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The Type I Interferon family of cytokines all act through the same cell surface receptor and
induce phosphorylation of the same subset of response regulators of the STAT family.
Despite their shared receptor, different Type I Interferons have different functions during
immune response to infection. In particular, they differ in the potency of their induced anti-
viral and anti-proliferative responses in target cells. It remains not fully understood how
these functional differences can arise in a ligand-specific manner both at the level of STAT
phosphorylation and the downstream function. We use a minimal computational model of
Type I Interferon signaling, focusing on Interferon-a and Interferon-b. We validate the
model with quantitative experimental data to identify the key determinants of specificity
and functional plasticity in Type I Interferon signaling. We investigate different mechanisms
of signal discrimination, and how multiple system components such as binding affinity,
receptor expression levels and their variability, receptor internalization, short-term negative
feedback by SOCS1 protein, and differential receptor expression play together to ensure
ligand specificity on the level of STAT phosphorylation. Based on these results, we
propose phenomenological functional mappings from STAT activation to downstream
anti-viral and anti-proliferative activity to investigate differential signal processing steps
downstream of STAT phosphorylation. We find that the negative feedback by the protein
USP18, which enhances differences in signaling between Interferons via ligand-
dependent refractoriness, can give rise to functional plasticity in Interferon-a and
Interferon-b signaling, and explore other factors that control functional plasticity.
Beyond Type I Interferon signaling, our results have a broad applicability to questions of
signaling specificity and functional plasticity in signaling systems with multiple ligands
acting through a bottleneck of a small number of shared receptors.
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INTRODUCTION

Specificity in molecular signaling networks is essential for cells
to respond appropriately to changes in their environment. In one
important example - an immune response to infection - signal
specificity is crucial to ensure the correct cellular responses in
immune and other cell types. In a common view of receptor
signaling, specificity is encoded in the strength of ligand-
receptor binding resulting from the details of molecular ligand-
receptor interactions (1). A high affinity ligand typically
produces a stronger response while a weak affinity ligand
produces little response. In this picture of receptor signaling,
each receptor binds its cognate ligand with a much higher affinity
than any other ligand to produce an intracellular response
uniquely specific to that receptor-ligand pair (2).

However, in many signaling pathways multiple ligands can
act through overlapping sets of receptors or downstream
intracellular signaling molecules, and yet induce distinct
cellular responses. Overlapping components between signal
pathways is known as crosstalk, and this feature has been
observed in cytokine signaling through the Jak/STAT pathway,
the TGF superfamily of ligands acting through the SMAD
pathway, a variety of ligands acting through the NF-kB
pathway, and others (3–8). These examples challenge the idea
of specificity based purely on ligand-receptor binding pairs
because the same level of receptor occupancy can be achieved
by either a low concentration of a high affinity ligand or by a high
concentration of a low affinity ligand (9). The ability of a
signaling pathway to generate distinct cellular responses in the
presence of crosstalk has been termed functional plasticity (10,
11). Crosstalk without distinct cellular responses generates
redundancy between ligands, which may be useful for other
reasons (12).

In this paper we focus on the following question: how can
functional plasticity arise in systems where ligands act through
the same receptor? This is an extreme form of crosstalk since
ligands necessarily activate the same set of downstream
intracellular molecules.

Examples of such crosstalk include biased agonism in G-
protein coupled receptors, and chemokine and cytokine
signaling in the immune system (8, 10, 13–15). We use the
prototypical example of the Type I Interferon (IFN) family of
cytokines to study ligand crosstalk through a shared receptor
(Figure 1A) (16–18). Less extreme forms of cross-talk may be
found, for example, in the partial overlap of types of STATs
activated by other cytokines in Jak/STAT signaling (19, 20). In
this work, we focus on the Type I IFN signaling because – beyond
its fundamental biological importance – the bottleneck of
completely overlapping receptors and proximal signaling
factors activated by functionally distinct cytokines makes it a
good system to study signal specificity.

Type I IFN signaling is an essential component of the early
innate immune response to viral infections, and recently the IFN
anti-viral response has received a great deal of attention due to its
role during COVID-19 infection and other viral infections (21–
26). IFN signaling is also important in other diseases including a
number of cancers and multiple sclerosis (16, 27). Different IFNs
Frontiers in Immunology | www.frontiersin.org 2
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FIGURE 1 | Mechanisms of signal discrimination. (A) Interferon induced
receptor dimerization can occur via two paths. In the first, an IFN molecule
(green circle) binds IFNAR1 (R1 in the diagram), and IFNAR2 subsequently
associates with the binary IFN-R1 complex, leading to the formation of the
ternary complex T. In the second pathway, the sequence of the association
events is reversed. The multi-step process of STAT phosphorylation is
combined into an aggregate rate kp, as are all steps leading to SOCS1
production in rate ksocs. SOCS1 binds to IFNAR1 independent of whether or
not IFNAR1 is bound by IFN, and inhibits phosphorylation of STAT, with
rate ksocs on. USP18 is modeled as pre-bound to IFNAR2 (i.e., before IFN
stimulation) and reduces IFNAR1 recruitment into the ternary complex by
increasing k-4 (see Long Time Deactivation via USP18 Regulates Receptor
Complex Stability to Achieve Absolute Discrimination). (B) Absolute
discrimination encodes signal identity through differences in the maximum
response amplitude for weaker binding IFNa2 (red) compared to stronger
binding IFNb (green) even for saturating doses ([IFN] >Keff). Thus, if the
pSTAT response is greater than this threshold (red dashed line) the signal is
unambiguously identified as belonging to IFNb. The region of absolute
discrimination is indicated by black arrow. (C) Time course discrimination
differentiates ligands based on, for example, sustained (red, IFNa2) versus
transient (green, IFNb) pSTAT levels.
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are known to play different roles in the immune response to
infection as well as in other diseases, and different IFN subtypes
are targeted in clinical applications (8, 10, 28, 29). These many
roles, and their varying significance among IFN subtypes, make
Type I IFN signaling an important model to study crosstalk
between functionally distinct ligands acting through the
same receptor.

As a brief overview, the Type I IFN family of signaling
molecules is composed of thirteen subtypes of IFN-a, IFN-b,
IFN-ϵ, IFN-k and IFN-w (29). All these cytokines act through
the same Type I IFN receptor and induce expression of
Interferon Stimulated Genes (ISGs). These ISGs drive diverse
functions, with anti-viral and anti-proliferative cellular assays
traditionally being used to classify functional differences between
ligands, although the phenotypes resulting from ISG induction
are diverse and the division of ISGs into these classes is not
strictly binary (30–32).

The Type I IFN receptor is composed of two subunits,
IFNAR1 and IFNAR2 (17) (see Figure 1A). The cytoplasmic
domain of IFNAR2 is constitutively bound by the tyrosine kinase
Jak1, while IFNAR1 is pre-associated with Tyk2 (29). When an
IFN molecule binds to the extracellular domain of one or the
other of these receptor subunits, the bound complex then recruits
the remaining receptor subunit via binding to the IFN molecule.
Once this ternary complex is formed, the proteins known as
Signal Transducer and Activator of Transcription (STAT) 1 and
STAT2 are recruited to the receptor complex. These STATs are
phosphorylated and dimerize to form a pSTAT1-pSTAT2
heterodimer (See Figure 1A). The exact order and molecular
details of STAT recruitment, phosphorylation, and dimerization
are not fully known (11). This dimer binds IRF9, another
transcription factor, and the resulting complex is imported to
the nucleus to activate transcription of a variety of IFN regulated
genes. Phosphorylation of additional STATs (e.g. STAT3 and
STAT5) and alternate STAT dimers (e.g. STAT1 homodimers)
have also been reported, although functional roles distinct from
pSTAT1-pSTAT2 dimers have yet to be assigned to these
complexes (29, 33).

IFNb and IFNa2 are commonly chosen IFN subtypes to
study signaling crosstalk because they are well separated in terms
of their anti-proliferative and anti-viral activities (11, 18, 34, 35).
Specifically, while anti-viral potencies are similar between all
Type I IFNs, IFNb elicits a much stronger anti-proliferative
response compared to IFNa2 both in terms of the concentration
required for half-maximal inhibition (its IC50, which is a few
picomolar for IFNb compared to nanomolar for IFNa2) and in
terms of the maximal anti-proliferative response (although this
difference varies across cell types) (10, 11, 34–39).

These differences in anti-proliferative and anti-viral potencies
might naturally be assumed to arise from differences in the
induced pSTAT response. Unfortunately, in many cases only the
relative pSTAT responses (39, 40), or only the pSTAT EC50 (38,
41), or only semi-quantitative measures of the pSTAT response
(10, 34–36, 42) are reported. It is therefore difficult to determine
with certainty if differences in the pSTAT response consistently
explain differences in anti-viral and anti-proliferative potencies
Frontiers in Immunology | www.frontiersin.org 3
between IFNs. However, most factors which have been suggested
to play a role in the emergence of functional plasticity in Type I
IFN signaling regulate the pSTAT response.

The primary factor differentiating IFNs is their affinity for the
receptor subunits (18, 39, 40, 43–45). Previous studies have
reported that, in human cells, IFNb binds the IFNAR2 subunit
much stronger than IFNa2 (10). Furthermore, mutation studies
have demonstrated that much of the functional difference
between these two IFNs can be recovered by IFNa2 mutants
which bind the IFNAR2 subunit with a similar strength to wild-
type IFNb (38). However, ligand affinity cannot be the only
important factor for functional plasticity since the anti-viral and
anti-proliferative potencies of different IFN subtypes scale
differently with ligand affinity (29).

Other factors have also been shown to be influential in tuning
the functional differences between IFNs. These include
differential expression of the receptor subunits on the cell
surface (35, 37), differential receptor internalization induced by
IFN stimulation (36, 38, 39, 46, 47), negative feedback on the
signaling system by upregulation of the protein Suppressor of
Cytokine Signaling (SOCS) 1 in response to IFN stimulation (48,
49), and response refractoriness via upregulated expression of
the inhibitory protein USP18 (10, 46, 48, 50–52). How all these
factors act in concert to regulate specificity is still not clear
(11, 29).

Signaling systems with crosstalk must decouple ligand
concentration from ligand affinity in the downstream response
if functional plasticity is to be achieved. We refer to such a
decoupling as absolute discrimination (53, 54). In systems with
absolute discrimination, functional differences can only be
partially compensated by changes in ligand concentration. We
briefly outline possible biological mechanisms to achieve
absolute discrimination.

Amplitude-based absolute discrimination encodes ligand
affinity into the magnitude of receptor outputs via affinity-
dependent saturation of the receptor (see Figure 1B). This
means that there is a threshold level of receptor activation
which only sufficiently high affinity ligands can surpass, even at
high ligand concentrations. Cellular responses that require
receptor activation above this threshold are consequently
specific to high affinity ligands. One proposed mechanism for
affinity-dependent receptor saturation relies on the non-
monotonic nature of the dose-response curve of dimeric
receptors (53, 55). Kinetic proofreading and its enhanced
version know as adaptive sorting, studied in the context of T
cell receptor sensing, also demonstrate affinity-dependent
saturation (54, 56). These mechanisms are therefore capable of
amplitude-based absolute discrimination of signals.

Another mechanism for decoupling ligand concentration
from ligand affinity is based on time course discrimination,
which separates signals based on differences in the temporal
pattern of receptor activity. One commonly considered
mechanism is to differentiate transient from sustained receptor
activation (Figure 1C). Time course discrimination has been
proposed in ERK and NF-kB signaling as well as in responses to
metabolic and environmental stressors (57–60).
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A third mechanism for absolute discrimination is
combinatorial encoding, where different ligands induce
different compositions of receptor outputs (60, 61). This
mechanism appears to be most useful for decomposition of
mixtures of ligands, a signal processing problem which is not
treated here. For this reason, combinatorial encoding remains
outside the scope of this investigation and will be addressed in
future work.

In this paper we address how functional plasticity can arise in
Type I IFN signaling, where many cytokines act through the
same receptor. We present a model of Type I IFN signaling
which incorporates the essential factors previously suggested to
be important for signal specificity. Using measurements of the
pSTAT response in primary mouse B cells stimulated with
IFNa2 or IFNb as well as previously published results, we
validate our model at the level of the receptor activation and
the downstream STAT response. We quantify differences in the
pSTAT response between IFNa2 and IFNb and clarify the
differing roles of various feedback factors. We find that
negative feedback by the protein USP18, which enhances
differences in signaling between IFNa2 and IFNb, can achieve
amplitude-based absolute discrimination. Finally, we develop
phenomenological models to demonstrate how functional
plasticity in anti-viral and anti-proliferative activity can arise
from this mechanism.
METHODS

Experimental Methods
Single cell suspensions of mouse splenocytes were prepared as
follows. Spleens were harvested from 4-month-old female
C57BL/6J mice (Strain 00064 from Jackson Laboratory, Bangor
ME) and mechanically dissociated with a sterile syringe plunger.
We performed a 1 min ACK lysis to remove any red blood cells.
Splenocytes were then washed in PBS and exposed to a solution
of 0.1M glycine in PBS (with adjusted pH at 4.0) for 1min on ice,
followed by 2 washes with complete medium. Cells were then
rested in complete medium for 2 hours at 37°C.

Cells were then exposed to a serial dilution of IFN-a2 or
IFN-b (R&D systems, Minneapolis MN) in complete medium
and incubated for varied amounts of times. At each time point,
ice-cold 4% paraformaldehyde solution was added to the
reaction culture (for a final concentration of 1.6%
paraformaldehyde) and cells were left in fixative for 15min on
ice. Cells were then spun, their supernatants were discarded, and
cells were then permeabilized with a 15-min incubation in 90%
methanol on ice. Cells were then washed twice with FACS buffer
(4% FBS in PBS + 0.1% sodium azide) and stained with primary
anti-phospho-STAT1 (clone 58D6 from Cell Signaling
Technologies, Danveres MA) for 30min at room temperature.
Cells were then washed once with FACS and stained with a
cocktail of antibodies against surface markers and Fab anti-
Rabbit secondary antibody (see Table S1) for 30min at room
temperature. Cells were then washed once with FACS buffer and
resuspended in FACS buffer with DAPI (1μMol) and acquired on
Frontiers in Immunology | www.frontiersin.org 4
a 20-channel Fortessa cytometer (BD Biosciences). Single cell
gating for live CD19+ B cells and levels of phosphorylated
STAT1 were exported as geometric mean for further analysis
(Figures S1, S2).

Mathematical Methods
Figure 1A illustrates a streamlined model of IFN which includes
receptor assembly, STAT phosphorylation, receptor
internalization, and SOCS1 inhibition. The model aggregates
various biochemical sub-steps, such as STAT association and
dissociation with active receptor complexes, into single-step
reactions. Since only pSTAT1 was measured experimentally,
our model does not describe STAT1-STAT2 dimers explicitly
but rather uses a single STAT variable which can be
phosphorylated to an active pSTAT form. Since the JAK
kinases are constitutively bound to their corresponding
receptor subunits, we do not model them explicitly and instead
consider the ternary complex to phosphorylate STAT to pSTAT
(28). A more detailed model which explicitly models additional
biochemical steps is presented in the SI and yields similar
predictions for the pSTAT response (Figure S3), indicating
that the minimal model of Figure 1 encapsulates the salient
features of the signaling network. We include basal and IFN-
induced receptor internalization in our model as well as recycling
of the receptor subunits back to the cell surface, assuming that
the internalized ligand is degraded (36). The model includes
negative feedback by SOCS1, which is produced downstream of
pSTAT and binds IFNAR1 to block STAT phosphorylation. It is
known that IFNAR1 and IFNAR2 surface expression levels vary
between cells, and in practice we found it necessary to model this
variation using a log-normal distribution of expression levels for
IFNAR1 and IFNAR2 (62). All model predictions are made by
taking 30 samples from these receptor distributions and
averaging the predicted pSTAT responses. This is a simple way
to model heterogeneity of receptor expression, a factor we
explore more in depth below.

The complete mathematical description of our model using a
system of ordinary differential equations (ODEs) is provided in
Tables S2, S3 and is solved numerically using the PySB python
package (63). We used ligand-receptor binding and unbinding
rates measured for human IFNs and applied detailed balance to
obtain in-membrane rates (see Table S2) (10, 38). A global scale
factor of 1.5 was applied to convert the number of pSTAT
molecules predicted by the model into units of MFI measured
by experiment. Estimates of the values of model parameters
which have not been directly measured were obtained using the
systems biology package PyDREAM to perform Markov Chain
Monte Carlo (MCMC) simulations (Figure S4) (64). The mean
absolute error (MAE) between the data and the average
prediction of our best fit model is 40%. A bootstrap analysis of
the fitting procedure using an 80-20 train-test split of our
experimental data yielded a similar MAE across bootstrap
batches, further validating our parameter fit and demonstrating
the robustness of the fitting procedure.

To fit the phenomenological models of anti-viral and anti-
proliferative activity to the data in Section Proximal Receptor
Signaling Maps to Biological Activity, we used standard nonlinear
October 2021 | Volume 12 | Article 748423
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function fitting procedures provided by the scipy Python package
which are based on the Trust Region Reflective algorithm. The
fitting procedure for Eq. 5-6 yielded a root mean square error
of 11%.

Many aspects of IFN signaling are captured by the relatively
simple equilibrium description of receptor complex formation
obtained from the steady state of our ODE model, providing
qualitative insight into how various components of this system
affect signaling dynamics. The equilibrium solution for the
number of active ternary complexes formed in response to a
ligand can be found by solving the chemical kinetic equations
along with the detailed balance condition K1K3 = K2K4 (see
below), where K1 and K2 are the equilibrium dissociation
constants for IFN binding to each of IFNAR1 and IFNAR2,
and K4 and K3 are the in-membrane dissociation constants for
recruitment of IFNAR1 and IFNAR2 respectively to the ternary
complex (see Figure 1A) (53). The result is an expression for the
equilibrium number of ternary complexes (53, 65):

T =
RT

2
(X(I) −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X(I)2 − 1 + (D=RT )

2)
q

(1)

where X(I) = 1 + K4
RT

(I+K2)(I+K1)
I K1

, I is the extracellular IFN
concentration, D = RT

1 − RT
2 is the difference between the (two-

dimensional) cell surface densities of R1 (IFNAR1) and R2

(IFNAR2), RT = RT
1 + RT

2 is the total surface density of receptors
of both types. The detailed balance condition arises from the
fundamental physics relating the dissociation constants to the
binding energies of the ligand with the receptor subunits, E1 and

E2. In the simplest case, K1 =
1
v e

−E1
kT and K2 =

1
v e

−E2
kT , where v is a

small volume roughly proportional to the average volume of the
reacting molecules; for three-dimensional binding affinities, it is
customary to set v = 1M–1 ≈ 1.75nm3 (1, 66). The in-membrane
affinities K3 and K4 obey the same physics; in the ideal case where
the ligand binding to one of the subunits does not affect its binding

to the other one, K4 =
1
a e

−E1
kT and K3 =

1
a e

−E2
kT where a is the average

area of the reacting molecules (67). The detailed balance condition
also holds for more complicated dependencies of the dissociation
constants on the molecular interaction energies as long as the
binding-unbinding reactions involved in the receptor dimerization
do not require direct input of metabolic energy (68).

The ternary complex dose-response curve is a non-
monotonic function of the ligand concentration. The maximal
response Tmax is attained at Im =

ffiffiffiffiffiffiffiffiffiffi
K1K2

p
. Crucially, weak affinity

ligands saturate to a lower maximum receptor activity than high
affinity ligands. At concentrations below the maximal response,
the dose-response curve can be approximated with a Michaelis-
Menten type function:

T ≈ Tmax
I

Keff + I
(2)

where Keff is the effective equilibrium dissociation constant of
ternary complex formation, with Keff given by:

Keff −
K1

8
(D −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 − 64X

p
) (3)
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K4

+ 1 + 10X
1
2 + X + 3RT

K4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 1 + (D=RT )

2
p

,B = 1 +
(K4=RT )(1 +

ffiffiffiffi
X

p
)2 and X = K2/K1. It is important to note that

Equations (1-3) predict contours of constant Keff and Tmax as a
function of receptor binding strengths, as shown in Figure 2A.

The product of the dissociation constants K1 × K2 has been
empirically observed to correlate well with Keff for a wide range of
IFNs (39). This product is therefore expected to be
approximately proportional to related biological IC50 values
and other quantities related to Keff, although there is a
systematic bias in using K1 × K2 in place of Keff (see also
Figure S5).

Ternary complex formation leads to the production of
phosphorylated STAT1-STAT2 dimers at rate k+p , which are
constitutively de-phosphorylated at rate k−p . In the limit that
intracellular STAT equilibrates with the active receptor
complexes faster than STAT is phosphorylated, the equilibrium
copy number of pSTAT1-pSTAT2 dimers is well approximated
by a Michaelis-Menten equation:

pSTAT = ST
TA

Kp + TA

≅ ST
Tmax

Tmax + Kp=A
I

I + Keff =ð1 + TmaxA=Kp)
(4)

where ST is the total number of STAT molecules in the cell, Kp =
k−p=k

+
p , and A is the cell surface area. Thus, the maximal

magnitude of the pSTAT response is pSTATmax = ST
Tmax

Tmax+Kp=A
and the half-maximal response of pSTAT is pSTAT EC50 = Keff

/(1 + TmaxA/Kp). Unlike the effective affinity of the receptor

binding Keff, the EC50 of the pSTAT response explicitly depends
on the cell area and not only on the surface densities of the
receptor sub-units.
RESULTS

Validation of the Model and the Effects of
Ligand Affinity on Response Specificity
To validate our model at the level of receptor assembly (Equation
1), we compared the predicted number of ternary complexes for
a variety of IFNa2 mutants to previously reported measurements
that used single-molecule tracking of receptor subunits, as
reported in (10). IFNAR1 affinity has been shown to be the
main differentiating factor between these IFNs (39, 43, 69). We
demonstrate in Figure 2B that differences in the level of
maximum ternary complex formation between IFNs are well
explained in our model of receptor assembly using only the
differences in IFNAR1 binding strength between these IFNs [i.e.,
holding IFNAR2 binding strength constant at the measured
IFNa2 wild type level (38)]. This agreement between the
model and data for a wide variety of affinity-altering mutations
of the IFN molecule demonstrates that our model captures the
essential features of receptor assembly kinetics in Type I
IFN signaling.
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Further model validation is provided by looking at the effect
of two mutations to IFNa2 on the pSTAT dose-response curve.
The mutants IFNa2-R120A and IFNa2-M148A have reduced
affinities for IFNAR1 and IFNAR2 respectively and have been
used to explore the dependence of the pSTAT response on IFN-
Frontiers in Immunology | www.frontiersin.org 6
receptor binding strength (10). Mutations of the IFN ligand alter
the binding energy and therefore the dissociation rates of all
reactions involving IFN-receptor interaction due to the detailed
balance condition described above. In particular, reduction in
IFNAR1 affinity alters both K1 and K4, and a reduction in
A

B C

D

E

FIGURE 2 | Validation of the model and the effects of ligand affinity on response specificity. (A) The theoretically predicted values of Tmax and Keff as functions of
binding affinities, maintaining detailed balance (see Mathematical Methods). Tmax is normalized to be between 0 and 1, with D = 0 in both plots. Both Tmax and Keff

are sensitive to changes in K1 but only Keff is sensitive to changes in K2 in the regime of interest. (B) The Tmax normalized by total IFNAR1 for different IFNa2 mutants
was measured directly in (10). Varying IFNAR1 binding affinity in Eq. 1 (red curve) explains observed differences in Tmax (points). (C) pSTAT1 Western blot band
intensities (points) measured in (10) for wild-type (WT) IFNa2 and the IFNa2 mutants R120A and M148A. The effect of the mutations on the dose-response curve are
recapitulated by the equilibrium model (Eq. 4) using a 60-fold (R120A) and 50-fold (M148A) change in K1 (and the corresponding change in K4) or K2 (and K3),
respectively. Kinetic parameters (Kp, ST, A) match those used in the ODE model presented in (D), and affinities from (10). (D) The experimental data from mouse B
cells (points with error bars) and simulated (solid lines) dose response curves for IFNa2 and IFNb at different stimulation durations. Each dose-response curve is the
average model prediction with a one standard-deviation envelope, representing 30 samples from the fitted log-normal distribution of IFNAR1 and IFNAR2 expression.
Additional timepoints shown in Figure S2. (E) The EC50 (left) and maximal response (right) computed from the data (black points with std. dev. shown) and the
model (solid line).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kirby et al. Determinants of Functional Plasticity
IFNAR2 affinity alters K2 and K3 (see Mathematical Methods).
The IFNa2-R120A ligand, with a 60-fold reduced affinity for
IFNAR1, was shown to alter both pSTATmax and the pSTAT
EC50 while the IFNa2-M148A ligand, with a 50-fold reduced
affinity for IFNAR2, only affected the pSTAT EC50. In Figure 2C
we show that our equilibrium model recapitulates the effect of
these changes in binding energy on the pSTAT dose-response
curves. The difference in the effects of these two mutations is not
surprising considering we already showed in Figure 2A that, in
the range of K1 and K2 affinities observed for Type I IFNs, Tmax –
and therefore pSTATmax – is largely insensitive to changes in
IFNAR2 affinity while Keff – and therefore pSTAT EC50 – is
sensitive to both IFNAR1 and IFNAR2 affinity. The difference in
pSTATmax between IFNa2 and IFNa2-R120A, shown in
Figure 2C, demonstrates that ligand affinity is sufficient to
enable amplitude-based absolute discrimination. This effect has
also been observed in other signaling pathways (55, 70, 71).
Additionally, the results in Figures 2A–C suggest that pSTATmax

and the pSTAT EC50 can be tuned independently by ligand
binding strengths. We will return to this point in the Discussion.

We next focused on the pSTAT response to IFNa2 and IFNb in
particular, explicitly including the effects of short-term and long-
term negative feedbacks in order to capture changes in the response
over time. To this end, we fit the free parameters of our ODEmodel
(the rates of STAT phosphorylation/dephosphorylation, of SOCS1
production, of receptor internalization, and receptor subunit
expression levels, summarized in Table S3) to our measurements
of primary mouse B cell response to IFN stimulation (see Methods
for details). Figure 2D shows that ourmodel can be fit closely to our
experimental data. The MCMC fitting did not tightly constrain the
free model parameters, which is to be expected due to “sloppiness”
observed in most systems biology models as a result of multiple
compensatory feedbacks in these systems (72, 73).

Both the EC50 and pSTATmax of the pSTAT dose-response
curve depend on the stimulation time but converge at long times
to steady state values for each IFN, and the values predicted by the
ODE model are in agreement with the experimentally determined
ones (Figure 2E). Interestingly, we do not observe a significant
difference in the pSTATmax between IFNa2 and IFNb. This is
somewhat surprising because there is a noticeable difference in the
expected Tmax between these IFNs (as shown in Figures 2A, B),
and furthermore our equilibrium model naïvely predicts an
approximately 15% lower pSTATmax according to Eq. 4, for
reasonable choices of parameters (RT = 2000 subunits, A = 450
mm2, affinities and Kp from Table S3). The fold-change in
pSTATmax between IFNs can be estimated from Equation 4 as

pSTATa
max

pSTATb
max

=
Ta
max

Tb
max

1 + Tb
max=(Kp=A)

1 + Ta
max=(Kp=A)

 !

For large Kp/A, the difference in response is expected to be the
same as the difference in Tmax. In contrast, for small Kp/A no
difference in pSTATmax is expected despite a difference in Tmax.
As we will show below, additional factors besides the cell surface
area and phosphorylation constant (A and Kp) also affect the
difference in pSTATmax. We note here that the lack of a region of
Frontiers in Immunology | www.frontiersin.org 7
absolute discrimination between IFNa2-induced and IFNb-
induced pSTAT response in our experimental results in
primary mouse B cells is consistent with some of the
measurements performed in a variety of human cell types
exposed to IFNa2 and IFNa2-YNS, an IFNb mimic (39). On
the other hand, there are also reports of differences in maximal
pSTAT response between IFN subtypes in other settings (35, 39,
42). This is reasonable since different cell types have different
values for Kp, A, and other feedback rates which may tune the
difference in pSTATmax. Thus, in the sections below we explore
additional factors besides ligand affinity which can regulate the
pSTAT response and allow for functional plasticity.

Receptor Expression Levels Can Regulate
Signaling Specificity
Receptor density on the cell surface has been suggested as an
important factor affecting the specificity of response (35, 74, 75).
As shown in Figure 3A, the theoretically predicted separation
between pSTATmax for ligands of different affinities (i.e., the
region of absolute discrimination) remains nearly constant
except at very low receptor expression levels – because the
dominant effect of a change in the number of the surface
receptors is the overall increase in the number of ternary
complexes. For this reason, total receptor expression is not
expected to affect amplitude-based absolute discrimination.

By contrast, as shown in Figure 3B, the theoretically
predicted pSTAT EC50 decreases monotonically with increasing
total number of receptor subunits and can shift by several orders
of magnitude over a biologically realistic range of receptor
expression levels [e.g. 102 versus 103 copies, (18)]. This
suggests that modulation of total IFNAR1 and IFNAR2
expression levels could make a cell preclude weaker binding
IFNs from activating downstream responses that require high
intracellular pSTAT levels. This is conceptually similar to
absolute discrimination but without complete decoupling of
ligand concentration from the pSTAT response. For
physiological numbers of receptor subunits (e.g., ~103 total
receptor subunits), preventing a high pSTAT-dependent
response to IFNa2 would require IFN concentrations to
remain well below 1 nM at all times. Note, however, that this
does not provide discrimination between two distinct ligands
requiring different cellular responses because the weaker binding
ligand is effectively never detected. Rather, this effect could
provide a way of selectively responding only to high affinity
ligands as a function of receptor expression levels. This could be
used to selectively target specific cell types, a point we return to in
the Discussion.

Figure 3C shows that asymmetric expression of IFNAR1 and
IFNAR2 is predicted to be an important factor controlling the
difference in response for different ligands. The greatest degree of
separation in pSTATmax is achieved for equal levels of IFNAR1
and IFNAR2, and this separation decreases monotonically and
symmetrically for a growing imbalance in expression levels. The
symmetry in the effect of expression imbalance may seem
counter-intuitive given that IFNAR1 affinity is the major
discriminant between IFN subtypes. However, Eq. 1 shows that
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the response only depends on IFNAR1 abundance relative to
IFNAR2 abundance (i.e., through the terms RT and D), so the
separation in pSTATmax between different IFNs remains nearly
constant unless an imbalance between IFNAR1 and IFNAR2
is introduced.

Although we could not directly probe the effect of tuning
receptor subunit expression on the pSTAT response in primary
mouse B cells, this effect has been measured in WISH cells by
Frontiers in Immunology | www.frontiersin.org 8
siRNA knockdown experiments (45). In Figures 3D, E we
compare the measured and simulated pSTAT1 response after
siRNA transfection and subsequent treatment with either IFNb
analog IFNa2-YNS or IFNa2. Both model and data exhibit a
reduction in pSTAT level that varies approximately linearly with
the reduction in IFNAR1 levels for both IFNs. In comparison, the
reduction in pSTAT is lower at equivalent levels of IFNAR2
knockdown in both model and experiment. The good agreement
A

B

D

E

F G H

C

FIGURE 3 | Receptor expression levels can regulate signal specificity. (A, B) The equilibrium model predicts how pSTATmax (A) and pSTAT EC50 (B) vary with the
total number of receptor subunits on the cell surface. From violet to lightest blue, lines correspond to high affinity IFNb, lower affinity IFNa2, and IFNa2 mutants with
15-fold and 60-fold lower IFNAR1 affinity, respectively (see text). (C) The dependence of the response on the difference in expression of R1 and R2 subunits for each
of the IFN subtypes from A&B. The results in (A–C) are similar for the computational model (not shown); see text. (D, E) pSTAT1 levels following siRNA transfection
to knockdown IFNAR1 or IFNAR2 and subsequent stimulation for 45 minutes with 200 pM of IFN. Black: Western blot band intensity measurements; Blue: predicted
response from model. Responses are normalized by maximum response. Model uses measured human IFN affinities and mean receptor density between 0.1 and 1
molec. mm-2, consistent with measurements for WISH cells (10). (F, G) Points: Experimental flow cytometry data from mouse B cells with one std. dev. Lines:
simulated average pSTAT responses for IFNa2 (F) and IFNb (G) using the same model parameters as . More copies of IFNAR are expressed in large cells, but no
significant difference between the maximum pSTAT response to IFNa2 and IFNb is observed. (H) Solid lines: simulated pSTAT dose-response curve at 60 minutes
without any negative feedback (i.e., setting SOCS1 binding and receptor internalization rates to zero). Dotted lines: the effect of SOCS1. Dashed lines: the effect of
receptor internalization. In both cases the dose-response curve is diminished by these negative feedbacks. The difference in pSTATmax between IFNa2 (red) and
IFNb (green) remains constant with the action of SOCS1 inhibition while the difference between IFNa2 and IFNb is diminished by receptor internalization.
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between our model and data, especially considering the
difference in cell type between the siRNA experiments and
those used to parameterize our model, demonstrates that our
computational model captures essential factors regulating
IFN signaling.

To further investigate the dependence of pSTATmax and
pSTAT EC50 on the receptor subunit numbers, we used the cell
size as a proxy for the receptor number. We grouped B cells from
our flow cytometry experiments by their forward scatter size as a
proxy for cell size. Cells in the top 20th percentile in forward
scatter (i.e., large cells) were experimentally observed to have a
greater pSTAT MFI in response to both IFNs compared with
those in the bottom 80th percentile (Figures 3F, G). To compare
experimental data with our model quantitatively, we varied the
cell size in our model while keeping the surface concentration of
receptor subunits and the cytoplasmic concentration of STAT
molecules constant (76). The experimentally observed separation
in the pSTATmax in small and large cells was explained in our
model by assuming fixed effective cell radii of 6.5 mm and 8 mm
(corresponding to roughly two-fold difference in the cell volume)
for the small and large cells respectively. These cell groups may
correspond to cells in different phases of the cell cycle or other
factors which affect cell size (77). Importantly, none of the rate
constants for the biochemical reactions in our model needed to
be adjusted from our original fitting procedure (in Figure 2D).

The Role of Negative Feedbacks
in Signal Specificity
Both receptor internalization and feedback by SOCS1 have been
discussed in the literature as factors relevant for functional
plasticity (36, 38, 39, 46–49). Our computational model allows
us to compare the role of these two short-term feedback
mechanisms in Type I IFN signaling. Since both receptor
internalization and SOCS1 upregulation happen rapidly in
response to IFN stimulation, there may be partial redundancy
in their roles as negative feedback mechanisms (36, 78).

It has been shown that the rate of receptor internalization may
be significantly increased in response to IFN stimulation and that
this effect is much stronger in response to IFNb than to IFNa2 (36,
39). These works additionally showed that the rates at which
IFNAR1 and IFNAR2 are recycled back to the cell surface may
also differ. As a result, each IFN induces a ligand-specific change in
the levels of IFNAR1 and IFNAR2 present on the cell surface post-
stimulation. This suggests that receptor internalization could be a
mechanism for regulating functional plasticity, since receptor
expression asymmetry is expected to affect signal separation by
amplitude-based absolute discrimination (Section Receptor
Expression Levels Can Regulate Signaling Specificity and
Figure 3C). In contrast to receptor internalization, SOCS1
inhibits Tyk2 phosphorylation of STAT1, reducing the number of
ternary complexes which are actively phosphorylating STAT. We
expect this to have a similar effect to reducing total receptor
expression, which was predicted not to regulate signal specificity
(Section Receptor Expression Levels Can Regulate Signaling
Specificity, Figures 3A, B).
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To test if receptor internalization and SOCS1 play non-
redundant roles in regulating response specificity, we used our
computational model to query how these feedbacks each regulate
the course of the pSTAT response. In Figure 3H we plot the
predicted dose response curve for IFN signaling without SOCS1 or
receptor internalization. By then looking at the isolated effect of
SOCS1, we find that both the IFNa2 and IFNb dose-response
curves are reduced by similar amounts by the action of SOCS1.
The difference in pSTATmax between IFNs remains proportionally
the same because SOCS1 inhibits STAT phosphorylation rather
than ternary complex formation, so that feedback on the system is
not dependent on ligand identity. This suggests that SOCS1 does
not play a role in the emergence of functional plasticity via
amplitude-based signal discrimination.

In contrast to the effect of SOCS1, the effect of receptor
internalization on the difference in pSTATmax between IFNs
could be significant for amplitude-based signal discrimination.
This can be seen in Figure 3H by comparing the response
predicted by our computational model without any feedback to
that with internalization. Receptor internalization rates can play
a role in the emergence of functional plasticity because they are
specific to the type of bound IFN. It has been reported that
receptor internalization is greater for IFNb than IFNa2, and the
parameter fitting procedure for our ODE model also yielded
greater receptor downregulation in response to IFNb than
IFNa2 (36). Since in the absence of feedback the pSTATmax of
the dose-response curve at 60 minutes is predicted by our ODE
model to be greater for IFNb than IFNa2 (see Figure 3H), and
since receptor internalization decreases each pSTAT dose-
response curve, greater receptor internalization following IFNb
stimulation effectively acts to reduce the difference in pSTATmax

between these IFNs. In particular, faster IFNAR2 recycling in
response to IFNa2 relative to IFNb [as has been reported in (36)]
diminishes the difference in pSTATmax which might occur due to
differences in receptor affinity. This means that receptor
internalization may decrease the specificity of the pSTAT
response in Type I IFN signaling. This effect is not an inherent
property of receptor internalization, but rather is the result of the
particular internalization rates observed in the Type I IFN
system. These results also demonstrate that SOCS1 and
receptor internalization have non-redundant roles as feedback
mechanisms in Type I IFN signaling.

No Evidence of Time-Course
Signal Discrimination
Although we have not observed evidence of amplitude-based
absolute discrimination in the pSTAT dose-response curves,
absolute discrimination based on the time course of Type I
IFN signaling must also be considered. The most common type
of time course signal discrimination is based on distinguishing
transient from sustained signaling dynamics (57–59), although
more complicated inference is possible (79, 80). We investigate
time course discrimination as a possible mechanism for
distinguishing IFNa2 from IFNb by comparing early and late
time levels of pSTAT. A sustained response exhibits similar
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pSTAT levels at both early and late times, while a transient
response exhibits a different (usually diminished) pSTAT level at
late times relative to early times. In Figure 4A we show that the
character (transient or sustained) of the pSTAT response in our
experiments appears to depend more on the concentration of
IFN rather than the IFN identity, with a sustained response for low
concentrations and a transient response for high concentrations.
However, in either concentration regime, both IFNs seem to follow
the same pattern, which suggests that the ligand discrimination does
not occur via time course discrimination.

To investigate further, in Figure 4B we re-plot our pSTAT
measurements in mouse B cells with the response at early times on
the horizontal axis and the response at late times on the vertical
axis (at different IFN concentrations). A sustained response would
produce points on the diagonal (i.e., the line pSTATearly =
pSTATlate) in such a plot, while a transient response would
produce points away from the diagonal. Ligand discrimination
would present itself in such a plot as a separability of points based
on ligand identity. However, as Figure 4B shows, the data points
corresponding to two different IFNs are not distinguishable
(within the error bars) except perhaps for a narrow window of
intermediate concentrations. Thus, we conclude that time course
discrimination is unlikely to be important for response specificity
in Type I IFN signaling although further studies might
be required.

Long Time Deactivation via USP18
Regulates Receptor Complex Stability to
Achieve Absolute Discrimination
Our results thus far suggest that functional plasticity in Type I
IFN signaling does not arise from absolute discrimination of the
initial pSTAT response within the first 60 minutes. However,
differential refractoriness in the pSTAT response mediated by the
protein USP18 offers another potential mechanism to achieve
Frontiers in Immunology | www.frontiersin.org 10
absolute discrimination (52, 81). It has been established that the
upregulation of USP18 in response to Type I IFN stimulation
over the course of 24-48 hours leads to somewhere between a 15-
and 60-fold increase in the in-membrane dissociation rate of
IFNAR1 from the ternary complex, with the magnitude of this
effect varying between cell types (10, 81). Inhibition by USP18
leads to significantly reduced response to further IFN
stimulation, which is relevant for clinical uses of Type I IFN
(10, 42, 81). Importantly, IFNa2 typically exhibits much greater
refractoriness than IFNb at equivalent doses, although the degree
of deactivation can be partially compensated by increasing the
stimulation dose (42, 46). It is therefore possible that differential
signaling mediated by USP18 over long timescales could lead to
ligand specific differences in the pSTATmax, enabling absolute
discrimination between the two ligands.

Since the action of USP18 occurs on the intracellular domain
of the receptor, its effects are represented in the model via a
change in K4, the in-membrane dissociation constant of IFNAR1
binding to the binary complex IFN : IFNAR2 (see Mathematical
Methods). Figure 5A shows that the experimentally observed
decrease in the numbers of ternary complexes in cells primed
with IFN compared with unprimed cells can be accounted for by
a 15-fold increase in K4 (10). Crucially, the USP18-induced
change in the in-membrane dissociation constant K4 not only
shifts the dose response curve towards higher concentrations but
also decreases the plateau saturation level pSTATmax, raising the
possibility of amplitude-based absolute discrimination. The
model also reproduces the effect of USP18 refractoriness on
the mutant IFNa2-M148A, as shown in Figure 5B. The
agreement between the model and the data validates the simple
approach of modeling the presence of USP18 indirectly as a shift
in K4, at least for high expression levels of USP18.

Interestingly, comparison of Figure 2C with Figure 5B shows
that the effect of USP18 (which only alters K4) on the pSTAT
A B

FIGURE 4 | No evidence of time-course signal discrimination. (A) The same experimentally measured data from mouse B cells presented in Figure 2D is re-plotted
here as time courses for IFNa2 and IFNb at comparably low (~101 pM) and high (~103 pM) doses. There is no apparent difference in the character (transient versus
sustained) responses between IFN subtypes in either concentration regime. (B) The measured pSTAT response at early (5 minutes) and late (60 minutes) times, at
equal concentrations, are plotted with the early-time response on the horizontal axis and late-time response on the vertical axis. A sustained response would
produce points on the diagonal (black dashed line) while a transient response would produce points away from the diagonal. The points are not separable as
transient versus sustained response based on the type of IFN, within the error bars.
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dose-response curve is recapitulated by the IFNa2-R120A mutant
that has lower binding strength to IFNAR1 (which alters both K1

and K4), as was first described in (10). The similarity of these two
perturbations on the dose-response curve indicates that ternary
complex formation is highly sensitive to the rate of in-membrane
receptor subunit association.

We further examined how USP18 may affect the ligand
discrimination specifically between IFNa2 and IFNb, as shown
in Figure 5C, using our computational model. It demonstrates
that the action of USP18 is predicted to reduce the amplitude of
the IFNa2 dose-response curve much more than the
corresponding amplitude of the IFNb dose-response, in
agreement with previously reported experimental results (42)
and our own experimental analysis (not shown). The reason for
this differential refractoriness is that the high affinity of IFNb for
IFNAR1 still allows formation of ternary complexes even in the
presence of USP18, which is not the case for IFNa2 due to its
lower affinity to IFNAR1. Most importantly, this differential effect
of USP18 increases the separation in pSTATmax values between
the two interferons and leads to the emergence of a region of
absolute discrimination, which is expected to be apparent at long
times (10-48 hours) when sufficient USP18 has accumulated in
the cell. This fact will be important for the potential explanation
of the differences in the anti-viral and anti-proliferative activities in
Section Proximal Receptor Signaling Maps to Biological Activity.
Proximal Receptor Signaling Maps to
Biological Activity
Interestingly, the time scale for USP18 upregulation is similar to
that for the emergence of anti-proliferative activity (~24 hours)
(11, 48, 82). By contrast, anti-viral genes are typically upregulated
very quickly (less than 8 hours) in response to IFN stimulation,
regardless of IFN subtype (11, 83). Motivated by this observation,
we now discuss how differential signaling at the level of pSTAT
may be translated into differences in physiological activity,
focusing on the hypothesis that the differential activity may be
linked to the regulation of differential pSTAT response by USP18
mentioned in the last section and Figure 5.

A multitude of signaling reactions and gene expression
downstream of receptor signaling are involved in anti-viral and
anti-proliferative responses. Not all of these reactions are known,
making detailed modeling of these processes unfeasible. Rather,
in this paper we use phenomenological mappings that translate
the pSTAT response into anti-viral and anti-proliferative
activity, as measured by common experimental functional
assays, to gain insights into the emergence of functional
plasticity based on the specificity of the receptor and STAT
phosphorylation levels (38–40). Despite substantial variability in
the results of anti-viral and anti-proliferative assays between
different studies, our conclusions remain qualitatively robust
across cell types and experimental variation.

Our aim is to capture the following notable features
distinguishing anti-viral and anti-proliferative activity. First, the
anti-viral IC50 (the IFN concentration required for half-maximal
anti-viral activity) is substantially lower than the pSTAT EC50

[Figure 6A (left)]; this is not the case for anti-proliferative activity
A

B

C

FIGURE 5 | Long time deactivation via USP18 regulates receptor complex stability
to achieve absolute discrimination. (A) Measurements reproduced from (10) of
ternary complex formation in un-primed cells (red, also see Figure 2A) and cells
primed with IFN to express USP18 (blue). Primed cells were observed to form fewer
ternary complexes relative to unprimed cells. This reduction can be explained by a
15-fold increase in K4 in our analytic model (blue curve, produced from Equation 1);
see text. (B) pSTAT1 Western blot band intensities for wild-type (WT) IFNa2 with
and without USP18 expression, and IFNa2-M148A with USP18 expression are
reproduced from (10). USP18 inhibition was modeled by a 60-fold increase in K4 in
Eq. 4 (lines); see text. (C) The simulated effect of USP18 on the pSTAT response at
60 minutes for IFNa2 (red) versus IFNb (green). Solid lines show the un-primed
response while dashed lines show the effect of a 15-fold increase in dissociation rate,
consistent with the effect of USP18 (reported to be between 15- to 60-fold change
depending on cell type). The differential refractoriness of IFNa2 as compared to IFNb
greatly enhances the region of absolute discrimination (difference in pSTATmax).
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[Figure 6A (right)] (38, 39). Second, complete inhibition of viral
replication is achievable by all IFN subtypes that have been
investigated while the maximum inhibition of cell proliferation
differs between IFN subtypes by as much as ~20% (38–40).

The observed discrepancy between the IC50 of the anti-viral
response and the pSTAT EC50 indicates that the components of
the JAK-STAT pathway downstream of pSTAT that mediate
anti-viral gene transcription require very little pSTAT to become
activated. We found that despite its unusual properties, the
dependence of the anti-viral response on the pSTAT levels can
be reproduced by a simple Michaelis-Menten type dependence:

Anti‐viral activity ∝
pSTAT(IFN)

KM + pSTAT(IFN)
(5)

where pSTAT(IFN) is the intracellular concentration of pSTAT
as a function of the extracellular IFN concentration, and KM is
the effective Michaelis-Menten constant for the intra-cellular
processes leading to anti-viral activity. As shown in Figure 6A,
anti-viral activity described by Eq. 5 saturates at much lower IFN
Frontiers in Immunology | www.frontiersin.org 12
concentrations than the corresponding pSTAT dose-response
curve (c.f. Figure 2D) for sufficiently small KM (i.e., KM~pM); we
used KM = 0.8pM in Figure 6A.

The anti-viral IC50 can be found by substituting Eq. 4 for the
pSTAT response into Eq. 5 and solving for the IFN concentration
which gives half-maximal activity. In the limit of KM/[ST] ≪1,
the IC50 is proportional to (pSTAT EC50) × KM/[ST], recalling
that [ST] is the concentration of intracellular STAT (our model
used [ST] = 0.7 nM). It follows from this proportionality that a
small KM guarantees that the anti-viral IC50 is lower than the
pSTAT EC50. This also explains why the anti-viral IC50 in this
regime is essentially the same for all IFNs because differences in
pSTAT EC50 between IFNs are also shrunk by the factor KM/[ST].

We now turn to anti-proliferative activity. A phenomenological
mapping for anti-proliferative activity must preserve differences in
maximal anti-proliferative response between IFN subtypes, as
apparent in the high concentration regime of Figure 6A (right),
as well as the difference in the anti-proliferative IC50 between IFNb
and the other IFN subtypes [also Figure 6A (right)]. These
differences between IFNs are only observed in anti-proliferative
A

B

FIGURE 6 | Proximal receptor signaling maps to biological activity. (A) Points: measurements of biological activity from (39). Lines: phenomenological mapping (Eq. 5-6).
IFNa2-YNS is frequently used as an IFNb mimic because it has a similar affinity for IFNAR1 and IFNAR2 as wild-type IFNb. The antiviral activity was measured
experimentally as the percentage of HCV-infected cells, while anti-proliferative activity was measured as the percentage of cells remaining alive after IFN stimulation for 48
hours. In both assays, maximal biological activity corresponds to minimal replication/cell density. (B) The anti-viral (AV) IC50 (green) and anti-proliferative (AP) IC50 (red)
measured for a selection of IFNa2 mutants is compared with the predicted IC50’s from Equations 5 and 6 respectively. The product of IFNAR1 and IFNAR2 dissociation
constants for each IFN subtype is shown in blue, and is a good phenomenological approximation to IC50; see Mathematical Methods.
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assays, not anti-viral assays. Since the anti-proliferative activity
emerges on longer time scales we include the effect of USP18 on
the pSTAT response, denoted as pSTATprimed(IFN) (29, 31, 52).
Unlike the anti-viral response that could be modeled by a single
Michaelis-Menten type function, the anti-proliferative response
required a more complex function of the following form to explain
the data in Figure 6B:

Anti‐proliferative activity

∝
1
2

(pSTATprimed(IFN))g1

(KM1)
g1 + (pSTATprimed(IFN))g1

+
1
2

(pSTATprimed(IFN))g2

(KM2)
g2 + (pSTATprimed(IFN))g2

, (6)

where g1 and g2 are phenomenological Hill coefficients and KM1,
KM2 are the effective anti-viral EC50’s for each contributing term.
Fitting Eq. 6 to the data, using our model of pSTAT induction
presented in Section Validation of the Model and the Effects of
Ligand Affinity on Response Specificity and measured IFN
binding affinities (39), results in the best fit parameter values
KM1 = 72 pM, KM2 = 158 pM, g1 = 0.9, g2 = 3.7. For sufficiently
large values of KM1 and KM2 – on the order of 100 pM –
differential refractoriness expressed in the different saturation
levels between the strong binding IFNa2-YNS and the weaker
binding variants results in the differential saturation of anti-
proliferative activity at high concentrations in Figure 6A (right).
Thus, absolute discrimination on the pSTAT level shown in
Figure 5C translates into functional plasticity on the level of
anti-viral and anti-proliferative responses. This result is robust to
variation in the parameters of Eq. 5-6, not simply the result of a
choosing specific parameter values.

To demonstrate the robustness of our phenomenological
mappings, in Figure 6B we compare the predicted IC50 values
of both the anti-viral and anti-proliferative responses to
previously reported measurements for several IFNa2 mutants
spanning four orders of magnitude in Keff (39). We find that our
phenomenological models semi-quantitatively recapitulate both
anti-viral and anti-proliferative IC50’s for most IFNs, although
agreement was somewhat worse for the quadruple mutant
IFNa2-YNS-L153A as well as for the weakest binding IFNs
IFNa2-L30A and IFNa2-R149A. The product K1 × K2 using
affinities measured for each IFN is provided in Figure 6B for
context, and provides a good estimate of each IC50 other than the
high affinity mutant IFNa2-YNS (39). This quantity has been
used as an approximation for Keff in previous work, and we show
in Figure S5 that this approximation is reasonable for a realistic
range of K1 and K2. The advantage of our phenomenological
mappings is that they can predict the biological activity at any
concentration, and the maximal biological activities, for each
IFN subtype; the quantity K1 × K2 alone cannot provide
such estimates.

The order of magnitude difference between KMi for anti-
proliferative activity (~100 pM as obtained from the best fit
values for Eq. 6) and KM for anti-viral activity (less than 1 pM), as
well as the Hill coefficients greater than 1 in Eq. 6, suggest that
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different molecular processes are responsible for the activation of
these two types of cellular response. We return to this point in
the Discussion.
DISCUSSION

Different Type I IFN subtypes induce distinct cellular responses
despite the fact that all Type I IFNs bind to the same receptor.
This functional plasticity arises from a combination of
biophysical and dynamic factors and is at least partially
decoupled from ligand concentration, indicating the presence
of absolute discrimination in this signaling system (29, 38–40).
In this paper we have presented a model of Type I IFN signaling
validated with previously published and our own experimental
data in a variety of cell types. This model accurately captures
signaling dynamics both at the level of receptor assembly and at
the level of pSTAT induction. Our validated model demonstrates
that many molecular details of this system can be aggregated into
single step reactions with effective rate constants, increasing
interpretability without losing predictive power. Predictions of
the model are in agreement with a more detailed model, further
indicating that our coarse-grained minimal model that subsumes
many molecular details into effective parameters is sufficient to
capture the dynamics of the pSTAT response and the emergence
of functional plasticity.

The main objective in this paper – beyond producing a
realistic and generalizable model of Type I IFN signaling - was
to investigate the mechanisms of ligand discrimination (among
several primary candidates) that can explain functional plasticity
in Type I IFN signaling (Sections No Evidence of Time-Course
Signal Discrimination; Long Time Deactivation via USP18
Regulates Receptor Complex Stability to Achieve Absolute
Discrimination). The first candidate mechanism considered
was amplitude-based absolute discrimination, which encodes
ligand identity in the saturation magnitude of the downstream
response and enables functional plasticity by thresholding
activity based on the level of response (53). The second
candidate mechanism, time-course discrimination, achieves
functional plasticity by conditioning the cellular response on
the temporal pattern of signaling activity in response to different
ligands (59). A third mechanism, combinatorial encoding, was
not studied in this work (6, 61). The three mechanisms are not
mutually exclusive. For example, amplitude discrimination
which emerges only at late times in the signaling dynamics is
conceptually related to time course discrimination by
distinguishing transient from sustained responses. However,
each mechanism focuses on a different aspects of signal
processing: specificity across concentrations, or through time.

We showed that a difference in the ligand binding strength
can theoretically generate amplitude-based absolute
discrimination by inducing a difference in pSTATmax, and
indeed this has been observed for the mutant IFNa2-R120A
and in other signaling pathways (Section Validation of the Model
and the Effects of Ligand Affinity on Response Specificity).
However, no region of absolute discrimination was observed
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between IFNa2 and IFNb in experiments. In practice, specificity
in Type I IFN signaling appears to emerge primarily due to the
action of the long-time negative feedback protein USP18 which is
expressed in response to IFN stimulation. USP18 effectively
increases the in-membrane dissociation of ternary complex,
and the much weaker receptor binding strength of IFNa2 as
compared to IFNb leads to a greater inhibitory effect on the IFNa2
response, thus generating a difference in the pSTATmax between these
IFNs (Section Long Time Deactivation via USP18 Regulates Receptor
Complex Stability to Achieve Absolute Discrimination).

We also used our model of Type I IFN signaling as a basis for
a phenomenological understanding of both anti-viral and anti-
proliferative activities across the entire spectrum of IFN binding
affinities. In Section Proximal Receptor Signaling Maps to
Biological Activity we showed that a Michaelis-Menten
function with a KM of only a few picomolar maps the pSTAT
response to anti-viral activity for several IFNs, which suggests
that maximal anti-viral gene transcription requires only a few
copies of pSTAT. A small KM is also consistent with observations
that all IFN subtypes can completely block viral replication,
because in this case even the weakest binding IFNs can induce
enough pSTAT to reach saturation in Eq. 5.

In contrast to the KM of anti-viral activity, the larger KM1 and
KM2 used in our anti-proliferative phenomenological mapping
requires a greater accumulation of pSTAT to saturate the
functional response. Differences in the maximal anti-
proliferative activity between IFNs then arise due to differences
in their pSTATmax amplified by USP18 inhibition. This suggests
that USP18 may provide a mechanism for cells to differentially
regulate their anti-proliferative activity, without altering their
potential for an anti-viral response. Furthermore, a Hill
coefficient greater than one suggests molecular cooperativity or
other complex regulation of anti-proliferative activity
downstream of pSTAT (84, 85). Our phenomenological models
point to different intracellular signal processing for anti-viral
functions as compared to anti-proliferative functions, consistent
with previous suggestions (32, 86).

Combinatorial encoding is an alternative mechanism for
absolute discrimination, not investigated here, in which the set
of signaling components involved encode the ligand identity and
enable a specific response (87, 88). This mechanism is
particularly effective for responding differently to different
combinations of extracellular ligands (6, 89, 90), but can also
be used to achieve absolute discrimination in crosstalk signaling
systems (61). Reports of functional roles for pSTAT1
homodimers and complexes involving pSTAT3 or pSTAT5
may indicate combinatorial encoding, and future investigation
may reveal additional complexities in signal processing for Type
I IFNs (39, 82, 86).

We showed in Sections Receptor Expression Levels Can
Regulate Signaling Specificity; The Role of Negative Feedbacks in
Signal Specificity that differences in pSTATmax can be tuned by a
variety of feedbacks. There is evidence that receptor
internalization and recycling rates differ between cell types, so
it is possible that receptor internalization is an important factor
differentiating the response to IFN stimulation in different cell
Frontiers in Immunology | www.frontiersin.org 14
types (36). Additionally, we noted that total receptor expression
could be regulated to ensure that some cell types only exhibit
responses associated with high affinity IFNs. Other feedbacks we
did not consider here include signaling from endocytosed
receptor complexes and hypersensitization of the pSTAT
response with low level IFN pre-stimulation (11, 36, 81).
Feedback from ISG upregulation at longer timescales such as a
reduction in IFNAR1 surface levels or activity of Tyk2 can be
studied in our framework in a similar fashion to feedback by
SOCS1, USP18, or receptor internalization studied in this work
(Sections Receptor Expression Levels Can Regulate Signaling
Specificity; The Role of Negative Feedbacks in Signal Specificity;
Long Time Deactivation via USP18 Regulates Receptor Complex
Stability to Achieve Absolute Discrimination), and will be
investigated in future work. While we did not find it necessary
to model these effects to explain the emergence of functional
plasticity, such mechanisms may play (possibly redundant)
roles in some cell types. Whether or not signal processing of
Type I IFNs differs between cell types is an interesting but
open question.

Finally, our models for Type I IFN signaling can be used as a
framework for engineering functional properties of IFNs for
improved clinical use. For example, refractoriness to repeated
IFN treatment can be a serious challenge for clinical applications
(42, 81). Our results suggest that a non-refractory version of
IFNa2 could be engineered with a similar pSTAT1 EC50 to the
wild type IFN by increasing the IFNAR1 affinity and
simultaneously decreasing IFNAR2 affinity. More generally, the
approach presented here provides a broadly applicable framework
for studying response specificity in systems involving crosstalk
downstream of the receptor or combinatorial sensing of
cytokine mixtures.
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Parsing the Interferon Transcriptional Network and Its Disease Associations.
Cell (2016) 164:564–78. doi: 10.1016/j.cell.2015.12.032

33. Brierley MM, Fish EN. Stats: Multifaceted Regulators of Transcription. J Interf
Cytokine Res (2005) 25:733–44. doi: 10.1089/jir.2005.25.733

34. Damdinsuren B, Nagano H, Wada H, Kondo M, Ota H, Nakamura M, et al.
Stronger Growth-Inhibitory Effect of Interferon (IFN)-b Compared to IFN-a
Is Mediated by IFN Signaling Pathway in Hepatocellular Carcinoma Cells. Int
J Oncol (2007) 30:201–8. doi: 10.3892/ijo.30.1.201
October 2021 | Volume 12 | Article 748423

https://www.frontiersin.org/articles/10.3389/fimmu.2021.748423/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2021.748423/full#supplementary-material
https://doi.org/10.1073/pnas.122236099
https://doi.org/10.1016/j.cytogfr.2012.04.001
https://doi.org/10.1016/j.cytogfr.2012.04.001
https://doi.org/10.1016/j.cytogfr.2008.04.005
https://doi.org/10.1016/j.cytogfr.2008.04.005
https://doi.org/10.1242/jcs.00963
https://doi.org/10.1016/j.cell.2017.08.015
https://doi.org/10.1016/j.intimp.2004.01.003
https://doi.org/10.1016/B978-0-12-800100-4.00001-5
https://doi.org/10.1016/j.cellsig.2006.01.014
https://doi.org/10.1083/jcb.201412049
https://doi.org/10.1016/j.it.2015.01.002
https://doi.org/10.1016/j.it.2015.01.002
https://doi.org/10.3389/fphar.2014.00262
https://doi.org/10.1074/jbc.R200003200
https://doi.org/10.1038/s41580-018-0049-3
https://doi.org/10.1038/s41580-018-0049-3
https://doi.org/10.1007/s00018-008-8666-1
https://doi.org/10.1038/s41573-018-0011-2
https://doi.org/10.1038/s41573-018-0011-2
https://doi.org/10.1158/1541-7786.MCR-14-0450
https://doi.org/10.1111/imr.12001
https://doi.org/10.4161/jkst.23060
https://doi.org/10.1038/s41577-019-0131-x
https://doi.org/10.1126/science.abc6027
https://doi.org/10.1126/science.abc6027
https://doi.org/10.1128/JVI.79.4.2079-2086.2005
https://doi.org/10.1128/JVI.79.4.2079-2086.2005
https://doi.org/10.1016/j.virol.2005.09.024
https://doi.org/10.1016/j.virol.2005.09.024
https://doi.org/10.1016/j.cell.2020.04.026
https://doi.org/10.1016/j.chom.2017.07.012
https://doi.org/10.1016/j.immuni.2021.01.017
https://doi.org/10.1016/j.immuni.2021.01.017
https://doi.org/10.1038/nrd2422
https://doi.org/10.1016/S0301-472X(99)00109-5
https://doi.org/10.1074/jbc.R116.774562
https://doi.org/10.1016/S0952-7915(00)00111-4
https://doi.org/10.1002/hep.26657
https://doi.org/10.1002/hep.26657
https://doi.org/10.1016/j.cell.2015.12.032
https://doi.org/10.1089/jir.2005.25.733
https://doi.org/10.3892/ijo.30.1.201
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kirby et al. Determinants of Functional Plasticity
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