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ABSTRACT KRAB C2H2 zinc finger proteins (KZNFs) are the largest and most diverse family of human
transcription factors, likely due to diversifying selection driven by novel endogenous retroelements (EREs), but the
vast majority lack binding motifs or functional data. Two recent studies analyzed a majority of the human KZNFs
using either ChIP-seq (60 proteins) or ChIP-exo (221 proteins) in the same cell type (HEK293). The ChIP-exo paper
did not describe binding motifs, however. Thirty-nine proteins are represented in both studies, enabling the
systematic comparison of the data sets presented here. Typically, only a minority of peaks overlap, but the two
studies nonetheless display significant similarity in ERE binding for 32/39, and yield highly similar DNA binding
motifs for 23 and related motifs for 34 (MoSBAT similarity score.0.5 and.0.2, respectively). Thus, there is overall
(albeit imperfect) agreement between the two studies. For the 242 proteins represented in at least one study, we
selected a highest-confidence motif for each protein, utilizing several motif-derivation approaches, and evaluating
motifs within and across data sets. Peaks for the majority (158) are enriched (96% with AUC .0.6 predicting peak
vs. nonpeak) for a motif that is supported by the C2H2 “recognition code,” consistent with intrinsic sequence
specificity driving DNA binding in cells. An additional 63 yield motifs enriched in peaks, but not supported by the
recognition code, which could reflect indirect binding. Altogether, these analyses validate both data sets, and
provide a reference motif set with associated quality metrics.
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The human genome encodes �350 KRAB C2H2 zinc finger proteins
(KZNFs), which encode a Kruppel-Associated Box (KRAB) domain,
which is best known for its repressor activity (Schultz et al. 2002), followed
by a tandem array of C2H2 zinc finger (ZNF) domains (up to 40), which
mediate sequence-specific DNA binding. The ZNFs each contact three or
more bases, and typically bind in tandemwith an offset of three bases. The
DNA sequence motifs recognized by the array of ZNFs therefore often
resemble concatenation of the base preferences for the individual ZNFs

(Wolfe et al. 2000), which can be predicted to some degree on the basis of
“specificity residues” at positions –1, 2, 3, and 6 of the DNA-contacting a
helix (Najafabadi et al. 2015a). The modular fashion of DNA recognition
by C2H2-ZF proteins apparently facilitates adaptation, with evidence for
positive selection on the specificity residues ofmanyKZNFs (Emerson and
Thomas 2009), such that many encode a unique sequence specificity
(Najafabadi et al. 2015a).

Thebest-characterizedfunctionoftheKRABdomainistorecruitTRIM28
(aka KAP1), which represses transcription by subsequent recruitment of
SETDB1, a histone H3 lysine 9 (H3K9) trimethylase (Schultz et al. 2002).
TRIM28 is involved in silencing endogenous retroelements (ERE); this ob-
servation led to the nowwidely accepted theory thatKZNFs evolve rapidly to
silence EREs (Matsui et al. 2010; Rowe and Trono 2011). A KZNFs vs. EREs
“arms race”model (Jacobs et al. 2014) provides a readily understood mech-
anism for the evolution of newKZNFs, but does not explain the retention of
somany of them; presumably, they take on other host functions. The KRAB
domains vary in primary sequence, with an average sequence identity of
�40%, and KZNFs vary in their protein–protein interactions (Schmitges
et al. 2016), suggesting that they may also vary in effector function.
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Detailed study of the KZNFs requires knowledge of their intrinsic
DNA binding preferences (i.e., motifs), and their genomic binding sites.
General characteristics of their motifs can be gleaned from their protein
sequences, e.g., that two proteins should bind distinct motifs, but cur-
rent “recognition codes” are too error-prone to obtain high-confidence
motifs (Najafabadi et al. 2015b). Furthermore, it remains difficult to
determine which C2H2 domains in a large array are likely to bindDNA
(Brayer and Segal 2008); KZNFs typically carry many more tandem
ZNFs than needed to specify individual loci in the human genome
(2–40; median 12), and known motifs for human ZNF proteins often
correspond to only part of the ZNF array (Najafabadi et al. 2015a). An
additional challenge with ZNF proteins is that they often fail to yield
motifs from in vitro analyses such as Protein Binding Microarrays
(Badis et al. 2009; Wang 2014) and HT-SELEX (Jolma et al. 2013),
possibly due to misfolding, lack of obligate cofactors, or the fact that
many KZNFs have long binding sites, which would be poorly repre-
sented among the sequences in these experiments. Systematic appli-
cation of these approaches has consequently yieldedmotifs for very few
of the KZNFs (Badis et al. 2009; Jolma et al. 2013, 2015; Weirauch et al.
2013). Other approaches to determining sequence specificity of C2H2
proteins have been described, including SMILE-seq (Isakova et al.
2017), B1H (Noyes et al. 2008), and analysis of selected sites by con-
text-dependent models (Zhao et al. 2009), but, to our knowledge, none
has been tested on a large number of human proteins.

ChIP-seq and relatedmethods [e.g., ChIP-exo (Imbeault et al. 2017)]
represent an alternative to rapidly obtain motifs for C2H2 zinc finger
proteins. ChIP-seq is a relatively challenging means to obtain high-
confidence motifs for TFs, due to the fact that the number of bind-
ing sites is relatively small (in comparison to, e.g., HT-SELEX), that
the genome sequence is highly nonrandom (with many sequence
biases and repeated sequences), and that proteins can associate
with DNA indirectly, such that cofactor motifs are often obtained
(Encode-Project-Consortium 2012; Mathelier and Wasserman 2013).
For KZNF proteins, the fact that EREs are often bound represents an
additional confounding variable, because motif-finding tools [e.g.,
MEME (Bailey et al. 2009)] typically assume that different binding sites
are drawn from independent random sequences, while EREs are related
by common origin. To address these issues, we have previously de-
scribed Recognition Code-Assisted Discovery of regulatory Elements
(RCADE), a computational method that employs the zinc finger rec-
ognition code to predict primary binding motifs from ChIP-seq data
specifically for C2H2-ZF proteins (Najafabadi et al. 2015a).We utilized
RCADE in two large-scale analyses of human C2H2-ZFs proteins
(using tagged, inducible heterologous expression constructs inHEK293
cells) to produce motifs for dozens of human C2H2-ZFs (Najafabadi
et al. 2015b; Schmitges et al. 2016).

A recent study described a similar ChIP-exo analysis of 221 human
KZNFs (Imbeault et al. 2017), also in HEK293 cells (but using different
constructs). This study did not describe DNA binding motifs, however.
Here, we applied our existing data analysis pipeline to the data from the
Imbeault et al. (2017) study, and compared the results to our own, and
also to HT-SELEX, SMILE-seq, and other motifs from the literature,
where available. Overall, the comparison reveals that the two data sets
usually produce comparable motifs, and also largely agree on the sets of
EREs bound by the individual KZNFs. This agreement is obtained even
though most of the individual peaks do not overlap, suggesting that
both studies sample from a larger set of genomic target sites. We in-
troduce a web portal that summarizes the results of our analyses (http://
kznfmotifs.ccbr.utoronto.ca/), and produce a set of high-confidence
motifs, each together with a confidence statistic that represents its
ability to predict binding sites in living cells.

MATERIALS AND METHODS

Reprocessing the ChIP-exo data
PrimaryandprocessedChIP-seqandChIP-exodatawereobtained from
GEO accession numbers GSE76496 (Schmitges et al. 2016), and
GSE78099 (Imbeault et al. 2017). The Trono ChIP-exo data were
reprocessed as previously described (Najafabadi et al. 2015b;
Schmitges et al. 2016). Briefly, the ChIP-exo reads were trimmed to
50 nucleotides and mapped to the human genome (hg19; build
GRCh37) using Bowtie 2 (Langmead and Salzberg 2012). We used
the “–very-sensitive” preset option, which allows the retention of one
alignment for the multi-mapped reads; otherwise many ERE instances
cannot be detected. The multi-mapping may affect the reads containing
EREs due to their similar sequences by aligning them to the genomic
repetitive regions other than their origin, and could result in erroneous
peak calling. However, as we and others have described before
(Najafabadi et al. 2015b), this is unlikely to be a problem regarding
the enrichment of EREs, since these reads typically map to another
instance of the same ERE, and vice versa (Day et al. 2010).

MACS 1.4.2 was used for peak calling (Zhang et al. 2008), where the
provided input DNA data set (a combination of randomly selected
peaks from all ChIP-exo) was used as the control. The biological rep-
licates were merged into single samples, retaining all the peaks from all
replicates, and merging the peaks in a maximum of 50 bp distance
from each other into a single peak. For further analyses, the top
500 peaks with the highest enrichment scores were picked.

Motif analysis
Non-ERE peaks were filtered using RepeatMasker track of the UCSC
Table Browser (Karolchik et al. 2004). We used RCADE (Najafabadi
et al. 2015a) using default settings and MEME (Bailey et al. 2009) with
CentriMo, on both all and non-ERE peaks, giving priority to those
obtained by RCADE and in non-ERE peaks, as will be described in
the text. For further detail, see Schmitges et al. (2016). Enrichment of
motifs from ChIP data and other sources were tested by calculating
AUROC for differentiating the top 500 ChIP peaks in a range of
6250 bp from the summit fromdinucleotide shuffled sequences, using
the single maximum PWM scoring match for each 501-base sequence
as its score.

Motif similarity analysis
Motif similarity was measured using the Motif Similarity Based on
Affinity of Targets (MoSBAT) method (Lambert et al. 2016) using the
energy scores option. To make similarity measurements consistent
across datasets we set the sequence background to n = 100,000 and
l = 100.

ERE enrichment
TheEREenrichmentwas calculatedas theproportionof the top500peaks
overlapping any transposon and retroelement instances present in the
RepeatMasker.ThePearsoncorrelations (r) between theoverlappedEREs
of all possible Hughes and Trono pairs (matching and unmatching
within the same set of 39) were calculated using R (v. 3.2.3).

Data availability
Thedetailed results of ouranalyses for the 242KZNFsareavailable at the
web portal of the paper (http://kznfmotifs.ccbr.utoronto.ca/). For each
KZNF, it contains motifs from different sources, a heatmap of the
pairwise motif similarity scores between different motifs, the overlap
between all peaks and top 500 peaks of the Hughes and Trono ChIP
data, where available, and the ERE enrichment of the peaks.
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RESULTS
Figure 1 presents an overview of the data analyzed in this study and the
analysis steps, the results of which are detailed below. Briefly, we com-
piled ChIP-seq (“Hughes”) or ChIP-exo (“Trono”) data for KZNF
proteins from two different studies. Hughes data (60 KZNFs) is from
Schmitges et al. 2016, while Trono data (221 KZNFs) is from Imbeault
et al. (2017). We also identified motif data from other sources that
correspond to each of the proteins in the combined list of 242 KZNFs
(Matys et al. 2006; Encode-Project-Consortium 2012; Jolma et al. 2013;
Kulakovskiy et al. 2013; Najafabadi et al. 2015b; Mathelier et al. 2016;
Isakova et al. 2017; Yin et al. 2017). The Venn diagram in Supplemental
Material, Figure S1 shows the overlaps among the data types.

Forall analyses,weused twoversionsof thepeaks fromtheTronodata.
The first is the set of peaks reported in the original paper (Imbeault et al.
2017), and the second is the set of peaks obtained by rerunning the raw
Trono reads using the same peak-calling system employed for the
Hughes data. These “Trono reprocessed” peaks are, on average, 10-fold
more numerous than the “Trono original” peaks, but they are only 1.8-
fold less compared to those from the Hughes data, for the 39 KZNFs that
overlap (average 40,660 for Hughes and 22,483 for Trono reprocessed).

ForeachKZNF,wecomputed theoverlap inpeaks (for the39present in
bothHughes andTronodata), and theproportionof theTop500peaks (or
maximum number of peaks where the number of peaks was,500) that
overlap with each of 934 types of transposons and retroelements cataloged
by the RepeatMasker track of the UCSC Table Browser (Karolchik et al.
2004).We also generated newmotifs (using bothMEMEandRCADE) for
both the Trono original and Trono reprocessed peak sets. As in our pre-
vious studies, we favored RCADE motifs, which are supported by the
recognition code and therefore more likely to represent primary binding
sites, but retainedMEMEmotifs if RCADE produced no results [(a result
of the algorithm failing to converge, or nonenrichment of any of the
predicted motifs in the ChIP-seq peaks; see Najafabadi et al. (2015a)].
We also favored motifs derived from non-ERE peaks. We then scored
the similarity among the motifs for each protein (choosing one per data
set), and also scored the area under the receiver operating characteristic
curve (AUROC) for all availablemotifs on theHughes, the Trono original,
and the Trono reprocessed data sets. The AUROC scores reflect the ability
of the motif to discriminate peak sequences from the background (di-
nucleotide shuffled peaks). Finally, we selected a representative motif for
each protein, favoring those with evidence for direct binding, and those
with the highest AUROC on any ChIP data type. The web site accompa-
nying this paper (http://kznfmotifs.ccbr.utoronto.ca/) contains files used
in all the analyses herein, including the numerical data underlying the
figures, as well as a visualization of the motifs and all the analyses for each
protein considered. It also contains all the motifs as PWMs, and lists the
representative motifs, together with confidence metrics for each: AUROC
on ChIP data, similarity to most similar independently generatedmotif (if
available), and method generated (RCADE, MEME, or external source).

Overlap in peaks and EREs bound between Hughes and
Trono data
We first considered the overlap in peaks and the overlap in EREs bound
between the Hughes and Trono data, for the 39 proteins that overlapped
between the two studies. Figure 2 shows the percent peak overlap for each
protein, calculated as the percentage of the top 500 Hughes peaks that
overlap Trono peaks and vice versa in a range of6250 bp from the peak
summits, with the four bar graphs representing comparisons between
Hughes data and Trono original and Trono reprocessed data. On average,
35% of the Top 500 Hughes and Trono reprocessed peaks overlapped
in both comparisons, albeit with a considerable spread. At random, the
overlap should be zero in all these comparisons, because the 500 peaks

encompass a miniscule fraction of the genome. We observed no correla-
tion between the degree of peak overlap and quality scores of the ChIP
experiments (Kharchenko et al. 2008; Landt et al. 2012) (data not shown).

Our use of 500 peaks throughout is for convenience and uniformity;
different numbers and proportions of peaks will yield slightly different
numbers, but with generally similar conclusions (data not shown). For
example, we note that the Trono original peaks often have a generally
higher proportion of overlap with Hughes, relative to all other com-
parisons made. This phenomenon is explained by the data processing;
there area substantially lowernumberofpeaks in theTronooriginaldata
(,500 in 17/39KZNFs compared) and they are presumably the highest
enriched based on the description in Imbeault et al. (2017). This trend
is not evident with the Trono reprocessed data, and similar (albeit again
not identical) outcomes were obtained with Trono original and Trono
reprocessed data in the analyses below.

Figure 3 provides a detailed view of the agreement in EREs bound in
the two studies. Our comparison statistic is the Pearson correlation
across all ERE classes, where the value for each is the proportion rep-
resented among the Top 500 peaks. Figure 3A shows that the distribu-
tion of values for the 39 matched KZNFs between the Hughes and
Trono reprocessed data sets is much different from that for mis-
matched KZNFs; 82% (32/39) of thematched pairs exceed a correlation
achieved by only 8% of the mismatched pairs. The distribution is quite
similar when comparing Hughes and Trono original data, with 82% of
the matched pairs exceed a correlation achieved by 5% of the mis-
matched pairs (data not shown). Figure 3B provides a visual confirma-
tion that the individual transposons and EREs types represented in the
three peak sets for each of the 39 proteins are largely in agreement.

Overall, we take this outcome to indicate that a largemajority of data
in both data sets correctly identifies the spectrum of EREs recognized,
assuming that theoverlappingKZNFsare anunbiased sample fromeach
of the two studies.There canbegoodagreementon theEREsboundeven
when the peakoverlap is relatively low; however, thehigherpeakoverlap
is usually associated with higher EREs correlation (Figure 3A). One
interpretation of these observations is that both data sets are drawing
from a substantially larger set of bona fide genomic binding sites, but
both are subject to noise, and neither has been sequenced to saturation.

Similarity of motifs from Hughes, Trono, and
external data
We next compared the motifs obtained from the two ChIP data sets for
the 39 overlapping proteins, as well as against the motifs obtained from

Figure 1 Overview of the data analysis steps and methods utilized in
this study.
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other sources. For Hughes data, we used the motifs directly from the
publication Schmitges et al. (2016). For the Trono data, we generated
motifs for both the Trono original and Trono reprocessed peaks, using
the same procedure employed in Schmitges et al. (2016). Briefly, we
used either RCADE (Najafabadi et al. 2015a) or MEME (Bailey et al.
2009) to identify motifs based on the 6250 bp sequences around the
summits of the top 500 peaks of each protein. We usedmotifs obtained
by RCADE, using non-ERE peaks, if the algorithmwas successful, since
the fact that EREs within a given class are related by common descent
can confound motif-finding algorithms. If non-ERE peaks did not
generate significant motifs, we included the ERE peaks in the analysis.
We usedMEME to generatemotifs if no RCADEmotifs were obtained,
selecting the top-scoring motif using CentriMo; similar to the RCADE
motifs, priority was given to the motifs obtained by non-ERE peaks.
Overall, 80% (48/60) of the motifs from the Hughes data, 74% (164/
221) from the Trono original data, and 77% (170/221) from the Trono
reprocessed were obtained from RCADE. RCADE was successful in at
least one of the three data sets in the 39 shared proteins, and in many
cases, on the same proteins from the Hughes and Trono laboratories
(30/39 in common between Hughes, and at least one of the Trono
original or Trono reprocessed data sets, 1/39 from Hughes only, 1/39
from Trono original only, and 7/39 from both Trono original and
Trono reprocessed, but not Hughes).

To score similarityofmotifs,weusedMoSBAT(Lambert et al.2016),
which computes the Pearson correlation of the predicted affinities for
two different motifs to thousands of randomly generated short se-
quences. MoSBAT is appropriate for this analysis because it is non-
parametric, and requires no adjustments for differences inmotif length.
Figure 4A shows an example confirming similarity among multiple
published motifs for ZIM3 (similar figures are shown for all KZNFs
at http://kznfmotifs.ccbr.utoronto.ca/). In this example, only 35% of the
top 500 Hughes peaks overlap Trono original and Trono reprocessed
peaks, but RCADE produces very similar motifs with both data sets
(r = 0.90 and r = 0.89, respectively). Figure 4B shows the motif sim-
ilarity scores between the Hughes data and the Trono original and
reprocessed data, and the corresponding motifs for the 39 overlapping

KZNFs, illustrating that virtually all bear a clear visual resemblance, with
only 3/39 (8%) and 7/39 (18%) of the KZNFs yielding similarity
scores ,0.10 between Hughes motifs and Trono original and Trono
reprocessed motifs, respectively. Overall, roughly half of the overlapping
KZNFs between the Hughes and Trono data (19/39; 49% for Trono
Original and 18/39; 46% for Trono Reprocessed) yielded motif similarity
scores.0.50, a value typically obtained from different experiments using
the same transcription factor (TF) (Lambert et al. 2016). Furthermore,
the majority of the overlapping KZNFs (33/39; 85% for Trono Original
and 27/39; 69% for Trono Reprocessed) are clearly comparable by visual
inspection (Figure 4B), and bear a similarity score of .0.20, which
exceeds the score of the 98% of the mismatched KZNFs. As with the
ERE overlap, in most cases the motifs tend to be similar, even when peak
overlap between the two data sets is low. Higher peak overlap usually
results in higher motif similarity, however (Figure 4C).

We also compared the ChIP-derived motifs with those from other
sources, taken from the initial publications or TF databases. If there was
morethanonemotif fromthesamesourceavailable foraKZNF, theonewith
the highestAUROCwas selected for further analysis (41 in total;Matys et al.
2006; Encode-Project-Consortium2012; Jolma et al.2013;Kulakovskiy et al.
2013; Mathelier et al. 2016; Isakova et al. 2017; Yin et al. 2017), and 5/22 of
Hughes KZNFs, 14/22 of Trono KZNFs, and 3/22 of both data sets over-
lapped with at least one external motif (Figure S1). For 23/41, the external
in-vitro motif was similar (MoSBAT .0.2) to at least one ChIP-derived
motif. Surprisingly, 17 of the external motifs outperformed the ChIP-
derivedmotifs in predictingChIPpeaks (see the sectionA referencemotif set
for humanKZNFs for details), amongwhich six belonged to the SMiLE-seq
motif sets (seven in total; Isakova et al. 2017), six to the HT-SELEX motif
sets (12 in total; Jolma et al. 2013;Yin et al. 2017), andfive to one of the other
sources (10 in total; Matys et al. 2006; Encode-Project-Consortium 2012;
Kulakovskiy et al. 2013). This outcome not only confirms that motifs de-
rived in vitro are often consistent with in vivo genomic binding sites, but
illustrates that the greater depth of the assays can produce more accurate
motifs. Some cases, however, are discrepant (11/41 cases score ,0.1 in
MoSBAT compared to all corresponding ChIP-derived motifs), and will
require resolution (see Discussion).

Figure 2 Peak overlaps for the 39 shared KZNFs
between the Trono original and Hughes data
(dark blue bars), Hughes data and Trono original
data (light blue bars), Trono reprocessed and
Hughes data (dark red bars), and Hughes and
Trono reprocessed data (light red bars).
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We also found that the vast majority of motifs obtained from one of
the ChIP data sets were significantly enriched in peaks from the other.
Figure 5 depicts AUROC values (Top 500 vs. dinucleotide shuffled
sequences) for ChIP data and other sources tested on the three data
sets: Hughes, Trono original, and Trono reprocessed. The left third of
Figure 5 shows that, except for a few cases, the ChIP-derived motifs are
comparable at predicting the ChIP peaks of the other data set, as well as
the one from which they are derived. The right two-thirds of Figure 5
show that motifs from other sources are also generally good predictors
of the ChIP peaks.

These analyses show that the two data sets typically identify similar
bindingmotifs,mostofwhicharealso supportedby the recognitioncode
and/or by independent data.

A reference motif set for human KZNFs
Thecomparisonsaboveprovideconfidencemetrics for themotifsobtained
for each of the 242 KZNFs examined, representing reproducibility

and predictive power both within and among data types, consistency
with the zinc finger recognition code, and quality statistics for the data
used to derive themotifs.We used thesemetrics to choose a single best
current motif for each protein, as such a motif set is useful for many
types of analyses (Matys et al. 2006; Encode-Project-Consortium
2012; Kulakovskiy et al. 2013; Mathelier et al. 2016).

The ranking system, intended to capture motifs that correspond to
bothChIPdata and external information, if available, is shown in Figure
S2. We gave highest confidence to any motif (in vitro or ChIP-derived)
that predicts “test” ChIP data (the data that they were not trained on:
one of the Hughes, Trono original, or Trono reprocessed data sets) with
AUROC at least 0.1 greater than all other motifs (Motif is uniquely
predictive of test peaks = Class A). In the absence of a Class Amotif, we
then favored in vitro derived motifs that predict the test ChIP data
better than, or almost as well as, the ChIP motifs (AUROC difference
,0.1; In vitro motif predictive of test peaks = Class B), since in vitro
data are not impacted by extraneous factors such as indirect binding. If

Figure 3 Overview of the ERE enrichment in
Hughes and Trono ChIP data. (A) Pearson Corre-
lation between the 39 Hughes and Trono reproc-
essed overlapping KZNFs (matched pairs; red
bars) and nonoverlapping KZNFs (unmatched
pairs: 2964 comparisons; blue bars) and the
frequency of the KZNF pairs at each given corre-
lation. The arrow indicates the correlation beyond
which 82% of the matched pairs and 8% of the
unmatched pairs lie. The percentage of the peak
overlap between the Hughes and Trono reproc-
essed (yellow dots) and Trono reprocessed and
Hughes (green dots) at corresponding correlations
are also presented. (B) Fraction of the top 500 over-
lapping KZNFs enriched in TEs (ERE instances and
transposons). In total, 51 single TE instances were
enriched with a fraction of .0.1. H, Hughes; O,
Trono Original; R, Trono Reprocessed.
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Figure 4 Similarity between ChIP-derived motifs. (A) Similarity between the Hughes and Trono motifs for ZIM3. The heat map on the left indicates
the MoSBAT similarity e-scores between each pair compared. The motifs and the motif-finding methods are represented on the right. H, Hughes;
TO, Trono Original; TR, Trono Reprocessed. (B) The MoSBAT e-scores between Hughes motifs and Trono original and Trono reprocessed motifs
and the corresponding aligned motifs for the 39 overlapping KZNFs. H, Hughes; TO, Trono Original; TR, Trono Reprocessed; R, RCADE; M,
MEME; a, all peaks; nE, nonERE peaks. (C) MoSBAT similarity e-scores for the 39 overlapping KZNFs between the Hughes data and Trono original
(blue) and Trono reprocessed (red). The dots indicate the percentage of the overlap between the Hughes and Trono original peaks (blue) and
Hughes and Trono reprocessed peaks (red).
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Figure 5 AUROC of the Hughes and Trono motifs and external motifs overlapping any of the two data sets. Heat map represents the AUROC
value of each motif tested on Hughes, Trono original, or Trono reprocessed peaks. The first row at the top indicates the source of the motif, and
the second row indicates the test data set. TO, Trono Original; TR, Trono Reprocessed; H, Hughes. White indicates no data is available. A full
version of the figure that includes the KZNFs IDs is available at the web portal of the paper (http://kznfmotifs.ccbr.utoronto.ca/figures.html).
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Figure 6 The reference motif set for the 242 KZNFs. (A) Percentage and number of the motifs (in parentheses) fit into classes A–F and the median
AUROC values of each group. (B) The reference motif for each of the 242 KZNFs. Source refers to motif origin (TO, Trono Original; TR, Trono
Reprocessed; H, Hughes; Naj, ChIP-seq (Najafabadi et al. 2015b); SM, SMiLE-seq (Isakova et al. 2017); SelY, HT-SELEX (Yin et al. 2017); MSelY,
Methyl-HT-SELEX (Yin et al. 2017); SelJ, HT-SELEX (Jolma et al. 2013); EN, ENCODE; Trans, TRANSFAC; HM, HocoMoco). The class is the
selection class that each motif falls into. For ZIM2, ZNF445 and ZNF785, both motifs from class F are represented.
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no motifs satisfied these criteria, we selected ChIP motifs that are sup-
ported by the recognition code (i.e., RCADE) (RCADEmotifs = Class C),
followed by the ChIP motifs that predict their training data better than all
other motifs, where the AUROC was at least 0.1 greater than the others
(ChIPmotif is uniquely predictive of training peaks =ClassD), followed by

those that predict the test ChIP data sets even slightly better than the others
(AUROC = 0.01–0.09 greater than the others) (Motif is most predictive of
test peaks = Class E), and, finally, all remaining motifs including single
motifs and motifs for three KZNFs (ZIM2, ZNF445 and ZNF785) that
cannot be discriminated by any of the above criteria (Others = Class F).

Figure 7 Web portal of ZNF549 containing all the analyses described (http://kznfmotifs.ccbr.utoronto.ca/report.php?name=ZNF549). (A) Motifs for
the same KZNF derived from different sources. (B) MoSBAT similarity heat maps between all motifs. (C) Overlap between Hughes peaks and Trono
reprocessed (left) and Trono original (right) peaks for all peaks and top 500 peaks. (D) ERE enrichment for the Hughes and Trono ChIP peaks.
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Figure 6A shows the number and proportion of KZNFs currently
falling into each class, and Figure 6B shows the motifs. In this scheme,
the largest classes of motifs are Class A (in which one motif clearly
outperforms all others on test data), and Class E (where all motifs are
roughly equivalent). The median AUROC for each class does not vary
greatly (Figure 6A).Most of themotifs are supported by the recognition
code: 158/242 (65%) are RCADEmotifs, 96% of which have AUC.0.6
predicting peak vs. nonpeak. As previously reported for KZNFs, these
reference motifs are highly diverse, and tend to be longer and more
information-rich than motifs for other TF types, which tend to be only
6–12 bases long (Badis et al. 2009; Jolma et al. 2013).

Web portal for KZNFs
Finally,wegeneratedaweb interface thatassembles all thedatadescribed
herein, providing all the relevantdatafiles, aswell as a graphical interface
for each KZNF. Figure 7 provides an illustration for ZNF549, a KZNF
with a Class A motif. Motifs from different sources are shown, if avail-
able (Figure 7A). A heatmap of the pairwise motif similarity scores
between different motifs is then shown (Figure 7B). The peak overlap
between the Hughes and Trono ChIP data are illustrated, where avail-
able, for all peaks and top 500 peaks (Figure 7C). Finally, the ERE
enrichment of the peaks is given (Figure 7D).

DISCUSSION
The overall conclusion of these analyses is that there is reasonable
agreement between the Hughes and Trono lab ChIP data, and also
external data, on themotifs, genomic binding sites inHEK293 cells, and
EREs enriched among those sites. This finding enables us to conclude
that ChIP-seq—despite being a notoriously difficult method from
which to derive motifs and to predict primary regulatory “targets”—
is a viable strategy for both obtaining motifs and for identifying a
potential physiological role for these proteins, or at least an initial
driving evolutionary force (repression of EREs). These analyses also
indicate that most human KZNFs are bona fide sequence-specific
DNA-binding proteins.

Despite general overall agreement, there are discrepancies between
the data sets. When considering both Trono original and Trono
reprocessed data together, 23% of the experiments disagree on at least
one of these parameters (EREs bound, r, 0.3 andmotifs, r, 0.2); 3/39
(8%) of the experiments disagree on both. Because disagreement can
stem from noise or error in only one of the two data sets, it is possible
that these issues are less prevalent in the individual data sets (e.g., 11.5%
error in each of themwould lead to an overall error of 23%). KZNFs for
which the data sets disagree, and for which there are no motifs that
relate to the recognition code (44/242), might be considered prime
candidates for rerunning the ChIP assays, possibly in other cell types,
and/or analysis by alternative assays such as SMILE-seq. Ideally, an
in vitro-derived motif for each protein will eventually also be available,
enabling confirmation that the motifs enriched in ChIP data represent
bona fide direct sequence recognition events. In the meantime, the
recognition code appears to provide a reasonable substitute.

The absence of a complete set ofmotifs for humanTFs (Weirauch et al.
2014) remains a glaring shortcoming in the study of human gene regula-
tion. Our collection of reference motifs includes 166 proteins for which
there was previously no known motif. We anticipate that the reference set
will be of general utility in the study of regulatory mechanisms and net-
works. It will also facilitate exploration of the targeting mechanisms
of these proteins to EREs—the motifs alone are largely insufficient
(Najafabadi et al. 2015b; Schmitges et al. 2016)—as well as their roles in
human genetics and disease, because SNPs in noncoding regions often
impact motif scores for TFs (Deplancke et al. 2016).
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