relationship between the simultaneous presence of toxigenic strains of staphylococcus aureus

and clostridium difficile in IBD patients; staphylococcus is thus validated [14]. Clostridium

coccoides are less represented in A-IBD patients [61]. Bacteroidetes, firmicutes, Prevotella and

clostridia have been shown to be associated with IBD via the Kruskal-Wallis test [62]. Bifido-

bacterium shows an increased proportion in IBD [63]. The top 10 candidate microbes for IBD

obtained from PBHMDA are also listed in Table 3; of these, eight microbes have been previ-

ously validated [61, 62, 64–66].

In summary, these case studies further demonstrate that the approach we proposed is pow-

erful in predicting novel microbe-disease associations. The predictions for all the 39 diseases

are listed in S3 File.

Conclusion

A growing body of research suggests that the microbiome plays a vital role in human health

and disease. Microbe-disease associations can not only reveal disease pathogenesis but also

contribute to disease diagnosis and prognosis [67]. Nevertheless, due to the limited research

on existing microbe-disease association data, only a few methods have been developed to

address the gap.

In the present study, we proposed a novel approach based on bi-random walk on the het-

erogeneous network to predict novel microbe-disease associations. The heterogeneous net-

work is constructed by connecting the microbe similarity network and the disease similarity

network via the known disease-microbe associations. The measure we utilized to calculate microbe

similarity and disease similarity was the Gaussian interaction profile kernel similarity measure. In

addition, a logistic function was applied to adjust disease similarity. We sought to obtain the pre-

dictive association scores between each microbe and disease pair through BiRWHMDA. For each

disease, the top ranked microbes are considered the most probable associated microbes. Cross vali-

dation frameworks, including LOOCV and 5-fold cross validation, were also implemented to eval-

uate predictive performance of our approach. Moreover, the approach was compared with three

other state-of-the-art methods by using LOOCV. Ultimately, our method obtained better perfor-

mance than these competing methods. Additionally, we implemented case studies for asthma and

IBD to evaluate the predictive performance of BiRWHMDA. In total, eight and ten of the pre-

dicted microbes in the top 10 microbe candidates have been confirmed by recent studies. Our

method demonstrated favorable utility in predicting novel microbe-disease associations.

Table 3. Prediction results of associated microbes for disease IBD.

Rank BiRWHMDA PBHMDA

Microbe Evidence Microbe Evidence

1 Helicobacter pylori PMID:22221289 Bacteroidetes PMID:25307765

2 Clostridium difficile Azimirad et al.,2012 Firmicutes PMID:25307765

3 Clostridium coccoides PMID:19235886 Veillonella unconfirmed

4 Bacteroidetes PMID:25307765 Prevotella PMID:25307765

5 Firmicutes PMID:25307765 Haemophilus unconfirmed

6 Prevotella PMID:25307765 Bacteroidaceae Maukonen et al.,2009

7 Staphylococcus aureus Azimirad et al.,2012 Lactobacillus PMID:26340825

26340825

8 Bifidobacterium PMID:24478468 Bacteroides Maukonen et al.,2009

9 Staphylococcus Azimirad et al.,2012 Clostridium coccoides PMID:19235886

10 Clostridia PMID:25307765 Streptococcus PMID:23679203

https://doi.org/10.1371/journal.pone.0184394.t003
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Despite the current success, there are still some limitations that can be improved in future

studies. First, only one database exists: the HMDAD, which contains 483 verified microbe-dis-

ease association records. Therefore, predictive performance will be certainly limited due to the

lack of available experimental data. This could be solved through an increase in microbe-dis-

ease associations discovered in the future. In addition, microbe and disease similarity are cal-

culated based solely on known microbe-disease associations, which could cause bias for

microbes and diseases already extant in the database. Data from different sources should be

integrated to improve the completeness and quality of the experimental data, which would

ultimately be conductive to improving predictive performance.
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